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Fractals and the Collage Theorem
A. Fractal History
The idea of fractals is relatively new, but theiots date back to facentury
mathematics. A fractal is a mathematically geregtgiattern that is reproducible at any
magnification or reduction and the reproductiorkust like the original, or at least has
a similar structure. Georg Cantor (1845-1918nfited set theory and introduced the
concept of infinite numbers with his discovery afadinal numbers. He gave examples
of subsets of the real line with unusual properti€sese Cantor sets are now recognized
as fractals, with the most famous being the Catprare.

Waclaw Sierpinski (1882-1969), a Polish mathemarticivorked in set theory, point set
topology, and number theory. He is known for tier@nski Triangle.
A
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*‘%Az’* *‘{‘»\A&\ !‘%A?l\ *‘%ézl* However, there are many other Sierpinski fractlsh as the
Sierpinski Carpet.

The term ‘fractal’ was coined in 1975 by Benoit Maibrot (1924 - ) from the Latin
fractus meaning “broken” or “irregular.” This term wasad to describe shapes that
have the characteristic of self-similarity, i.eathivhen you magnify any part it looks just
like (or has the same structure) as the origiktd.is widely known for the Mandelbrot
set.

B. Basic Fractals
Now, let’s try to create some basic fractals usii
functions on the plane. We can start with a

! Sections A, B, and E created in collaboration
with Stacie Lefler.
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square with corners at (0, 0), (1, 0), (0, 1),
and (1, 1).

We will call our initial image of a square.S

We are interested in what happens to our
square when we consider the functions

f1(X, y) = egj (X, Y) = (§+%%j

x 1y 1
and §(x, y) =| = +=,=+=, and evaluate
b Y) (2 4 2 2}
them at the vertices of our square.

When we evaluate {x, y) = (g%) at the

vertices of gwe get the following:
f1(0, 0) = (0, 0)
fi(1, 0) = (%, 0)
f1(0, 1) = (0, ¥2)
fi(1, 1) = (Y2, %)

Notice that this takesps@&nd shrinks it to half of its original x lengthdahalf of its
original y height.

When we evaluate{X, y) = (g +%%) at the vertices of Swve get the following:
f2(0,0) = (%, 0)
fo(1, 0) = (1, 0)
f2(0, 1) = (%, %)
f2(1, 1) = (1, %)

Note that this is the same image as we get frottout it is shifted ¥z unit to the right.

When we evaluatg(x, y) = (g +%% +%) at the vertices of Swve get the following:

£3(0, 0) = (Y4, %)
f3(1, 0) = (%2, %2)
£3(0, 1) = (¥4, 1)
f3(1,1)=(%, 1)

Note that this, too, is the same image as we get f, but it is shifted ¥ unit to the right
and %2 unit up.

We define the new function formed as:
F(S) ={(S) 0 fx(S) U f3(S)
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Here is F(9):

We will call this new image S

We can now iterate, or repeat, our image agairoligwing the same pattern. To get S
we can start by evaluatingdt the vertices of Svhich would shrink $to half of its
original x length and half of its original y heighiext, we would evaluate &t the
vertices of & This simply gives a ¥ to the right translatidri§S;). Last, we would
evaluate § at the vertices of;SThis gives us a translation @{$;), too. This one is
shifted ¥ unit left, and Y2 unit up.

We'll call this image &

Iterate the image again by evaluating the same tlurgctions at the vertices 0§.SThe
first function, f, will shrink the image,.fwill translate the shrunken figure to the right %,
and § will translate the shrunken figure to the rightanagd up %.
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We'll call this image &

This is starting to look like the Sierpinski Tridag We might wonder if our three
functions gave us the Sierpinski Triangle becausetarted with four corners of a
square. Let’s see what happens if we start witls@asceles triangle instead of a square.
We start with an isosceles triangle with corner®a0), (1, 0), and (%2, 1).

The initial image is the equilateral triangle.
We will call this image &

When we evaluate {x, y) = (g%) at the vertices of Sve get the following:
f1(0, 0) = (0, 0)
fi(1,0) =(*,0)
fi(2, 1) = (Y4, %)

Notice that evaluating fwith the vertices of $shrinks the image to half of the original
length of x and half the original height of y.



Snyder — MAT Expository Paper - 5

When we evaluate{x, y) = [g + % %) at the vertices of Sve get the following:

f2(0, 0) = (2, 0)

f2(1,0) = (1, 0)

f2(%2, 1) = (%4, %)
Notice that this gives the same image that we aeligvith f, but it has been shifted %2
to the right.

1y

When we evaluatg(, y) = (g +Z’ 5 +%) at the vertices of Swve get the following:

f3(0, 0) = (V4 , %)
fa(1, 0) = (%, %)
fae, 1) = (%, 1)

This, too, gives the same image as;jrbfit it has been shifted ¥4 to the right, and ¥z up.

We will call this new image S

=
,

After the second iteration we have the new image, S



Snyder — MAT Expository Paper - 6

After then iterations we have the new image, S

After the i iteration, we can see that when we start withemgle the functlons are
affecting the image in the same way as when weéestavith a square. In fact, we could
start with any initial image, even a silhouetteJioh Lewis, and after enough iterations
using our three functions we would begin to seeSiteepinski Triangle. The final image
is actually independent of the initial image. ¥ o enough iterations, the initial image
gets smaller and smaller, becoming a dot, andes@ribal image is in a sense made up of
an infinite number of dots. It does not matter tdtape we start with, if we apply the
same three functions,

1 1 1 :
f1(X, y)—(z %) fo(x,y) = (2+§ %) and §(x, y)—(;+zg Ej,wewnl get the

Sierpinski Triangle. (for more information, visit
http://www.maths.anu.edu.au/~barnsley/pdfs/V-vapesufractals.pdj

Another famous iteration is known as the Cantorg®gu The Cantor Square, in contrast,
is an iteration of four functions. We learned ttie first two iterations of the Cantor

Square look like this:

From that, we were able to determine the functtbas generate the fractal. To create
the Cantor Square, we begin with a 1 x 1 squarcethib image, we apply the following
functions:

f(xy) = (3 gj f,(xy) = ( y+2j

X 2 X 2 2
00 y) = (3+§ gj f(xy) = [§+§§+3j
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We did not know these four functions before creathe fractal. We determined these
functions by examining thep@nd S images. The functions came from discovering the
shrinks and translations applied to the initial g@a%.

The initial image of the Cantor Square is to tighti
We will call this image &

F(S) is an image that looks like this: - -

We will call this image §

We get these four squares by applying the fourtfans. The function;fsimply shrinks
the image. The function franslates the shrunken image to the right. Thetion §

translates the shrunken image up, and the funéfivanslates the shrunken image to the
right and up.

If we repeat the iteration on the previous image get: [ B | [ |
H B H W

We will call this image &

H N H B

H N H B

an =m 2s am
And, after one more iteration, we produce this imag T T
We will call this image &

H E H B Ha H N

I | [ I | I | o .
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The Sierpinski Carpet is another unique fractale Marned that the first two images of
the Sierpinski Carpet look like the following:

By looking at these images, we determined the algfégrent functions necessary to
generate the Sierpinski Carpet.

fl(x,y)=(x,y

w |
w
N

TURCRS
ool=(3+2
TORCER
ol(3+20)
(5442
(54042
(22249

We found these eight functions by observing thegivnages &and S and how $was
transformed to achieve SEach part of Swas formed by either shrinking or shrinking
and translating & The first four images are shown below. Notltat the second image
is actually eight shrunken copies of the previonage, seven of which are also
translated. This is why we have eight functionsassary to create the Sierpinski Carpet.
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All of the fractals we have looked at so far shtheecommon characteristic in that they
are self-similar. An object is said to be self+amif it looks "roughly" the same on any
scale of magnification. We can choose a smallgfatte image and it will look very
similar to the whole image. For example, consttlerSierpinski Triangle. Zoom in on a
section, say the pink region. It is a miniaturpléiate or a copy of the whole triangle, as
is the yellow region. Itis self-similar. In faetll fractals share this
characteristic of self-similarity.

When we evaluate the previous image with the fondj it gives us the
lower left corner. When we evaluate the previonage with the
function &,it gives us the lower right corner, andyfves the upper
corner. Many objects in nature also have the selflarity property as
we will see later. (for more information, visit
http://math.bu.edu/DYSYS/chaos-game/node5.Html

C. Moreabout Functionson the Plane

In previous examples, our fractals were createdhoynking and translating shapes. To
get even more interesting fractals we can incotpdumctions that will rotate and flip
shapes. It is important to find the basic funcéiom achieve each of these. For example,
let's determine a function that will rotate a sh&@& Let’s start with a basic shape, a
square positioned at the origin, with other vediae(1,0), (1,1), and (0,1). We will find

a function that gives the rotated image:

1 1
M? ~
=
-1 1 -1 1
11 -1
First, | mapped where the original vertices felthe rotated image.
(0,0) - (0,0)
(1,0)- (0,1)
1,2 - (-1,2)
(0,1) - (-1,0)

| can see that the originalvalues are now the y values, and the oppositéseadriginal
y values are now thevalues. | can write this in function forrfx,y) = (-y,X)

Next, | found a function that would rotate an imd@€r. | started with the same basic
situation:
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My mapping was:

(0,0) - (0,0)

(1,0) - (-1,0)

(1,1) - (-1,-1)

(0,1) - (0,-1)

| can see that the second ordered pairs can biemves the opposites of the first ordered
pairs. | can write this in function formf(x,y) = (-X,-y)

Last, | found a function that would flip an imageagain started with the same basic
situation:

1 <\\< 1 1 1

1 -1

My mapping was:

(0,0) - (0,0)

(1,0) - (-1,0)

(1,1) - (-1,2)

(0,1) - (0.1)

The newx values are the opposite of the originals, and/th&lues remain the same.
This can be written a$(x,y) = (-X,y)

We can put rotations, shrinks, translations, flgis, altogether to do interesting things.
For example, | found functions that turn the flwsk into the second.

1

-1 1 -1 1
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1
-1 1 -1 1
(-y.1x
fxy) = Y+1 X
I, () (2 ! 2) .

D. TheCollage Theorem
In the previous examples we have been taking agemaad finding the functions that
generated that image. Michael Barnsley, a professGeorgia Tech, proved a theorem
that actually supports this idea and gives an @& to do it. It is called the Collage
Theorem. It states:

If the image you want to get is called L, then gead to find functions f

such that F(L) = L. Then no matter what initialage you start with, if

you iterate F, you'll “eventually” get L, where “@ntually” means you'll

get closer and closer to it and after awhile yomaige will be

indistinguishable form L(direct correspondence, W. Hines)
To make this more precise, we should add:

If F(S) = S and S contains L, then S = L. Thahts)arger set is ‘fixed’

by F. Without this, many F’s will not work, thengilest F being the

function

F(x,y) = (x,y), for all (x,y). This function ssties F(L) = L, but it will not

generate L.(direct correspondence, G. Woodward)
We can look at an iterated image, and try to fima functions that we applied to any
initial shape to generate the final image. Takesfample the Cantor Square. In looking
at S, | see four identical “parts”. This is a clueni@ that there are four functions that
will be applied to any basic shape. Each shap@heghird the dimensions 05.SOne
of the functions will then shrink the previous ineagWe can then slide that shrunken
image to three different locations. The remairtimge functions must translate the
image to each of the three positions. We actuhitiithe inverse of this theorem when
we were given the functions for the Sierpinski mgke, and we applied them to different
initial images. “Eventually” we got the same pietu

My next challenge is to use The Collage Theoretetermine the functions that give me
the following fractal:

S

1';13111 1';1311 Lk ﬁrq ada; 1';'1111 I:""._
A
'H.ra.-.. a3 1"11?1 1'11
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| started by staring at the picture. | viewed tsspart of a square with vertices (0,0),
(0,1), (1,0), and (1,1). With a little proddingdil see three, smaller replicas of the big
picture. One of the pictures was simply a shrihthe big picture. Both dimensions
were half of the originalk andy by the vertices used for the original image. (kéakin

pink on the above diagram.) This gave me one ofungtions:f(x,y)= (g%) :
Another was a translation of the shrunken imageetérmined that it was translated %z to
the right. (Marked in blue on the above diagranhisTallowed me to find the second

function:f(x,y) = (g +%%) It took me quite a while to find the third forfalbecause

| was not finding the third image! Finally, andtitvsome assistance, | found the
shrunken image translated to the right and uptlae rotated. (Marked in green on the
above diagram.) Because of the rotational relatigps found previously, this allowed
me to write the third functiorf(x,y) = (_—Zy + lg +%) . Now, | needed to test my
formulas. | decided to use a 1x1 square as maliii) shape. |then applied four
iterations, shown in progression below. If | weyeontinue, | would indeed have my
starting image. My functions are appropriate fa fractal.
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E. Fractalsin Nature

This was not Barnsley’s only contribution in theaof fractals. Let's say you want to
store a plcture of the hook picture from beforédaflwould take much storage space if
we saved the information by the pixel. Barnsleglized there is no need
to store the whole picture, just store the threxfions needed to create
the picture. When you want the picture, run a progthat iterates the
functions as many times as you choose, and yowyeilha picture like the
hooks. He also used four functions to generaterg vatural-looking
image of a fern, called the Barnsley fern. Thiznppted others to try
their hand at generating all sorts of natural insag@elieve it or not, this
Image is actually computer-generated with the di$eotals, and not
taken with a powerful camera.
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It has also become increasingly popular to usddtaechnology to create computer-
generated special effects.

Nature holds an array of items that have fractapprties. Among them are a fern and
romanesco. As you see in the pictures, both Haveelf-similarity property, and both
repeat.

Trees, clouds, snowflakes, mountains, rivers, arasttines are also naturally occurring
fractals.

Hopefully you have seen, as did I, some wondedpkats of fractals. Not only do they
hold the beauty of the mathematics used to créata tthey have the beauty of occurring
naturally. It is amazing that this exciting matlagital application is around us at every
turn and has been forever, but that it took so nmuné to give it a name.
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F. Summary

| have thoroughly enjoyed this opportunity to stdidactals. This was a topic that | had
heard of, but had not had a chance to learn ahotihis study strengthened my
knowledge and confidence when working with funcsievith two variables. By the time

| was done with the Sierpinski Triangle, | was preonfident that | knew what there
was to know. Then, | moved to the Cantor Squadecare more function to find. | was
still in my comfort zone. But, then we got to tBierpinski Carpet with eight functions.
Overwhelming was my first thought, and all of adeid, the functions were there! That
was a big sense of accomplishment for me. | thentwn to research the Collage
Theorem, which backed up the previous work. TleBion of rotations as an additional
transformation technique was challenging, but aotextreme. | definitely felt a sense of
achievement when Jamie Radcliffe told me my workhenhook fractal was correct.

In researching this topic, | primarily used theehmet. One challenge was to read the
functions given on a web page. They are not alwajtsen in the most appropriate
form. Another challenge was finding appropriaté¢enal. Wendy Hines was an
invaluable resource for this topic. She was dedipibetter than any book or web page!
She was able to give the important facts and leexperiment and discover on my own.
This is an area | need to work on as a teachermft8n, | want to give all the pertinent
information to my students instead of allowing théra time to research and test ideas. |
would like to do some work with my students periragrto the fractals | learned about. |
am sure my 8 graders would enjoy this. For my own knowledgelah to find some
more information about the Mandelbrot set. | thinis may be a little too in depth with
the complex plane for middle school students, betitnages are beautiful and can be
enjoyed by students of all ages.



Snyder — MAT Expository Paper - 16

References

Applications of fractalsRetrieved on July 17, 2006, from
http://library.thinkquest.org/26242/full/ap/ap1 it

Beck, Alan.What is a fractalRetrieved on July 18, 2006, from
http://www.glyphs.com/art/fractals/what_is.html

Bourke, PaulFractals, chaosRetrieved on July 17, 2006, from
http://astronomy.swin.edu.au/~pbourke/fractals/

Brown, Adam. (2005)Fractal landscapesRetrieved on July 11, 2006, from
http://www.fractal-landscapes.co.uk/images.html

Burger, E. B. and Starbird, M. (2000)e heart of mathematics: an invitation to effestiv
thinking. Emeryville: Key College Publishing

Fractal ferns.Retrieved on July 20, 2006, from
http://www.home.aone.net.au/~byzantium/ferns/friciciian|

Fractals Retrieved on June 25, 2006, frouhp://webweevers.com/fractals.htm

Fractals Retrieved on July 17, 2006, from
http://math.youngzones.org/Fractal%20webpages#iaabplications.html

Fractals.Retrieved on July 16, 2006, from
http://motivate.maths.org/conferences/conf77/c/festigating fractals harder.s
html

Panorama of fractals and their usé®etrieved on July 18, 2006, from
http://classes.yale.edu/fractals/Panorama/NatutEfideGallery/NatFracGallery.
html

Sierpinski gaskeRetrieved on July 17, 2006, from
http://planetmath.org/encyclopedia/SierpinskiT rignotml

Spencer, Philip. (1999kFractals and their historyRetrieved on June 25, 2006, from
http://www.math.toronto.edu/mathnet/questionCoimacthist.html

Walker, John. (2005Fractal food.Retrieved on July 19, 2006, from
http://www.fourmilab.ch/images/Romanesco/

Winter, Dale Fractals.Retrieved orJuly 20, 2006, from
http://www.math.lsa.umich.edu/mmss/coursesONLINEBéodichaos7/index.html




