
Dominic Filion, Senior Engineer

Blizzard Entertainment

Rob McNaughton, Lead Technical Artist

Blizzard Entertainment

 Screen-space techniques

 Deferred rendering

 Screen-space ambient occlusion

 Depth of Field

 Translucent Shadows

 DX9-based

 Scalability
 GPU families from Radeon 9800/geForce FX to latest

families supported, with maximal usage of each family

 Pixel load vs. vertex load
 Stress pixel vs. vertex/batch processing due to fluctuating,

high unit counts

 Translates into focus on stressing GPU over CPU to
ensure consistent framerate

 Dual mode
 Game mode: overhead view, many units, lot of action

 Story mode: close-up view, few models, contemplative

 In-game

 Story mode

 Warcraft III: bright, even coloring,

few local lights

 Starcraft II: more emphasis
on local lighting & shadows,
without obscuring gameplay

 Player controls lighting environment

 Forward renderer:

 Discover any light interactions with every model

 Render the model by looping over each light in the pixel

shader

 Problems:

 A light just touching a small part of a model causes the entire model to

be more expensive (not just the affected part)

 Light interactions potentially become n squared, causing uneven

performance which doesn’t scale well to lower-end hardware

 Deferred renderer:

 Render models and store material & depth

information for each rendered pixel

 Layer lighting unto scene by rendering light shapes

 Recover position from depth map

 Recover material information from RTs

 Minimal CPU work

 Less waste of pixel cycles for complex lighting

environments

 FP16 Render Targets

 All MRTs must be same size & format

 The different MRT information will be used for a
variety of effects later on

 Depth is most useful; used for lighting, fog volumes,
screen-space ambient occlusion, smart displacement,
depth of field, projections, edge detection, thickness
measurement

 Normals for lighting, screen-space ambient occlusion

 Diffuse & specular for lighting

 VPOS semantic can be used under PS 3.0, which
provides pixel coordinates for each pixel

 Normalize x, y coordinates to [-1..1] & multiply by
sampled depth

 Under PS 2.0, an equivalent [-1..1] view space
coordinate will need to be passed in from the vertex
shader

 Transform to world space from view space if
necessary

 Render the light shape

 Recover depth, normal and material information

(diffuse, specular color) from sampling RTs

wherever the light shape is at

 Derive the position of the lit surface point from

the depth

 Calculate the light contribution and additively

blend with the backbuffer

Lighting Only with

Pre-generated Ambient

Occlusion maps

Lighting overlap

Red is 8 or more lights

Finished result

Added HDR tonemapping and

colorization

 Approximate the occlusion function at points on

visible surfaces by sampling the depth of

neighboring pixels in screen space

 Depth map required

 Ambient occlusion term will be stored in the

alpha channel so it can modulate the deferred

lighting

8 to 32 samples per pixel

 “Flatten” occlusion ray-casting to 2D

 At any visible point on a surface on the screen,
multiple samples (8 to 32) are taken from
neighboring points in the scene

 Check if the depth sampled at the point is closer
or further away than the depth of the sample
point itself

 If the depth sampled is closer, than there is a
surface that is covering the sample point, and
some occlusion may be occuring

 Compute the view space position of a pixel (2D to
3D)

 Add n (8 to 32) 3D offset vectors to this position

 Remap these offset vectors to where they are in
screen space (3D back to 2D data space)

 Compare the depth of each offset vector sample
with the depth at the point where the offset is

 Each offset contributes some occlusion if the
sampled depth on screen is in front of the depth of
the offset vector

 Blockers closer to the sample should occlude

more

 Blockers far from the sample don’t occlude at all

 Blockers behind don’t occlude at all

All “ray casts” must be above

the surface to avoid self-

occlusion

 Gaussian blur

 Sample depth & normal of center tap

 Sample depth & normal of each blur sample

 Reduce Gaussian weight to zero if:
 Depth of blur sample differs from center tap depth by a

certain amount

 Dot product of blur sample normal with center tap normal
is less than a certain amount

 Renormalize Gaussian weights to account for
eliminated samples

 Multiple blur passes may be required

 Offset vector can go outside the screen, where

there is no depth information

 Best approximation is ensuring out-of-bounds

samples don’t occlude

 Use “Border color” texture wrapping state and

set the “color” to a high depth value

 Close-ups lengthen the 3D offset vectors and

cause the SSAO to be under-sampled

 Two possible solutions:

 Increase sample count dynamically

 Limit maximum screen extents of offset vectors

 Starcraft II relies on the second approach to

avoid large framerate swings

 Texture sampling is a bottleneck

 Sampling pattern is not cache-friendly

 Wide sampling area makes it worse

 Leverage low-frequency aspect

 Use a reduced size depth buffer (quarter size)

 Wide sampling area creates quasi-GI effect

 Distribute samples over two thresholds

 One half of samples over wide area for GI

 One half of samples over tight area for contrast

and edge enhancement

Lighting only

16 AO samples shown

(8 large and 8 small)

Artist Tool UI for SSAO in real-

time

Lighting only

32 AO samples shown

(16 large and 16 small)

Soft Shadows enabled

Video

Artist says,

“I want this!”

 Art and need-driven rather than physically driven

 One reference distance serves as focal point

 Objects grow out of focus as they move away

from the focal point

 Circle of Confusion is the area around each pixel for which

neighboring pixels are blurred, aka. The amount of blurriness

 Function of distance from viewer; sharp detail is zero-size

circle of confusion, aka no blur

 For each screen pixel, CoC is derived from depth as follows:

 One approach would be to vary the width of the blur kernel

and the amount of blur samples; however, doesn’t scale well

to lower-end hardware

 Use three images for different levels of blur and interpolate

between the images to achieve a gradual blur

 The lowest-level of blur is no blur, so the source image is a

4th image that will be interpolated at the lower end of the blur

range

 Use Gaussian-weighted sampling to generate the blur

images

 Process works, but needs to handle some

special cases to make the effect believable

 Stroe CoC for every pixel in a

texture

 Weigh the Gaussian samples by

the corresponding CoC factors

for each sampled pixel

 Gaussian weights are

renormalized so they add up to

one again

 Blur the circle of confusion factors

in an image a quarter size per side,

ensuring that any blurry pixels will

cause neighboring pixels to become

blurry as well

 This image becomes our “blurred

CoC map” and assures that all

blurry regions have an halo around

them that extends past that blurry

region

 Blurring the CoC map now creates blur regions
blurring over sharp regions even when the
blurry region is behind the sharp region

 Approximate solution, works well enough for
our cases

 Downscale and blur the depth map in an
image a quarter size per side; each pixel in the
blurred depth map now represents the
average depth for the area around that pixel

 Sample both the blurred and non-blurred
depth maps

 If the average depth for the area is smaller
(closer) than the current depth, current pixel is
behind its neighbors - use the CoC from the
blurred CoC map (aka accept neighbor halo)

 If the average depth for the area is larger
(further away) than the current depth, current
pixel is in front of its neighbors - compute and
use the CoC for the current pixel only (no CoC
blurring, and no halo from neighbor regions)

 Generate three images for each level of blur

 Compute the CoC for each pixel

 Generated blurred CoC and depth map

 Sample the source depth map and the blurred depth

map and use depth ordering test to determine if the

blurred or non-blurred CoC should be used

 Calculate contribution from each of the four blur

sources based on the CoC factor and sum the

contributions

DOF with maximum blur

Simple 3dsmax rollout to

save animated cameras.

Slow iteration

Real-time editing in-game

made DOF ultra easy to

use.

 Transparencies are… annoying

 Only multi-pass lighting is scalable to the lowest-

end hardware

 In practice, transparencies are not the point of

focus for our environments

 Associating specific transparencies with an

alternate, simpler set of lights is a good

compromise

 Depth of field and SSAO can however produce glaring
artifacts in a few cases

 Need to make compromises

 In some cases we will allow transparencies to write the
depth map (not the z-buffer)

 Although there is still only one depth per pixel, this
allows some key transparencies that are only slightly
transparencies to handle depth of field and SSAO
appropriately

 System could be broken down to support n layers but
the performance characteristics become extremely
variable

 Works seamlessly with regular shadows

 Transparent objects set to cats shadows filter

light through them

 Use a second shadow map and color buffer

 Render first, regular shadow map as normal with

opaque objects

 Render transparent shadow-casting objects in

second shadow map

 Z-write on

 No alpha-test

 Less-equal z-test

 Records depth of closes transparency

 Clear color buffer associated with second
shadow map to white

 Now render transparent objects again in color
buffer

 Sort front to back (inverted, these are filters)

 Use OPAQUE shadow map as z-buffer

 No z-write

 Less-equal z-test

 Records color information for transparencies in front
of opaque objects

 Finally, perform shadow test during regular

rendering:

 Test both opaque shadow map and translucent

shadow map

 If translucent shadow map test fails, modulate by

color of transparent shadow color buffer

 Module by result of opaque shadow map test (binary

test)

Particle effects during game-

play

Cinematic characters

Holograph projector effect

created by a shadow casting

spot light through a blend mesh

with a video texture

Video: Depth Of Field, Translucent Shadows, and SSAO

 Thinking in screen-space:

 Allows many interesting effects if approximations are

acceptable

 Simplifies existing rendering processes

 Tends to have reliable, consistent performance

 Check out www.blizzard.com for details

 Tools programmers go to the front of the line!

