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Fractals and the Collage Theorem1 
A.  Fractal History 
The idea of fractals is relatively new, but their roots date back to 19th century 
mathematics.  A fractal is a mathematically generated pattern that is reproducible at any 
magnification or reduction and the reproduction looks just like the original, or at least has 
a similar structure.    Georg Cantor (1845-1918) founded set theory and introduced the 
concept of infinite numbers with his discovery of cardinal numbers.  He gave examples 
of subsets of the real line with unusual properties.  These Cantor sets are now recognized 
as fractals, with the most famous being the Cantor Square. 

 
Waclaw Sierpinski (1882-1969), a Polish mathematician, worked in set theory, point set 
topology, and number theory.  He is known for the Sierpinski Triangle.  

 However, there are many other Sierpinski fractals, such as the 
Sierpinski Carpet.  
 
The term ‘fractal’ was coined in 1975 by Benoit Mandelbrot (1924 - ) from the Latin 
fractus, meaning “broken” or “irregular.”  This term was used to describe shapes that 
have the characteristic of self-similarity, i.e. that when you magnify any part it looks just 
like (or has the same structure) as the original.  He is widely known for the Mandelbrot 
set. 

 
B.  Basic Fractals 
Now, let’s try to create some basic fractals using 
functions on the plane.  We can start with a 

                                                 
1 Sections A, B, and E created in collaboration 
 with Stacie Lefler. 
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square with corners at (0, 0), (1, 0), (0, 1), 
and (1, 1).  
 
We will call our initial image of a square S0. 
 
We are interested in what happens to our 
square when we consider the functions  
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them at the vertices of our square.   

When we evaluate f1 (x, y) = 

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 at the 

vertices of S0 we get the following: 
 f1(0, 0) = (0, 0) 
 f1(1, 0) = ( ½ , 0) 
 f1(0, 1) = (0, ½) 
 f1(1, 1) = ( ½, ½) 
  
Notice that this takes S0 and shrinks it to half of its original x length and half of its 
original y height. 

When we evaluate f2 (x, y) = 






 +
2

,
2

1

2

yx
at the vertices of S0 we get the following: 

 f2(0, 0) = ( ½ , 0) 
 f2(1, 0) = (1, 0) 
 f2(0, 1) = ( ½, ½) 
 f2(1, 1) = (1, ½) 
 
Note that this is the same image as we get from f1, but it is shifted ½ unit to the right. 
 

When we evaluate f3(x, y) = 
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at the vertices of S0 we get the following: 

 f3(0, 0) = ( ¼ , ½) 
 f3(1, 0) = ( ¾ , ½) 
 f3(0, 1) = ( ¼ , 1) 
 f3(1, 1) = ( ¾ , 1) 
 
Note that this, too, is the same image as we get from f1, but it is shifted ¼ unit to the right 
and ½ unit up. 
 
We define the new function formed as: 
     F(S) = f1(S) ∪ f2(S) ∪ f3(S) 
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Here is F(S0): 
 
We will call this new image S1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can now iterate, or repeat, our image again by following the same pattern.  To get S2 
we can start by evaluating f1 at the vertices of S1 which would shrink S1 to half of its 
original x length and half of its original y height.  Next, we would evaluate f2 at the 
vertices of S1.  This simply gives a ½ to the right translation of f1(S1).  Last, we would 
evaluate f3 at the vertices of S1. This gives us a translation of f1(S1), too.  This one is 
shifted ¼ unit left, and ½ unit up. 
 
 
 
 
 
 
 
We’ll call this image S2. 
 
 
 
 
 
 
 
 
 
 
 
Iterate the image again by evaluating the same three functions at the vertices of S2.  The 
first function, f1, will shrink the image, f2 will translate the shrunken figure to the right ½, 
and f3 will translate the shrunken figure to the right ¼, and up ½. 
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f1(S1) f2(S1) 
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We’ll call this image S3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is starting to look like the Sierpinski Triangle.  We might wonder if our three 
functions gave us the Sierpinski Triangle because we started with four corners of a 
square.  Let’s see what happens if we start with an isosceles triangle instead of a square.  
We start with an isosceles triangle with corners at (0, 0), (1, 0), and (½, 1).   
 
 
 
 
The initial image is the equilateral triangle.   
We will call this image S0. 
 
 
 
 
 
 
 
 

When we evaluate f1 (x, y) = 








2
,

2

yx
at the vertices of S0 we get the following: 

 f1(0, 0) = (0, 0) 
 f1(1 , 0) = (½ , 0) 
 f1(½ , 1) = (¼ , ½) 
  
Notice that evaluating f1 with the vertices of S0 shrinks the image to half of the original 
length of x and half the original height of y. 
 

                           
                     

                       
                       

                       
                       

                          
                          

                      
                      

                          
                          

                          
                          

                                
                                

f1(S2) f2(S2) 

f3(S2) 
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When we evaluate f2 (x, y) = 
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at the vertices of S0 we get the following: 

 f2(0, 0) = (½ , 0) 
 f2(1, 0) = (1, 0) 
 f2(½ , 1) = (¾ , ½) 
Notice that this gives the same image that we achieved with f1, but it has been shifted ½ 
to the right. 
 

When we evaluate f3(x, y) = 
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at the vertices of S0 we get the following: 

 f3(0, 0) = (¼ , ½) 
 f3(1, 0) = (¾ , ½) 
 f3(½ , 1) = (½ , 1) 
  
This, too, gives the same image as in f1, but it has been shifted ¼ to the right, and ½ up. 
 
 
 
 
 
 
We will call this new image S1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
After the second iteration we have the new image, S2.   
 
 
 
 
 
 
 
 
 
 

f1(S0) f2(S0) 

f3(S0) 

f1(S1) f2(S1) 

f3(S1) 
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After the n iterations we have the new image, Sn.   
 
 
 
 
 
 
 
After the nth iteration, we can see that when we start with a triangle the functions are 
affecting the image in the same way as when we started with a square.  In fact, we could 
start with any initial image, even a silhouette of Jim Lewis, and after enough iterations 
using our three functions we would begin to see the Sierpinski Triangle.  The final image 
is actually independent of the initial image.  If we do enough iterations, the initial image 
gets smaller and smaller, becoming a dot, and so the final image is in a sense made up of 
an infinite number of dots.  It does not matter what shape we start with, if we apply the 
same three functions,  
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Sierpinski Triangle. (for more information, visit 
http://www.maths.anu.edu.au/~barnsley/pdfs/V-var_super_fractals.pdf ) 
 
Another famous iteration is known as the Cantor Square.  The Cantor Square, in contrast, 
is an iteration of four functions.  We learned that the first two iterations of the Cantor 
Square look like this:   

               
 
From that, we were able to determine the functions that generate the fractal.  To create 
the Cantor Square, we begin with a 1 x 1 square.  To this image, we apply the following 
functions: 
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f1(Sn-1) 
f2(Sn-1) 

f3(Sn-1) 
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We did not know these four functions before creating the fractal.  We determined these 
functions by examining the S0 and S1 images.  The functions came from discovering the 
shrinks and translations applied to the initial image, S0. 
 
 
 
 
The initial image of the Cantor Square is to the right.  
 
 We will call this image S0.  
 
 
 
 
 
F(S0) is an image that looks like this: 
 
We will call this image S1. 

 

 

 

 

We get these four squares by applying the four functions.  The function f1 simply shrinks 
the image.  The function f2 translates the shrunken image to the right.  The function f3 
translates the shrunken image up, and the function f4 translates the shrunken image to the 
right and up.   
 
If we repeat the iteration on the previous image, we get: 
 
 
We will call this image S2. 
 
 
 
 
 
 
 
 
 
 
And, after one more iteration, we produce this image: 
We will call this image S3. 
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The Sierpinski Carpet is another unique fractal.  We learned that the first two images of 
the Sierpinski Carpet look like the following: 
 

              
 
By looking at these images, we determined the eight different functions necessary to 
generate the Sierpinski Carpet. 
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We found these eight functions by observing the given images S0 and S1 and how S0 was 
transformed to achieve S1.  Each part of S1 was formed by either shrinking or shrinking 
and translating S0.  The first four images are shown below.  Notice that the second image 
is actually eight shrunken copies of the previous image, seven of which are also 
translated.  This is why we have eight functions necessary to create the Sierpinski Carpet. 
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All of the fractals we have looked at so far share the common characteristic in that they 
are self-similar.  An object is said to be self-similar if it looks "roughly" the same on any 
scale of magnification.  We can choose a small part of the image and it will look very 
similar to the whole image.  For example, consider the Sierpinski Triangle.  Zoom in on a 
section, say the pink region.  It is a miniature duplicate or a copy of the whole triangle, as 
is the yellow region.  It is self-similar. In fact, all fractals share this 
characteristic of self-similarity.   
When we evaluate the previous image with the function f1, it gives us the  
lower left corner.  When we evaluate the previous image with the 
function f2,it gives us the lower right corner, and f3 gives the upper 
corner. Many objects in nature also have the self-similarity property as 
we will see later. (for more information, visit 
http://math.bu.edu/DYSYS/chaos-game/node5.html ) 
 
 
 
 
 
 
 
 
 
 
C.  More about Functions on the Plane 
In previous examples, our fractals were created by shrinking and translating shapes.  To 
get even more interesting fractals we can incorporate functions that will rotate and flip 
shapes.  It is important to find the basic functions to achieve each of these.  For example, 
let’s determine a function that will rotate a shape 90°.  Let’s start with a basic shape, a 
square positioned at the origin, with other vertices at (1,0), (1,1), and (0,1).  We will find 
a function that gives the rotated image: 
 
                   1                                                                              1 
      
 
            -1               1                                                         -1                  1 
 
                  -1                                                                             -1 
First, I mapped where the original vertices fell in the rotated image. 
(0,0) → (0,0) 
(1,0) → (0,1) 
(1,1) → (-1,1) 
(0,1) → (-1,0) 
I can see that the original x values are now the y values, and the opposites of the original 
y values are now the x values.  I can write this in function form: f(x,y) = (-y,x) 
Next, I found a function that would rotate an image 180°.  I started with the same basic 
situation: 

M2 

M
2  
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                   1                                                                              1 
      
 
            -1               1                                                      -1                  1 
 
                  -1                                                               
                                                                                                    -1 
 
My mapping was: 
(0,0) → (0,0) 
(1,0) → (-1,0) 
(1,1) → (-1,-1) 
(0,1) → (0,-1) 
I can see that the second ordered pairs can be written as the opposites of the first ordered 
pairs.  I can write this in function form: f(x,y) = (-x,-y) 
Last, I found a function that would flip an image.  I again started with the same basic 
situation: 
 

1 1 
 
 
     -1                      1                                                              -1                       1 
 
                -1                                                                                     -1 
 
My mapping was: 
(0,0) → (0,0) 
(1,0) → (-1,0) 
(1,1) → (-1,1) 
(0,1) → (0,1) 
The new x values are the opposite of the originals, and the y values remain the same. 
This can be written as: f(x,y) = (-x,y) 
We can put rotations, shrinks, translations, flips, etc. altogether to do interesting things.  
For example, I found functions that turn the first box into the second. 
 
                  1                                                                                1 
 
 
    -1                                1                                          -1                                 1                                                     
 
 
 
                  -1                                                                               -1 
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D.  The Collage Theorem 
In the previous examples we have been taking an image and finding the functions that 
generated that image.  Michael Barnsley, a professor at Georgia Tech, proved a theorem 
that actually supports this idea and gives an idea how to do it.  It is called the Collage 
Theorem.  It states:  

If the image you want to get is called L, then you need to find functions f 
such that F(L) = L.  Then no matter what initial image you start with, if 
you iterate F, you’ll “eventually” get L, where “eventually” means you’ll 
get closer and closer to it and after awhile your image will be 
indistinguishable form L. (direct correspondence, W. Hines) 

To make this more precise, we should add: 
If F(S) = S and S contains L, then S = L.  That is, no larger set is ‘fixed’ 
by F.  Without this, many F’s will not work, the simplest F being the 
function 
 F(x,y) = (x,y), for all (x,y).  This function satisfies F(L) = L, but it will not 
generate L.  (direct correspondence, G. Woodward) 

We can look at an iterated image, and try to find the functions that we applied to any 
initial shape to generate the final image.  Take for example the Cantor Square.  In looking 
at S3, I see four identical “parts”.  This is a clue to me that there are four functions that 
will be applied to any basic shape.  Each shape has one-third the dimensions of S2.  One 
of the functions will then shrink the previous image.  We can then slide that shrunken 
image to three different locations.  The remaining three functions must translate the 
image to each of the three positions.  We actually did the inverse of this theorem when 
we were given the functions for the Sierpinski Triangle, and we applied them to different 
initial images.  “Eventually” we got the same picture.   
 
My next challenge is to use The Collage Theorem to determine the functions that give me 

the following fractal: 
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I started by staring at the picture.  I viewed this as part of a square with vertices (0,0), 
(0,1), (1,0), and (1,1).  With a little prodding, I did see three, smaller replicas of the big 
picture.  One of the pictures was simply a shrink of the big picture.  Both dimensions 
were half of the original, x and y by the vertices used for the original image.  (Marked in 

pink on the above diagram.)  This gave me one of my functions: f(x,y)= 




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.  

Another was a translation of the shrunken image.  I determined that it was translated ½ to 
the right. (Marked in blue on the above diagram.) This allowed me to find the second 

function: f(x,y) = 
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.  It took me quite a while to find the third formula because 

I was not finding the third image!  Finally, and with some assistance, I found the 
shrunken image translated to the right and up, and then rotated.  (Marked in green on the 
above diagram.)  Because of the rotational relationships found previously, this allowed 

me to write the third function: f(x,y) = 






 ++−
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.  Now, I needed to test my 

formulas.  I decided to use a 1x1 square as my initial (S0) shape.  I then applied four 
iterations, shown in progression below.  If I were to continue, I would indeed have my 
starting image.  My functions are appropriate for the fractal. 
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E.  Fractals in Nature 
This was not Barnsley’s only contribution in the area of fractals.  Let’s say you want to 
store a picture of the hook picture from before.  That would take much storage space if 

we saved the information by the pixel.  Barnsley realized there is no need 
to store the whole picture, just store the three functions needed to create 
the picture.  When you want the picture, run a program that iterates the 
functions as many times as you choose, and you will get a picture like the 
hooks.  He also used four functions to generate a very natural-looking 
image of a fern, called the Barnsley fern.  This prompted others to try 
their hand at generating all sorts of natural images.  Believe it or not, this 
image is actually computer-generated with the use of fractals, and not 
taken with a powerful camera.   
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It has also become increasingly popular to use fractal technology to create computer-
generated special effects. 
 
Nature holds an array of items that have fractal properties.  Among them are a fern and 
romanesco.  As you see in the pictures, both have the self-similarity property, and both 

repeat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Trees, clouds, snowflakes, mountains, rivers, and coastlines are also naturally occurring 
fractals.  
 
Hopefully you have seen, as did I, some wonderful aspects of fractals.  Not only do they 
hold the beauty of the mathematics used to create them, they have the beauty of occurring 
naturally.  It is amazing that this exciting mathematical application is around us at every 
turn and has been forever, but that it took so much time to give it a name. 
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F.  Summary 
 
I have thoroughly enjoyed this opportunity to study fractals.  This was a topic that I had 
heard of, but had not had a chance to learn about it.  This study strengthened my 
knowledge and confidence when working with functions with two variables.  By the time 
I was done with the Sierpinski Triangle, I was pretty confident that I knew what there 
was to know.  Then, I moved to the Cantor Square and one more function to find.  I was 
still in my comfort zone.  But, then we got to the Sierpinski Carpet with eight functions.  
Overwhelming was my first thought, and all of a sudden, the functions were there!  That 
was a big sense of accomplishment for me.  I then went on to research the Collage 
Theorem, which backed up the previous work.  The inclusion of rotations as an additional 
transformation technique was challenging, but not too extreme.  I definitely felt a sense of 
achievement when Jamie Radcliffe told me my work on the hook fractal was correct.   
 
In researching this topic, I primarily used the Internet.  One challenge was to read the 
functions given on a web page.  They are not always written in the most appropriate 
form.  Another challenge was finding appropriate material.  Wendy Hines was an 
invaluable resource for this topic.  She was definitely better than any book or web page!  
She was able to give the important facts and let me experiment and discover on my own.  
This is an area I need to work on as a teacher.  So often, I want to give all the pertinent 
information to my students instead of allowing them the time to research and test ideas.  I 
would like to do some work with my students pertaining to the fractals I learned about.  I 
am sure my 8th graders would enjoy this.  For my own knowledge, I plan to find some 
more information about the Mandelbrot set.  I think this may be a little too in depth with 
the complex plane for middle school students, but the images are beautiful and can be 
enjoyed by students of all ages. 
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