
Dominic Filion, Senior Engineer

Blizzard Entertainment

Rob McNaughton, Lead Technical Artist

Blizzard Entertainment

 Screen-space techniques

 Deferred rendering

 Screen-space ambient occlusion

 Depth of Field

 Translucent Shadows

 DX9-based

 Scalability
 GPU families from Radeon 9800/geForce FX to latest

families supported, with maximal usage of each family

 Pixel load vs. vertex load
 Stress pixel vs. vertex/batch processing due to fluctuating,

high unit counts

 Translates into focus on stressing GPU over CPU to
ensure consistent framerate

 Dual mode
 Game mode: overhead view, many units, lot of action

 Story mode: close-up view, few models, contemplative

 In-game

 Story mode

 Warcraft III: bright, even coloring,

few local lights

 Starcraft II: more emphasis
on local lighting & shadows,
without obscuring gameplay

 Player controls lighting environment

 Forward renderer:

 Discover any light interactions with every model

 Render the model by looping over each light in the pixel

shader

 Problems:

 A light just touching a small part of a model causes the entire model to

be more expensive (not just the affected part)

 Light interactions potentially become n squared, causing uneven

performance which doesn’t scale well to lower-end hardware

 Deferred renderer:

 Render models and store material & depth

information for each rendered pixel

 Layer lighting unto scene by rendering light shapes

 Recover position from depth map

 Recover material information from RTs

 Minimal CPU work

 Less waste of pixel cycles for complex lighting

environments

 FP16 Render Targets

 All MRTs must be same size & format

 The different MRT information will be used for a
variety of effects later on

 Depth is most useful; used for lighting, fog volumes,
screen-space ambient occlusion, smart displacement,
depth of field, projections, edge detection, thickness
measurement

 Normals for lighting, screen-space ambient occlusion

 Diffuse & specular for lighting

 VPOS semantic can be used under PS 3.0, which
provides pixel coordinates for each pixel

 Normalize x, y coordinates to [-1..1] & multiply by
sampled depth

 Under PS 2.0, an equivalent [-1..1] view space
coordinate will need to be passed in from the vertex
shader

 Transform to world space from view space if
necessary

 Render the light shape

 Recover depth, normal and material information

(diffuse, specular color) from sampling RTs

wherever the light shape is at

 Derive the position of the lit surface point from

the depth

 Calculate the light contribution and additively

blend with the backbuffer

Lighting Only with

Pre-generated Ambient

Occlusion maps

Lighting overlap

Red is 8 or more lights

Finished result

Added HDR tonemapping and

colorization

 Approximate the occlusion function at points on

visible surfaces by sampling the depth of

neighboring pixels in screen space

 Depth map required

 Ambient occlusion term will be stored in the

alpha channel so it can modulate the deferred

lighting

8 to 32 samples per pixel

 “Flatten” occlusion ray-casting to 2D

 At any visible point on a surface on the screen,
multiple samples (8 to 32) are taken from
neighboring points in the scene

 Check if the depth sampled at the point is closer
or further away than the depth of the sample
point itself

 If the depth sampled is closer, than there is a
surface that is covering the sample point, and
some occlusion may be occuring

 Compute the view space position of a pixel (2D to
3D)

 Add n (8 to 32) 3D offset vectors to this position

 Remap these offset vectors to where they are in
screen space (3D back to 2D data space)

 Compare the depth of each offset vector sample
with the depth at the point where the offset is

 Each offset contributes some occlusion if the
sampled depth on screen is in front of the depth of
the offset vector

 Blockers closer to the sample should occlude

more

 Blockers far from the sample don’t occlude at all

 Blockers behind don’t occlude at all

All “ray casts” must be above

the surface to avoid self-

occlusion

 Gaussian blur

 Sample depth & normal of center tap

 Sample depth & normal of each blur sample

 Reduce Gaussian weight to zero if:
 Depth of blur sample differs from center tap depth by a

certain amount

 Dot product of blur sample normal with center tap normal
is less than a certain amount

 Renormalize Gaussian weights to account for
eliminated samples

 Multiple blur passes may be required

 Offset vector can go outside the screen, where

there is no depth information

 Best approximation is ensuring out-of-bounds

samples don’t occlude

 Use “Border color” texture wrapping state and

set the “color” to a high depth value

 Close-ups lengthen the 3D offset vectors and

cause the SSAO to be under-sampled

 Two possible solutions:

 Increase sample count dynamically

 Limit maximum screen extents of offset vectors

 Starcraft II relies on the second approach to

avoid large framerate swings

 Texture sampling is a bottleneck

 Sampling pattern is not cache-friendly

 Wide sampling area makes it worse

 Leverage low-frequency aspect

 Use a reduced size depth buffer (quarter size)

 Wide sampling area creates quasi-GI effect

 Distribute samples over two thresholds

 One half of samples over wide area for GI

 One half of samples over tight area for contrast

and edge enhancement

Lighting only

16 AO samples shown

(8 large and 8 small)

Artist Tool UI for SSAO in real-

time

Lighting only

32 AO samples shown

(16 large and 16 small)

Soft Shadows enabled

Video

Artist says,

“I want this!”

 Art and need-driven rather than physically driven

 One reference distance serves as focal point

 Objects grow out of focus as they move away

from the focal point

 Circle of Confusion is the area around each pixel for which

neighboring pixels are blurred, aka. The amount of blurriness

 Function of distance from viewer; sharp detail is zero-size

circle of confusion, aka no blur

 For each screen pixel, CoC is derived from depth as follows:

 One approach would be to vary the width of the blur kernel

and the amount of blur samples; however, doesn’t scale well

to lower-end hardware

 Use three images for different levels of blur and interpolate

between the images to achieve a gradual blur

 The lowest-level of blur is no blur, so the source image is a

4th image that will be interpolated at the lower end of the blur

range

 Use Gaussian-weighted sampling to generate the blur

images

 Process works, but needs to handle some

special cases to make the effect believable

 Stroe CoC for every pixel in a

texture

 Weigh the Gaussian samples by

the corresponding CoC factors

for each sampled pixel

 Gaussian weights are

renormalized so they add up to

one again

 Blur the circle of confusion factors

in an image a quarter size per side,

ensuring that any blurry pixels will

cause neighboring pixels to become

blurry as well

 This image becomes our “blurred

CoC map” and assures that all

blurry regions have an halo around

them that extends past that blurry

region

 Blurring the CoC map now creates blur regions
blurring over sharp regions even when the
blurry region is behind the sharp region

 Approximate solution, works well enough for
our cases

 Downscale and blur the depth map in an
image a quarter size per side; each pixel in the
blurred depth map now represents the
average depth for the area around that pixel

 Sample both the blurred and non-blurred
depth maps

 If the average depth for the area is smaller
(closer) than the current depth, current pixel is
behind its neighbors - use the CoC from the
blurred CoC map (aka accept neighbor halo)

 If the average depth for the area is larger
(further away) than the current depth, current
pixel is in front of its neighbors - compute and
use the CoC for the current pixel only (no CoC
blurring, and no halo from neighbor regions)

 Generate three images for each level of blur

 Compute the CoC for each pixel

 Generated blurred CoC and depth map

 Sample the source depth map and the blurred depth

map and use depth ordering test to determine if the

blurred or non-blurred CoC should be used

 Calculate contribution from each of the four blur

sources based on the CoC factor and sum the

contributions

DOF with maximum blur

Simple 3dsmax rollout to

save animated cameras.

Slow iteration

Real-time editing in-game

made DOF ultra easy to

use.

 Transparencies are… annoying

 Only multi-pass lighting is scalable to the lowest-

end hardware

 In practice, transparencies are not the point of

focus for our environments

 Associating specific transparencies with an

alternate, simpler set of lights is a good

compromise

 Depth of field and SSAO can however produce glaring
artifacts in a few cases

 Need to make compromises

 In some cases we will allow transparencies to write the
depth map (not the z-buffer)

 Although there is still only one depth per pixel, this
allows some key transparencies that are only slightly
transparencies to handle depth of field and SSAO
appropriately

 System could be broken down to support n layers but
the performance characteristics become extremely
variable

 Works seamlessly with regular shadows

 Transparent objects set to cats shadows filter

light through them

 Use a second shadow map and color buffer

 Render first, regular shadow map as normal with

opaque objects

 Render transparent shadow-casting objects in

second shadow map

 Z-write on

 No alpha-test

 Less-equal z-test

 Records depth of closes transparency

 Clear color buffer associated with second
shadow map to white

 Now render transparent objects again in color
buffer

 Sort front to back (inverted, these are filters)

 Use OPAQUE shadow map as z-buffer

 No z-write

 Less-equal z-test

 Records color information for transparencies in front
of opaque objects

 Finally, perform shadow test during regular

rendering:

 Test both opaque shadow map and translucent

shadow map

 If translucent shadow map test fails, modulate by

color of transparent shadow color buffer

 Module by result of opaque shadow map test (binary

test)

Particle effects during game-

play

Cinematic characters

Holograph projector effect

created by a shadow casting

spot light through a blend mesh

with a video texture

Video: Depth Of Field, Translucent Shadows, and SSAO

 Thinking in screen-space:

 Allows many interesting effects if approximations are

acceptable

 Simplifies existing rendering processes

 Tends to have reliable, consistent performance

 Check out www.blizzard.com for details

 Tools programmers go to the front of the line!

