Journal of Computational Physié$0,241-282 (2000) ®
]
doi:10.1006/jcph.2000.6459, available online at http://www.idealibrary.col DE &l.

New High-Resolution Central Schemes
for Nonlinear Conservation Laws and
Convection-Diffusion Equations

Alexander Kurganol and Eitan Tadmdr

*Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109;
and tDepartment of Mathematics, UCLA, Los Angeles, California 90095
E-mail: *kurganov@math.lsa.umich.edgadmor@math.ucla.edu

Received April 8, 1999; revised December 8, 1999

Central schemes may serve as universal finite-difference methods for solving non-
linear convection—diffusion equations in the sense that they are not tied to the specific
eigenstructure of the problem, and hence can be implemented in a straightforward
manner as black-box solvers for general conservation laws and related equations gov-
erning the spontaneous evolution of large gradient phenomena. The first-order Lax—
Friedrichs scheme (P. D. Lax, 1954) is the forerunner for such central schemes. The
central Nessyahu—-Tadmor (NT) scheme (H. Nessyahu and E. Tadmor, 1990) offers
higher resolution while retaining the simplicity of the Riemann-solver-free approach.
The numerical viscosity present in these central schemes is of G(@derx)? / At).

In the convective regime wheret ~ Ax, the improved resolution of the NT scheme
and its generalizations is achieved by lowering the amount of numerical viscosity
with increasingr. At the same time, this family of central schemes suffers from
excessive numerical viscosity when a sufficiently small time step is enforced, e.g.,
due to the presence of degenerate diffusion terms.

In this paper we introduce a new family of central schemes which retain the sim-
plicity of being independent of the eigenstructure of the problem, yet which enjoy
a much smaller numerical viscosity (of the corresponding o@esx)? —1)). In
particular, our new central schemes maintain their high-resolution independent of
O(1/At), and lettingAt | 0, they admit a particularly simple semi-discrete formu-
lation. The main idea behind the construction of these central schemes is the use of
more precise information of the local propagation speeds. Beyond these CFL related
speeds, no characteristic information is required. As a second ingredient in their
construction, these central schemes realize the (nonsmooth part of the) approximate
solution in terms of its cell averages integrated over the Riemann fans of varying
size.

The semi-discrete central scheme is then extended to multidimensional problems,
with or without degenerate diffusive terms. Fully discrete versions are obtained with
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242 KURGANOV AND TADMOR

Runge—Kutta solvers. We prove that a scalar version of our high-resolution central
scheme is nonoscillatory in the sense of satisfying the total-variation diminishing
property in the one-dimensional case and the maximum principle in two-space di-
mensions. We conclude with a series of numerical examples, considering convex
and nonconvex problems with and without degenerate diffusion, and scalar and sys-
tems of equations in one- and two-space dimensions. Time evolution is carried out
by the third- and fourth-order explicit embedded integration Runge—Kutta methods
recently proposed by A. Medovikov (1998). These numerical studies demonstrate
the remarkable resolution of our new family of central scheme 2000 Academic Press

Key Words:hyperbolic conservation laws; multidimensional systems; degenerate
diffusion; central difference schemes; non-oscillatory time differencing.
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1. INTRODUCTION

During the past few decades there has been an enormous amount of activity related 1
construction of approximate solutions for nonlinear conservation laws,

0 0
au(x, t) + X f(u(x,t)) =0, (1.2)

and for the closely related convection—diffusion equations,

d 0 0
ﬁu(x, t) + X f(ux,t)) = a—XQ[u(x, t), ux(x, t)]. (1.2)

Here,u(x, t) = (ui(x, t), ..., un(X, t)) is an N-vector of conserved quantitie$(u) is a
nonlinear convection flux, an@(u, uy) is a dissipation flux satisfying the (weak) parabol-
icity conditionVsQ(u, s) > 0 Vu, s. Inthe general multidimensional casis anN-vectorin
thed-spatial variables = (x4, . . ., Xg), withthe corresponding fluxesu) = (f1, ..., f%)
andQ(u, Viu) = (QY, ..., Q9.

These equations are of great practical importance since they govern a variety of phy
phenomena that appear in fluid mechanics, astrophysics, groundwater flow, metero
semiconductors, and reactive flows. Convection—diffusion equations (1.2) also arise in 1
phase flow in oil reservoirs, non-Newtonian flows, front propagation, traffic flow, financ
modeling, and several other areas.

In this work we present new second-order central difference approximations to (2
and (1.2). These new schemes can be viewed as modifications of the Nessyahu—Ta
(NT) scheme [38]. Our schemes enjoy the major advantages of the central schemes
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the upwind ones: first, no Riemann solvers are involved, and second—as a result of k
Riemann solver free—their realization and generalization for complicated multidimensic
systems (1.1) and (1.2) are considerably simpler than in the upwind case. At the same
the new schemes have a smaller amount of numerical viscosity than the original NT sch
and unlike other central schemes, they can be written and efficiently integrated in their s
discrete form.

We would like to emphasize the importance of semi-discrete formulations for so
ing “real,” practical problems associated with multidimensional systems (1.1) and (1
Semi-discrete schemes are especially effective when they corhigiheesolution, non-
oscillatory spatial discretizatiowith high-order, large stepsize ODE solvers for their time
evolution.

The advantage of our semi-discrete scheme is clearly demonstrated later, in Figs. 6.2
6.22, where itis compared with the fully discrete NT solution of the degenerate convecti
diffusion equation.

U+ f(Wx = (ﬁ) . (1.3)

This model, recently proposed in [28], describes high-gradient phenomena with pos:
discontinuous subshock solutions; consult [12, 28] for details. When the NT scheme is |
to resolve these discontinuities, the computed subshocks are smeared due to the larg
merical dissipation which is accumulated ove the small time steps enforced by the restri
CFL stability condition At ~ (AXx)2. This situation—of excessive numerical dissipation (o
orderO((Ax)% / At))—is typical for fully discrete central schemes with time steps muc
smaller than the convective CFL limitation. Alternatively, our new central scheme will e
cumulate less dissipation (of ord@(Ax)¥ ~1) and hence can be efficiently used with time
steps as small as required.

This paper is organized as follows. In Section 2 we provide a brief description of |
central differencing approach for hyperbolic conservation laws.

In Section 3 we introduce our new fully discrete second-order central scheme, wt
is constructed for systems of one-dimensional hyperbolic conservation laws. The limil
case,At | 0, brings us to the semi-discrete version presented in Subsection 4.1. Here
prove that our second-order semi-discrete central scheme satisfies the scalar total-var
diminishing (TVD) property; consult Theorem 4.1 below. In Subsections 4.2 and 4.3
semi-discrete scheme is extended, respectively, to one-dimensional convection—difft
equations and to multidimensional hyperbolic and (degenerate) parabolic problems.

In Section 5 we return to the fully discrete framework, discussing time discretizati
for our semi-discrete central scheme. Specifically, we use efficient Runge—Kutta C
solvers to integrate the semi-discrete schemes outlined earlier in Section 4. We retai
overall Riemann-free simplicity without giving up high resolution. Here we prove th
the resulting second-order fully discrete central scheme satisfies the scalar the maxi
principle; consult Theorem 5.1.

We end in Section 6 by presenting a number of numerical results. These results
convincing illustrations that our new central schemes provide high resolution at a I
est cost, when applied both to hyperbolic systems of conservation laws and to a va
of convection—diffusion models. These numerical results confirm an essential aspe
the current approach—retaining high-resolutigthoutthe costly (approximate) Riemann
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solvers, characteritic decompositions, etc. This aspect in the context of high-resolu
schemes was introduced in the Nessyahu—Tadmor scheme [38] and was extended tc
dimensional problems in [18]. A nonstaggered and hence less dissipative version was
sented in[17]. The relaxation scheme introduced in [19] is closely related to these stagg
central schemes; in fact, they coicide in the relaxation linit0. The choice for a relax-
ationmatrix Ain [19] provides us damily of high-resolution schemes; we note in passing
that the special scalar choide = p(3f (u)/9u)l is anO(e) perturbation of the central
scheme discussed in this paper. Other componentwise approaches were presented il
The CUSP scheme presented in [16] is a semi-discrete scheme which avoids characte
decompositions. And more recently, Liu and Osher [35] introduced a semi-discrete sch
based on a pointwise formulation of ENO which retains high resolution without Riema
solvers.

2. CENTRAL SCHEMES—A BRIEF OVERVIEW

Central schemes offer universal finite-difference methods for solving hyperbolic c
servation laws, in the sense that they are not tied up to the specific eigenstructure o
problem and hence can be implemented in a straightforward manner as a black-box s
for general systems (1.1). In particular, they do not involve characteristic decompositiol
the flux f. In fact, even computation of the Jacobianfofan be avoided; in the particular
case of the second-order NT scheme, for example, numerical derivatives of the flux in (
below can be implemented componentwise—consult [18, 36].

In 1954 Lax and Friedrichs [10, 29] introduced the first-order stable central scheme,
celebrated Lax—Friedrichs (LxF) scheme:

ut, Ut A
urj‘” _ i+t . i-1 5 [f (UT+1) _ f(uTil)]_ (2.1)

Here,1 := At/Ax is the fixed mesh ratio, and' is an approximate value of(x = x;,t =

t") atthe grid pointx; := j Ax, t" := nAt). Compared with the canonical first-order upwind
scheme of Godunov [11], the central LxF scheme has the advantagemifcity, since
no (approximate) Riemann solvers, e.g., [42], are involved in its construction. The m
disadvantage of the LxF scheme, however, lies in its large numerical dissipation, wt
prevents sharp resolution of shock discontinuities and rarefaction tips.

A natural high-order extension of the LxF scheme—the NT scheme—was presente
1990 in [38]. The main idea of this generalization is replacing the first-order piecew
constant solution which is behind the original LxF scheme with van Leer's MUSCL-ty|
piecewise-linear second-order approximation, e.g., [31]. This is then combined wth a
solver—an alternative to the upwind solvers, which avoids the time-consuming resolut
of Riemann fans by staggeréxd t)-integration. Thus, the NT scheme retains the simplicit
of the Riemann-free LxF framework while gaining high resolution, which eliminates tl
disadvantage of excessive first-order dissipation.

Here is a brief readers’ digest based on the representation of the LxF and NT sche
as Godunov-type schemes. We follow [36, Section 2]. To this end, we utilize the slidi
average ofi(-, t),

_ 1 AX
ucx, t) :=m/U(§,t)d$, Iy = {S:IE —-X| < 7},
|><
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so that the integration of (1.1) over the rectanglex [t,t + At] yields an equivalent
reformulation of the conservation law, (1.1),

t+At t+At
_ _ 1 AX AX
u(x,t+At)=u(x,t)—R /f u x+7,r dr—/f u x—7,r dr|.
=t =t

2.2)

We begin by assuming that we have already computed an approximation to the soluti
time levelt = t"—a piecewise linear approximatidrgx, t") ~ u(x, t") of the form

. AX

f(x, t") = Z (07 + (U™ X = X)) Loy 10 Xj+12:=Xj - (2.3)

j

Here {u } are the computed cell averag§$% u(xj, th = f, ug, tm de/Ax, and{(ux) }
are apprOX|mat|0ns to the exact derivativeg(x;, t"). These approximate derlvatlves are
reconstructedrom the computed cell averages. The nonoscillatory behavior of the cen
schemes hinges on the appropriate choice of approximate derivatives, and thereis alibr
recipes for such nonoscillatory reconstructions. A total-variation (TV) stability, a maximt
principle, or a weaker nonoscillatory property of this piecewise-linear approximation (e
decreasing the number of extrema [36, Section 4]) can be satisfied for a wide variet
such scalar reconstructions proposed and discussed in [4, 13, 14, 27, 32, 36, 38, 41
example, a scalar TVD reconstruction in (2.3) is obtained via the ubiquitdusod limiter
[13, 31, 41],

u —u? u?, , —u?
uy)? = minmod 1=t i+t 7). 2.4
wo! (Mo, 2.4

with minmoda, b) := %[sgn(a) + sgnb)] - min(|a|, |b]). This is a particular case of a one-
parameter family of limiters outlined in (5.2) below.

We then proceedto solve Eq. (2.2) subject to the piecewise-linear initial data (2.3) depi
in Fig. 2.1.

The piecewise-linear interpolarit(x, t"), may be discontinuous at points;;1/.}. Yet
for sufficiently smallAt, the solution of problem (2.2)—(2.3) will remain smooth arownd
fort <t"+ At =:t"*1, due to the finite speed of propagation. Hence, if we take be the
staggered grid cell X, ;1] (see Fig. 2.1), we can compuigx, t) on the RHS of (2.2)
exactly, and the flux integrals there can be approximated by the midpoint rule. This res
in the NT scheme [38]

ut+ut AX
Nie = =515 + 5 (@] = o) =3[ (W]117) = ()], @9)

n+1/2

where the midpoint values, " *, are predicted by Taylor expansion,

Uit = - — (£l (2.6)
Thus, we have computed an approximate solution at the next timet level*?, a solution
which is realized by its (staggered) cell averagi?ii/z.

Extensions of the second order central NT scheme (2.5), (2.6) to higher-order cel
schemes can be found in [4, 32, 36]. Multidimensional extensions were introducec
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=n+1
u.
i+

a} + (uz)?(x — ;)
Uiy + (uz)?ﬂ (z — zj41)

FIG. 2.1. Central differencing approach—staggered integration over the local Riemann fan.

[2, 3, 18]. We also would like to mention the corresponding central schemes for incc
pressible flows in [24—26, 33] and applications to various systems in, e.g., [1, 7, 43]. Tl
the use of higher-order reconstructions enables us to decrease the numerical dissif
present in central schemes, and achieve a higher resolution of shocks, rarefactions
other spontaneous evolution of large gradient phenomena.

Remarks. 1. Characteristic vs componentwise approAckey advantage of central
schemes is their simplicity—one avoids here the intricate and time-consuming chara
istic decompositions based on (approximate) Riemann solvers, which are necessa
high-resolution upwind formulations. For systems of conservation laws, the numer
derivatives (lx)’j1 can be implemented byomponentwisextension of the scalar recipe for
nonoscillatory limiters. Similarly, the predicted values in (2.6) are based on approxim
denvatlves of the flux, (x)” These values can be computed in terms of the exact Jacobi

(G“)(ux)n AIternaUver, we can even avoid the use of the computationally expensi
(and sometlmes inaccessible) exact Jaco@iarrnstead the approximate flux derivatives,
(fx)", are computed in a componentwise manner based on the neighboring discrete v
of f(u(xj_1,t™), f(u(xj,t")) and f (u(xj+1,t")). It was pointed out in [36, 18] that this
Jacobian-free version of the central scheme does not deteriorate its high resolution.

2. Cell averages vs point valuddote that here one realizes the approximate solutio
by its cell averagesﬁ’;ﬂ/2 In general, when dealing with first- and second-order scheme
the cell averagesqu/z, can be identified with the corresponding point valunﬁi/z,
modulo a negligible second-order term. We therefore from now on omit the bar notati
(Consult [4, 36], for example, for this distinction with higher-order central schemes).

3. Second- vs first-ordetn the particular case oaux)’j1 =0, the second-order NT
scheme is reduced to the staggered form of the first-order LxF scheme. The nonstag
version of a second-order central scheme can be found in [17].
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The second-order NT scheme and its extensions owe their superior resolution to the |
amount of numerical dissipation—considerably lower than in the first-order LxF schel
The dissipation present in these central scheme has an amplitude ofxdex) /At);
unfortunately, this does not circumvent the difficulties with small time steps which arise, €
with convection—diffusion equations (1.2). Consider, for examplejdégenerate parabolic
equation (1.3). Stability necessitates small time stapsy (Ax)2, and the influence of the
numerical dissipatioraccumulatedver the many steps of the NT scheme, can be clear
seen in the smeared subshock computed in Fig. 6.22.

One possible way to overcome this difficulty is to usseai-discretéormulation: when
a semi-discrete scheme is coupled with an appropriate ODE solver, one ends up with ¢
numerical viscosity proportional to the vanishing size of the time AteBut in this context,
the central LxF scheme, NT scheme, and their extensions are of limited use, since t
schemes do not admitsemi-discrete formTo make our point, consider the LxF scheme
(2.1) in its viscous form,

uMtt—ul o f(uly,) - f (uTy) 1
J At J + e 2AX =1 = m [(u?+1 - UT) - (UT - u?*l)}' (27)

Passing to the limit — 0 (while leavingAXx to be fixed), we get the semi-discrete diver-
gence on the left of (2.7%; (t) + { f (uj+2(t)) — f(uj_1(t))}/2AX, which is balanced with
an increasing amount of dissipation on the righi (AXx)%/At 4 oo, as we refine the time
stepAt | 0. In the degenerate viscous case, for example, the CFL restrittieqd AX is
responsible for the excessive smearing in the LxF scheme. The second-order NT scl
has a considerably smaller numerical viscosity, with amplitude of @@deax)*/ At) away
from extrema cell$.Nevertheless, the central NT scheme and its higher-order generall
tions do not admit any semi-discrete versions, and hence are inappropriate for small
step computations or steady-state calculatiortsfasc.

This brings us to the new class of central schemes introduced in this paper. These
central schemes have smaller numerical dissipation and are the first fully discrete Godu
type central schemes that admit a semi-discrete form.

3. THE FULLY DISCRETE SCHEME—ONE-DIMENSIONAL SETUP

The NT scheme is based on averaging over the nonsmooth Riemann fans using s
cells of thefixedwidth, Ax. The main idea in the construction of our new central schem
is to use more precise information about theal speed of wave propagation, in order to
average the nonsmooth parts of the computed solution over smaller cells of variable si:
orderO(At). We proceed as follows.

Assume that we have already computed the piecewise-linear solution at time¢"leve
based onthe cell averages and have reconstructed approximate derivatiugs in (2.3).
We now turn to evolve itin time. To begin with, we estimate the local speed of propagatio
the cell boundariess;1/-: the upper bound (disregarding the direction of the propagatio

1 The first two terms on the right of the NT scheme (2.5) yield for smoisth

(ax)*

U — 207, + U7, n AX
At

24t gat (W] — WT.) ~

Usxxxx-
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n+1

Y;

n 1 n n n
Ti-g.r Ti-tu Ti—tr Tivda Tivie Tindo
I 1 ! I I 1 -
I I I | I o
Tj-1 Ti-3 Zj Tit} Tit1
FIG. 3.2. Modified central differencing.
is denoted by, , , and is given by
n of
aj+1/2 = c fnax+ ol @(U) s (31)
UeC(Uy g9 Ujia)

+ N AX n - N AX n
whereuy,  , ==Uj, 1 — 5 (U1 anduj o = U] + 55 (Ux)] ar+e the correspondent left
C T . o _ , . .
and right intermediate valueio(x, t") atX;j11/2, andC (Ui, 5, Uj,,2) is acurve in phase
space connecting;, ; , andu;’,; , via the Riemann fan.

Remark. In most practical applications, these local maximal speeds can be easily e
uated. For example, in the genuinely nonlinear or linearly degenerate case one finds
(3.1) reduces to

of of
al = max{p (% (Uj_+1/2)> P (@ (UT+1/2)>}~ (3.2)

In fact, the maximal local speeds are related to the already calculated CFL number.
emphasize that these local speeds are the only additional information required to mc
the NT scheme.

Our new scheme is constructed in two steps. First, we proceed along the lines of
NT scheme. The NT scheme is based on averaging over the staggered control voll
[Xj, Xj+1] x [t", t"*1] of fixed spatial widthAx. Instead, we now use narrower control vol-
umes, where at each time step we integrate over the interfals], , x{' 11 x [t", t"1;
see Fig. 3.2. Due to the finite speed of propagation, the pmji'm% =Xj41/2 — a?+1/2, At
andxf ;5. '=Xjt1/2 +aj,1,,At separate between smooth and nonsmooth regions, a

2Let A; (A) be the eigenvalues df; then we use (A) :=max |A; (A)| to denote its spectral radius.
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hence the nonsmooth parts of the solution are contained inside these narrower cc
volumes of spatial width&], ; ,At.

We proceed with the exact evaluation of the new cell averages atLet AX; 1/2:=
X[ 1/2r — X[11/2, denote the width of the Riemann fan which originates;at .. Exact
computation of the spatial integrals yields

1 Xiajar
u ’tn+1 d
BXaz ¢, 7 dg
Xjs1/21
1 XM/ e
= Axos, | GEHdE- 12/ [P as2r 7)) = FU(K /20 7)) ] dT
a2, i+1/2 )
u +u AX —aj ;1 ,At
=+ 1 (] — W)
tn+1
1
_m/[f(u(xjﬂﬂ/gr,f))_ F(U(X,1/5,. 7))] dr. (3.3)
]

tn

Similarly, let Axj ==X, 1 5 — X["_1 5, = AX — At(@]_; , +af',,,) denote the width of
strip aroundk; which is free of the neighboring Riemann fans. Then exact integration yiel

1 X120
A / u(E, t"th de
j
X121
1 X120 1 L
ZA_XJ- /U(Evt“)dS—A—Xj/[f(u(x?u/z,l»f))df— f(u(X_1/2,.7))] dT
X121 t

At
=uj + 2 (a?fl/z - a?+1/2) (U]

tn+1
1
COAX [F(u(Xsa210 7)) = F U1z, 7))] d. (3.4)

tn

Using the midpoint rule to approximate the flux integrals on the RHS of (3.3) and (3.4),
conclude with the new cell averageg at t"*,

u! +u Ax —a , At
1 i i+1 j+1/2
w?il/z = 2 + 4 ((UX)T - (Ux)?+1)

1
- 230 [f (uTiigr) —f (UTE@)]’
j+1/2

A (3.5)
n+l _ n n n n
Wi = uf + = (@2 — aly) (U0
A n+1/2 n+1/2

- f (u; —f .
1—)»(&?_1/2+a?+1/2)[ ( Hl/z") ( ] 1/2,r)]
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Here, the midpoint values are obtained from the corresponding Taylor expansions,

At 1
n+1/2 |
Ujryj2) = Ujsazr = 5 f (Ulsr2)e  Ujgazr=u] + AXUS ( A"3‘J+1/2>
(3.6)
n+1/2 At . 1
Ujiiy2e = Ulyayar — ) F(Ulirar)e  Ulyar i=Ul— AX(UX)T+1<§ —Adl g

Again, if we want to, we can avoid the computation of the Jacobiafh while using a
componentwise evaluation df on the right of (3.6).

Atthis stage, we realize the solution attime level t"+1 in terms of the approximate cell
averagesu)j‘ﬁ/z, "+1 These averages spread over a nonuniform grid whichis oversamp
by twice the number of the original cells ti=t". In the second and final step of the
construction of our scheme, ve®nvertthese nonuniform averages back into the origina
grid we started with at=t", along the lines of the conversion recipe outlined in [17]. As
a by-product of this conversion, we avoid the staggered form of the original NT sche
(2.5)-(2.6).

To obtain the cell averages over the original grid of the uniform, nonstaggered c
[Xj—1/2, Xj+1/2], We consider the piecewise-linear reconstruction over the nonuniform ce
att = t"*, and following [17], we project its averages back onto the original uniform gri
Note that we do not need to reconstruct the average of the smooth portion of the solu

“*1 , as it will be averaged out (consult Fig. 3.2), and hence the required piecewise-lir
apprOX|mat|on takes the form

~ 1y . 1 1
B(x, 1) 1= Z {[w?Il/z + (UX)?il/Z (X B Xj+1/2)} 1[X?+1/2,\*Xin+1/zr]
n+1
+ Wi 1[X?71/2.rvxjn+1/2.|] } (3'7)

Here, the exact spatial derivatives,(Xj1/2, t"*1), are approximated by

2 witi —wiiti, wity, —witt
(U fi1, = Ay - Minmod T (e s 1= {] T Bity ) . (3.8)
+r(@ e —afia2) 1+a(aliy, —aly)

Finally, the desired cell averageﬁ‘,*l, are obtained by averaging the approximate solutio
in (3.7). Ourfully discrete second-orderentral scheme then recasts into the final form

Xj+1/2

1
1 ~ 1 1 1
uj = AX / B(E T dE = aall g pwiTy s+ [T A(a]yp + )] wiT

Xj-1/2

AX
+Aaj+1/2w]+l/2+ > [(AaJ 1/2) (ux)J P (/\al+1/2) (Ux),+1/2] (3.9)

where the intermediate valuesut)fﬂ/2 andwn+1 specified in (3.5) are expressed in terms

of the local speeda!, , ,, the mldvaluesur]‘ﬂfgl, ut1’3,. and the reconstructed slopes,

(ux)jﬂ/z, given in (3.2), (3.6), and (3.8), respectively.
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Remarks. 1. Central differencin@he approach taken here can be still viewed as cel
tral differencing in the sense that the Riemann fans are inside the domain of averag
Consequently, since no (approximate) Riemann solvers are involved, we retain one o
main advantages of the central schemes—simplicity; no Jacobians and charactristic de
positions are needed. At the same time, treating smooth and nonsmooth regions sepa
we gain smaller numerical viscosity (independentfl/At)). In particular, the result-
ing central scheme (3.9), (3.5) admits a semi-discrete form which is discussed in the
section.

2. Nonoscillatory propertiesThe exact entropy evolution operator associated with tt
scalar equation satisfies the TVD propefity(-, t)|lgv < [lu(-, 0)||sy. The various ingredi-
ents in the construction of our central scheme retain this TVD property—the nonoscillat
reconstruction (with appropriate choice of approximate derivatives), exact evolution,
cell averaging. Thus, thenly ingredient that is potentially oscillatory enters when we us
the midpoint quadrature rule for temporal integration of the fluxes, yet this does not st
to violate the overall TVD property of our fully discrete central scheme; see, e.g., the T
proof of the original NT scheme in [38].

In the particular semi-discrete case (discussed in Section 4 below), the midpoint ru
“exact,” and the TVD of the semi-discrete version of our scheme follows. A direct proof 1
the semi-discrete scalar TVD is outlined in Theorem 4.1 below. Moreover, when this se
discrete scheme is coupled with appropriate Runge—Kutta solvers, we arrive at fully disc
second-order, central TVD schemes; consult Section 5 below. A maximum principle
these schemes in two-space dimensions is outlined in Theorem 5.1.

3. Nonstaggered reconstructiomhe piecewise linear reconstruction, (3.7), is nece:s
sary in order to ensure second-order accuracy, since simple averaging (without recon:s
tion) over [xj_1/2, Xj+1,/2] reduces the order of the resulting scheme to first-order accura
see [17].

4. First-order versionWe conclude by commenting on the first-order version of ot
scheme. To this end, we set the slopes, t(uu”)rj‘ and (ux)?ﬁ/z, to be zero. Then the
staggered cell averages in (3.5) are reduced to

n n
1 YtU, 1
Wii1/2 = >

[T = 10D =y

Inserting these values into (3.9) yields the first-order scheme, which takes the vis
form

A 1
uftt =uf — > [f(ufye) = F(ul_)] + > [ y1/2 (U] g — uf) = 2@y (u] —uf_y)],

(3.10)

wherea], ; , are the maximallocal speeds. This scheme was originally attributed to Rusa
[30]; itis a special case of the family of first-order Godunov-type scheme introduced in [
(based on a symmetric approximate Rieman solver) and it coincides with the so-called |
LxF scheme in [45]. It should be noted, however, that although this scheme is similar to
LxF scheme, (2.7), its numerical viscosity coefficie@f,, ; , = Aa], ,, is always smaller
than the corresponding LxF onQ,JLfl/z =1, thanks to the CFL condition. In regions with
a small local speed of propagation (e.g., near the sonic points), the numerical visce
presentin (3.10) is in fact considerably smalleta ; , < AX.
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4. THE REDUCTION TO SEMI-DISCRETE FORMULATION

4.1. One-Dimensional Hyperbolic Conservation Laws

We consider the fully discrete second-order central scheme (3.9), (3 5), expresse
terms of the cell average&,;‘ﬁ/z, "+1 and the approximate denvatesxllil/z Observe
that except the original average, WhICh participates i, all the terms on the right of
(3.9), (3.5) are proportional tat (or 1). Rearranging the divided differences accordingly

while separating the vanishing terms proportional {@sAt | 0) we find

- up

At
@9 al_ 1 al ,,+al al 1
i-1/2 n+1 ( T CE T A W B CE T I @4 O

L TAx itY2 AX AX j Ax 2T A

(3.5 1 1
;{ 2A1/2( ) R T (CRO R () —m[f(u?f}ﬁ,r)—f(ua‘jﬁl)}
(e 1/2+aj+1/2)
AX

1
P+ 5@y = alh2) (W] — [ (ui22)

a” 1
— f (UTiﬁr)] + 2121)/(2 (uf +ufy) + ZaTH/Z((uX)’j‘ — (W)41)

1
SR - f<u?11;;,ln} Lo

1
- m{—[(f(umﬁn ) - (1) + F32)

a’ A
2 () (o)
an_ A A
(S SORTRE b PR

Note that asAt — 0, the midvalues on the right approach (consult (3.6))

1/2 AX
UiTar = Ujsa() = - (U0 4a(t) =2 Uj (),

(4.1)

1/2
ultye = uj )+ 2 (ux),a)— Ui 12(D).

where(uy) j (t) are the numerical derivatives reconstructed from the computed cell avera
uj(t). Thus, lettingAt | 0, the resulting semi-discrete central scheme can be written in
compact form

ﬂu ) = C(F(ufao®) + T (ufao®)) = (F(U0®) + (T (U 101))
dt - 2AX
1
T oAX {@j 1120 U, 12(0) —Uf 1 0(0] —aj_1/2() Uy o) —Uj_4,,(D]}.
(4.2)
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Recall thata;1/2(1) is the maximal local speed, e.g., in the generic case one may take

of of
ajy1/2() = max{,o (E (UT+1/2(U)> P (@ (Uj_+1/2(t))>}‘

Remarks. 1. Conservation forrthe second-order scheme, (4.2), admits the consen
tive form,
d ~ Hjsa2(t) = Hj_12(t)

qti®= AX

(4.3)

with the numerical flux

f(ul ) + (Ui, - t
( j+1/2 ) ; ( j+1/2 ) B a]HZ/Z()[Uﬂl/z(t)—uﬁl/z(t)]- (4.4)

Here, the intermediate value$+l/2 are given by

Hji1/2(0) =

AX AX
UT+1/2 =Uj() — 7(Ux)j+1(t)a Uj7+1/2 =uj) + T(Ux)j ®). (4.5)

One verifies thatj 11/2(t) = H(uj_1(t), uj(t), uj41(t), uj42(t)) is a numerical flux con-
sistent with Eq. (1.1), i.eH (v, v, v, v) = f(v). In fact, with the minmod limiter, (2.4),
the corresponding approximate derivatives,) (t), vanish at extrema values,

sgn(uj1(t) — uj(t)) +sgnu;j(t) — uj_1(t)) = 0= (Ux)j(t) =0, (4.6)
and hence the corresponding numerical flux satisfieeghentially three-poirtonsistency
H(‘,U,U,') = f(v)' (47)

2. Numerical viscosityThe second expression on the right of (4.2) accounts for t
numerical viscosity of the scheme. Taylor’'s expansion shows that for smgpthis amount
of numerical viscoity is of order(Ax)3(a(Uu)uyxx)x/8. This O(Ax)3 term, uniformly
bounded w.r.t. 1At, should be contrasted with the corresponding numerical viscosity ter|
of orderO((Ax)?/At) in the first-order LxF scheme (indicated earlier in (2.7)) and of ord
O((Ax)*/At) in the second-order NT scheme.

3. Simplicity. We again would like to emphasize the simplicity of the second-ord
semi-discrete central scheme, (4.2), so that it da@sequire any information about the
eigenstructure of the underlying problem beyond the CFL-related spagds(t). The
computation of the numerical derivativesy) j (), is carried oucomponentwiseo specific
knowledge of characteristic decomposition based on (approximate) Riemann solve
required.

4. First-order reductionIf we reset all the numerical derivative@ly); (t) =0, then
(4.2) is reduced to the first-order semi-discrete central scheme correspondinghto jhe
0-limit of the Rusanov scheme, (3.10),

d o fua) - fum
dtul(t) = SAX
1
+ oy [ai+l/2(t)(uj+1(t) —uj(t) — aj_12) (U (t) — Ujfl(t))], (4.8)

2AX

We conclude this section with the proof of the one-dimensional scalar TVD property
our new semi-discrete scheme.
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THEOREM 4.1 (TVD of Semi-discrete Central SchemelConsider the scalar semi-
discrete central schentéd.2),with intermediate value§jg1 /21N (4.5)based on approximate
derivatives(uy) ; (t) satisfying(4.6),e.g, the family of minmod-like limitergvith 6 = 1 cor-
responding tq2.4))

n n n

! —u”_, U, —ul u?  — U
(Ut == minmod(e 'ijfl, HlZAx]il’ ‘*ZX J), 1<6<2 (4.9

Then the following TVD property holds

UG, Dllsy =Y uj4a®) — uj®] < JuC, 0)lsv.
j

Remark. Notice that in the scalar case the local propagation speeds are given by

aj12(t) 1= max [ (W], (4.10)

- +
UE[UT, 150,75 ()]

and in the special case of convéxthis is further simplified:

aj+1/2(0) == max{| ' (U2, T/ UfLg o (O)]). (4.11)

Proof. Thesecond-orderfluxin (4.2);.11/2(t), can be viewed as ageneralized MUSCL
flux [40],

Hjt1/2(0) = HRS(UT (D), U1 2(D).

expressed in terms of the first-order E-flb®YS= HRYS(u,, u,), associated with the first-
order Rusanov scheme (4.8),

f(up) + f(u) ag

HRYS(u,, uy) == — (U — ),  ag= max_ |f'l.
2 2 uefug,ur]

According to [47], the TVD property of such scalar, semi-discrete generalized MUS(
schemes is guaranteed if (consult [47, Example 2.4])

Udiriz| o (4.12)

AUji1/2

This is clearly fulfilled by the choice of approximate derivatives in (4.9). (We note in passi
the necessity of the clipping phenomenon, (4.6), enforced by (4.1M).)

4.2. One-Dimensional Convection—Diffusion Equations

Consider the convection—diffusion equation (1.2). If the dissipation fQuxi, uy), is a
nonlinear function, then Eq. (1.2) can betaonglydegenerate parabolic equation which
admits nonsmooth solutions. To solve it numerically is a highly challenging problem.
this context, the operator splitting technique was used in, e.g., [6, 8, 12, 20, 22, 23], yet
approach suffers the familiar limitations of splitting, e.g., limited accuracy, etc.
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Our second-order semi-discrete scheme, (4.3)—(4.4), can be applied to Eq. (1.2)
straightforward manner, since we can treat the hyperbolic and the parabolic parts of |
simultaneously. This results in the following conservative scheme:

Hji12(t) — Hj_12(t) = Pjr12(t) — Pj_1/2(D)
+ .
AX AX

Here, Hj11/2(t) is our numerical convection flux, (4.4), af,1/2(t) is a reasonable ap-
proximation to the diffusion flux, e.g., the simplest central difference approximation

1 () —ujt 2 —ujt
P =5 | Q(uy., OO ) s oupw, OO | aaa)

uj(t)=— (4.13)

4.3. Multidimensional Extensions

Our second-order semi-discrete schemes, (4.2) and (4.13), (4.4), (4.14), can be exte
to bothmultidimensionahyperbolic and parabolic problems. Without loss of generality, le
us consider théwo-dimensionatonvection—diffusion equation

ue + f(ux +gu)y = Q*(u, Uy, Uy)x + QY(U, Uy, Uy)y, (4.15)

whereQ* = QY =0 corresponds to the two-dimensional hyperbolic conservation law.

We use a uniform spatial gridx;, yk) = (j AX, KAy). Suppose that we have computec
the solution at some time levieind have reconstructed the two-dimensional, non-oscillato
piecewise-linear polynomial approximation

ux,y,t) ~ Z[Uj,k(t) + (Ux) j k(1) (X =Xj) + (Uy) j k(DY = Y] L 1/2.%111/2] % [z Yesay2] -
j.k

Here,Xj+1/2:=X; £ %, Yit1/2 =Yk £ %; (Ux)j k(1) and(uy); k(t) are numerical deriva-
tives, which approximate the exact oneg(x;, yi, t) anduy(X;j, Yk, t), respectively. With
a proper choice of numerical derivatives, the reconstruction of piecewise polynomial
proximation is nonoscillatory. For example, using the minmod limiter, (2.4), guarants
the nonoscillatory property in the sense of satisfying a (local) scalar maximum princij
consult [18, Thm. 1].

The 2D extension of the scheme (4.13), (4.4), (4.14) can be written in the conserve
form

X X y y
_ Hj+1/2,k - Hj—1/2,k _ Hj,k+1/2 - Hj.,k—l/2

d
grtie® = AX Ay

dt

PXajek = Plaek | Pz = Pl 416
+ ~ + Ay . (4.16)

Here,H{ 10 =H 1241 andHffk+l/2 = Hj’fkﬂ/z(t) arex- andy-numerical convection
fluxes, respectively (viewed as a generalization of the one-dimensional flux constru
above in (4.4)),

(U126 ®) + T (Ujg20 (D) ajxﬂ/zyk(t)[ .

Hi 10k = 2 B 2 12k (® = U2 ],
(4.17)
(U k12®) F9(UT ko) @) -
HY o) 1= = HEEE = R (U = Ujiap®)].

2 2
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which are expressed in terms of the intermediate values

Uig/2(t) i= Ujak(®) = 2X (ux>1+1/2ﬂ/2k(t),
(4.18)

U]Tt,kﬂ/z(t) = Ujk41(t) ¢ (Uy)] k+1/2+1/2(1),
and the local speeda, ; , (1) anda}(k+1/2(t), are computed, e.g., by
X . of y ) 99,
aj1/2k(1) 1= Maxp @(Ujﬂ/z,k(t)) s Apg(l) = maxp @(Uj,kﬂ/z(t)) :
(4.19)

Similarly, P¥, 5 = P 1 24(t) and Py, o= P/, ,1,(t) are the corresponding- and
y-numerical diffusion fluxes, given by

1 Uj+1k — Uj
12k = > [QX (UJ, ks T (Uy)jk

Uj+1.k — Uj
+ Q* <Uj+1,k, H_T (Uy)J+1k>}

1 Ujk+1 — Ujk
y . jok+ i
Plki1y2 = 5 [Qy <Uj,k, (Us)j ks T

Uj k+1 — Ujk
y u. y u . s ] .
+Q ( jk1s (Ux)j ka1 —Ay )}

(4.20)

5. FROM SEMI-DISCRETE BACK TO FULLY DISCRETE—THE GENERAL SETUP

The two-dimensional semi-discrete central scheme (4.2) forms a system of nonlir
ODEs, the so-called “method of lines” for the discrete unknowns(t)}. To integrate
in time, one must introduce a variable time steq)', stepping forward from time level
t" to t"1 1= t" 4+ At". We start by considering the simplest scenario of first-order tirr
differencing. The nonoscillatory behavior of the forward Euler scheme is summarizec
the maximum principle stated in Theorem 5.1 below. To retain the overall high accurac
the spatial differencing, however, higher-order stable time discretizations are required
this end, the forward Euler time differencing can be used as a building block for high
order Runge—Kutta and multi-level ODE solvers. In particular, second- and third-order O
solvers can be constructed gnvex combinationsf the simple forward Euler differencing,
retaining the overall maximum principle. Thus, we conclude in Corollaries 5.1 and !
below with a fully discrete second-order central scheme satisfying the two-dimensic
scalar maximum principle.

We begin with

THEOREMS5.1 (Maximum Principle). Consider the two-dimensional central scheme

AtP tn
ulit=uly - o (Hia2u = 1/2,k(tn))—A—y(ij,k+1/2(tn)—ij,k_l/z(t”))~
(5.1)

Here H*(t) and HY(t) are the numerical fluxes given {8.17)—(4.19); let their numerical
derivatives be determined by one of the following one-parameter family of minmod-
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limiters:
u?, —u? u? —u" u? —u?
(Uy)", = minmod( g 1K=tk itk Titbk g 7jrbk TRk g g <)
) AX 2AX AX
5.2
. Ul = UM Ujgr — Ujker U pr — Uk 2
(uy)f  := minmod( 6 — pes 2l Sk LX) 1<e<2
’ Ay 2Ay Ay
Assume the following CFL condition holds
At" 1
ma ', y mua>49’(U)|) <3 (5.3)

Then the resulting fully discrete central scheme satisfies the maximum principle
m’i‘X{Uj,k(th)}S m'?(‘x{uj,k(tn)}~ (5.4)
IE I8

Proof. With A" := At"/Ax andu" := At"/Ay denoting thex- andy-mesh ratios, the
forward Euler time discretization of our scheme takes the explicit form

n

Ujk = Ujy — /\2 [F (U a2k®) + F (U772 ) = F (U2, (N) = T (U1 24(t")
& 1/2k A {U] 12k @) = U0 (D} + 800 ) {UT g o ()
U126 }] = %” [9(Ufi1/2M) + 9(Ufis12M) = (U] io12(E™)

= 9(Ujk-172M) = & 12 {U] 22D = Uit
+ a2 {Uf 120N = Ujea2N .
To simplify notations, we use the standard abbreviations
A1y = U7y ) =Uj g o (1), Ajyfi= (U7 1ok @) = F (U7 0,tM).

with the similar notations foy-differences, e.gA}’,kg = g(u;kﬂ/z(t”))—g(u}fkfl/z(t“)),
etc. Then our scheme can be rewritten as follows (where all the quantities on the righ
taken at time level =t"):

- + - +
ni1_ Yrok tU ok H Uk T U g AT Aok f
Uik = ) > (- j+1/2k — uJ+l/2k)

AT 1/2xU
X

Aok f

AX U (Ul 12k = Ul _1/2k)

f
JAS - +
2A>.< U (Ulsj2k = Uj1jak) +
i

X + - X + -
— a1k (Ulaj2k = Uaak) + @12k (U 1/2k — uj—1/2,k):|

y
1" A ki1/29 _ kg
o | AY U (Ul k2 — Ujkgaso) + 2 (UJ k12 = Ulko1y2)
jk+1/2
AY g
j.k=1/2 + - y + -
+ AV U (uj,kfl/z - uj,kfl/Z) - aj,k+1/2(uj,k+1/2 - Uj,k+1/2)
ik=1/2

y + -
+ aj,k—l/z(uj,k—l/z - uj.k—1/2) .
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Rearranging the terms, we find t j;l is given by the following linear combination of
the intermediate values;~, ,  andu; ., »:

AN AX f AN AX f
n+1 j+1/2,k + i—1/2,k -
Uik = % {a}(Jrl/Z.k S ST }uj+l/2,k + > {a}(l/z,k B }uj—l/z,k

AU AT 15U
1,40 J+l/2 kf X A)J'( «f -
+eo4+ = —a -2 1ty
{ 4 2 [ 1+1/2 U j+1/2,k A)j(,ku j+1/2,k
1 A" f NY L f
J+1/2 k X ik +
+<4———= + a -2 1 suf
{4 2 [ J+1/2.U Jo1/2k A ku:| } Joi/zk

n Ay n y
Ko) Ly k129 | ¢ Ho gy Aj k-1/29
+?{aj,k+l/2_ }UJ k+1/2 T 5 A k12t 7Ay Uj k-1/2

A}”kﬂ/zu k=124
1 u"[A 129y Alyg
_ — | =" _ a’ — 2]_ u:
+ {4 + > [A{,kﬂ/zu i k+1/2 A)j/,ku jk+1/2
VL WA Y- R A{kg 4

Note that all the coefficients in (5.5) are positive due to our CFL assumption, (5.3). T
means that the linear combination on the RHS of (5.5)deravexcombination and hence
the value ofu’”rl does not exceed the values lﬂ)fil/z’k and ufkﬂ/z. And since our
choice of mlnmod-like approximate derivatives in (5.2) guarantees that these interm
ate valuesy™, satisfy a local maximum principle w.r.t. the original averagése.g., [18],
MaX; kUi 2k (1), Ui ean 2(D)} < max k{uj k(t)}, the result (5.4) then follows. m

The forward Euler scheme is limited to first-order accuracy. It can be used, howevel
a building block for higher-order schemes based on Runge—Kutta (RK) or multi-level ti
differencing. Shu and Osher [44, 45] have identified a whole family of such schemes, be
on convexcombinations of forward Euler steps.

To this end, we le€[w] denote our spatial recipe (4.17)—(4.19) for central differencin
a grid functionw = {wj «},

Hjx+1/2,k(w) - Hjx—1/2,k(w) I Hij+1/2(w) - Hj)fkfl/z(w)

Cluwli= - AX A
y

(5.6)

Expressedinterms of the forward Euler solver- AtC[w], we consider the one-parameter
family of RK schemes

u® = u" 4+ At"C[u"]

ut = pau + L - ) (U + At"C[u®]),  ¢=12...,s-1,  (5.7)
LIn+1 u(s)

In Table 5.1 we quote the preferred second- and third-order choices of [45]. We stat

COROLLARY 5.1 (Maximum Principle for Runge—Kutta Time Differencing)Assume
that the CFL condition5.3) holds. Then the fully discrete central schee 7)—(4.19),
(5.2),(5.7) with n, specified in Tabl®.1 satisfies the maximum princip{6.4).
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TABLE 5.1
Runge—Kutta Methods

M 12

Second order time differencing

Two-step modified Eulers(= 2) : —
Third order time differencing
Three-step methog & 3) 3 :

A similar two-parameter family afulti-levelmethods was identified in [44]. They take
the particularly simple form

u™t = pU" + cAL"CU") + (1 — n)(U"S + csAt"C[u"S)), (5.8)
with positive coefficients given in Table 5.2. We state

COROLLARY 5.2 (Maximum Principle for Multi-level Time Differencing).Assume that
the CFL condition

ma Al max f’(u)| At maxg’(u)| | < min 1 (5.9)

AX u ’Ayug ~ o 8k '
holds. Then the fully discrete multi-level central sche&h&7)—(4.19), (5.2), (5.8), withn
and ¢ s specified in TablB.2, satisfies the maximum principl6.4).

We close by noting that Corollaries 5.1 and 5.2 extend the maximum principle for
second-order fully discrete two-dimensional scheme introduced in [18, Thm. 1].

6. NUMERICAL EXAMPLES

We conclude this paper with a number of numerical examples. In all the numeri
results presented below we have usedakaependent family of limiters corresponding
to (4.9). (These are in general the less dissipative limiter than the original minmod, (2
corresponding to (4.9) with = 1). The spatial derivative af(x, t) is approximated by

Ug (X, 1) ~ minmod(e Ux+2) =000 U(x+2) — U(x—b) 000 — T(x — b))’
a a+b b

(6.1)

TABLE 5.2
Multi-level Methods

n Co G

Second-order time differencing
4-level methodg=2) 2

5-level methodg§= 3)

Third-order time differencing

©lo MW

Niw
o o

5-level methodg=3) £ 3 12
6-level method¢=4) & 2 10
7-level method¢="5) o g %
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wherea andb are appropriate grid scales, and the multivariable minmod function is defin
by

minj{xj}, if Xj > 0 Vj,
minmodiXy, Xo, . ..) = < max; {X;}, if Xx; <0 Vj,
0, otherwise

The parametef € [1, 2] has been chosen in the optimal way in every example. Note tf
6 =2 corresponds to the least dissipative limiter (no new local extrema are introduce
whereasd =1 ensures a nonoscillatory nature of the approximate solution in the se
that there is no increase of the total-variation. The reconstruction depicted in Fig. 3.2,
example, does notincrease in the variation at the inteacg, but it is an oscillatory one
since new extrema is introduced@i, 1 ». In the scalar examples belogv= 2 has provided

a satisfactory results, but consult the nonconvex Buckley—Levertt equation in Fig. 6.7 |
counterexample; for systems the optimal valueg eéry between 1.1 and 1.5.

Another point we would like to stress concerns the time discretization of our semi-disci
central schemes. In general, the Runge—Kutta time differencing is preferable over the rr
level differencing, since the former enables a straightforward use of variable time st
We note that for the standard explicit RK methods the time step can be very small du
their strict stability restriction. There are two different approaches to increasing efficier
at this point. First, one can use implicit or explicit-implicit ODE solvers. These methods
unconditionally stable, but they require inverting nonlinear operators (in the general cas
a nonlinear diffusion), which is a computationally expensive and analytically complicat
procedure.

In all the numerical examples shown below, we preferred the second approach—to s
systems of ODEs by means of the explicit embedded integration third-order RK met|
recently introduced by Medovikov [37] (his original code, DUMKAZ3, was used). This higl
order differencing produces accurate results, and its larger stability domains (in compar
with the standard RK methods) allow us to use larger time steps; the explicit form rete
simplicity, and the embedded formulas permit an efficient stepsize control. In practice tf
methods preserve all the advantages of explicit methods and work as fast as implicit met
(see [37] for detalils).

Remark. Below, we abbreviate by FD1 and SD1 the Rusanov first-order fully ar
semi-discrete schemes. We also use FD2 and SD2 notation for our second-order fully
semi-discrete schemes. As previously, LxF and NT stand for the Lax—Friedrichs and
Nessyahu—Tadmor schemes.

6.1. One-Dimensional Scalar Linear Hyperbolic Equation

ExamPLE 1 (Linear Steady Shocks). First, consider ffimplest linearequation with
the zero flux,f (u) =0,

U =0, (6.2)
subject to the discontinuous initial data,

1, —0.5<x<0.5,
0, otherwise

u(x, 0)= { (6.3)
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FIG. 6.3. Problem (6.2)—(6.3)N =100, T = 2; first-order methods.

Notice that due to theidissipativenature, neither the LxF scheme nor the NT schem
provides a reasonable approximation to this problem. But using the Rusanov scheme
our second-order fully discrete scheme, which are, in some sense, the least dissif
central schemes, we achieve the perfect resolution of the discontinuities (the same res
obtained by the corresponding semi-discrete schemes).

In Figs. 6.3 and 6.4 the solutions computed by our schemes are compared with
(staggered) LxF and NT schemes. It also can be easily checked analytically that bott
FD1 scheme and the FD2 schemes solve problem (6.2)—(6.3) exactly.

1 T T iy Yo T T
+ + EXACT —
NT +
FD2 x
+ +
08 | L
B +
06} L
- L |
04 g
+ o
02} 1
+ +
+ +
o \ " \ ) \ \ \ - .
-1 0.8 0.6 0.4 02 0 0.2 04 0.6 08 1

FIG. 6.4. Problem (6.2)—(6.3)N =100, T = 2; second-order methods.
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TABLE 6.1
Initial Value Problem (6.4), L*- and L*°-Norms of the Errors

L*-error

L>-error
N NT Rate FD2 Rate NT Rate FD2 Rate
40 2.920e-03 — 8.716e-03 — 3.151e-03 — 7.818e-03 —
80 4.583e-04 2.67 1.876e-03 2.22 9.963e-04 1.66 2.598e-03 1.

160 1.115e-04 2.04 3.892e-04 2.27 3.704e-04 1.43 9.262e-04 1.
320 2.360e-05 2.24 7.943e-05 2.29 1.263e-04 155 2.881e-04

1.
640 5.273e-06 2.16 1.659e-05 2.26 4.463e-05 1.50 1.028e-04 1.
1280 1.249e-06 2.08 3.430e-06 2.27 1.690e-05 1.40 3.593e-05 1.

ExamPLE 2 (Accuracy Test). Let us consider thirear equation subject to periodic
initial data

Ut +uy =0, u(x, 0) = sinx. (6.4)

This problem admits the global smooth solution that was computed afftisaé with the
varying number of grid pointd\l.

In Table 6.1 we compare the accuracy of our second-order fully discrete scheme, F
with the accuracy of the NT scheme. These results show that for the FD2 scheme the abs
error is larger, but the rate of convergence is slightly higher than for the NT scheme.

6.2. One-Dimensional Scalar Hyperbolic Conservation Laws

ExampPLE 3 (Burgers’ Equation: Pre- and Post-shock Solutions). In this example
approximate solutions to the inviscid Burgers’ equation,

2
U + (%) —o. (6.5)

Let us start with the case of smooth periodic initial data, e.g.,
u(x, 0) = 0.5+ sinx. (6.6)

The well-known solution of (6.5)—(6.6) develops a shock discontinuity at the critical tin
T. = 1. Table 6.2 shows thie!- andL>°-norms of the errors at the pre-shock tiffie= 0.5

TABLE 6.2
Initial Value Problem (6.5)—(6.6),L1- and L>°-Norms of the Errors at T =0.5

Lt-error L>-error
N NT Rate FD2 Rate NT Rate FD2 Rate
40 1.011e-02 — 9.101e-03 — 6.782e-03 — 6.283e-03 —
80 2.116e-03 2.26 1.843e-03 2.30 2.951e-03 1.20 2.333e-03 1.

160 4.705e-04 2.17 4.272e-04 211 9.918e-04 1.57 7.481e-04
320 1.095e-04 2.10 9.334e-05 2.19 3.727e-04 141 2.603e-04 1.
640 2.517e-05 2.12 2.163e-05 2.11 1.248e-04 1.58 9.508e-05
1280 5.926e-06 2.09 4.867e-06 2.15 4.433e-05 1.49 3.132e-05
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0.6 i 1 1 L s 5

FIG. 6.5. Problem (6.5)—(6.6)N =100, T =2; the FD2 scheme.

when the solution is still infinitely smooth. Unlike the linear case (Example 2), both the :
solute errors and the convergence rates of the FD2 scheme are better than the corresp
errors and rates of the NT scheme. This indicates a certain advantage of our fully dis
second-order scheme over the NT scheme while applied to nonlinear problems.

In Figs. 6.5 and 6.6 we present the approximate solutions at the post-shock tirge
when the shock is well developed. Second-order behavior is confirmed by the meast
Lip“-errors, [39], which are recorded in Table 6.3. Again, the solution obtained by the F
scheme is slightly more accurate than the solution computed by the NT scheme.

06 L L
0 1 2 3 4 5 6

FIG.6.6. Problem (6.5)—(6.6)N =100, T = 2; the NT scheme.
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TABLE 6.3
Initial Value Problem (6.5)—(6.6), Lip’-Norm of the Errors at T =2

N NT Rate FD2 Rate
40 1.233e-02 — 7.779e-03 —
80 1.904e-03 2.70 1.982e-03 1.97

160 4.809e-04 1.99 4.905e-04 2.01

320 1.253e-04 1.94 1.222e-04 2.01

640 3.415e-05 1.88 3.047e-05 2.00

1280 1.000e-05 1.77 7.558e-06 2.01

ExampLE 4 (Nonconvex Flux). In this example we show results of applying our full
discrete second-order scheme to the following Riemann problem:

W-nHw* -4 _ _f2, ifx<o0,
””L[ 4 ]X‘O’ “(X’O)_{—z, if x>0, ©-D

The solutions to this initial value problem are depicted at time 1.2. Figure 6.7 demon-
strates the clear advantage of our new FD2 scheme over the NT scheme; in particula
latter seems to give a wrong solution (even after the grid refineféfat.note, however,
that when a more restrictive minmod limiter was used (correspondifig:td in (6.1)), the
NT solution did converge to the entropy solution at the expense of additional smoothing
the edges of the Riemann fan, which can be noticed in Fig. 6.8.

6.3. One-Dimensional Systems of Hyperbolic Conservation Laws

ExampLE 5 (Euler Equations of Gas Dynamics). Let us consider the one-dimensio
Euler System

—_ _ 2 = = —_ . —_— 2
ot m| + % puc+p 0, p=( -1 (E 2u )
E u(E + p)

where p, u,m=pu, p, and E are the density, velocity, momentum, pressure, and tot
energy, respectively. Here, the conserved quantitieg ar¢o, m, E)T, and the flux vector

function is f (U) = (m, pu?+ p, u(E + p))". We solve this system subject to Riemanr
initial data,

N G._, X<O,
ux,0 =4 _
Ug, X > 0.

We apply our scalar-designed schemes to this problem in a straightforward manner. We
prefer the alternative approximation to the flux derivatives, needed in (3.6). The minn

limiter, (6.1), is employed directly on the corresponding valuefs(@f to avoid an expensive
computation of the Jacobiagfj.

3A similar failure of convergence towards the entropy solution by upwind approximation of nonconvex equati
was reported in [5].
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FIG. 6.7. Riemann IVP (6.7)N =100.

We compute the solution to two different Riemann problems:

e The first Riemann problem was proposed by Sod [46]. The initial data are gi\
by

iL=(10,25", {r=(01250,025".

The approximations to the density, velocity, and pressure obtained by the FD2 schem
presented in Figs. 6.9-6.14.

25 : . L L s 1 s s '
-1 -0.8 -0.6 0.4 -0.2 o 6.2 04 0.6 0.8 1

FIG. 6.8. Riemann IVP (6.7)N =100.
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FIG. 6.9. Sod problem—densityN =200, T =0.1644.
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FIG. 6.10. Sod problem—densityN =400, T =0.1644.
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FIG. 6.11. Sod problem—velocityN =200, T =0.1644.
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FIG. 6.12. Sod problem—velocityN =400,T =0.1644.
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FIG. 6.13. Sod problem—pressurél =200,T =0.1644.
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FIG. 6.14. Sod problem—pressur&l =400,T =0.1644.
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FIG. 6.15. Lax problem—densityN =200,T =0.16.

e The second Riemann problem was proposed by Lax [29]. The initial values
given by

U, = (0.4450.311, 8928 ", iir=(05,0,1.4275".

The results computed by the FD2 scheme are shown in Figs. 6.15-6.20.

Our numerical results for this system are comparable with the results obtainec
[38]. We would like to stress again that as in the case of the original NT scheme
characteristic decomposition is not required; i.e., our new schemes still can be apy
componentwise.

Remark. In all the above 1D hyperbolic examples we have presented the numers
results obtained by our fully discrete scheme. We also tested the correspon

EXACT —

- FD2
13 + F-——_‘
12 + t
3

09 |-
08 |
0.7 |

06 |
4

[Oh 3 2

0.3

] 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

FIG. 6.16. Lax problem—densityN =400,T =0.16.
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FIG. 6.17. Lax problem—velocityN =200,T =0.16.
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FIG. 6.18. Lax problem—velocityN =400,T =0.16.
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FIG. 6.19. Lax problem—pressuréN =200, T =0.16.
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FIG. 6.20. Lax problem—pressuré\ =400, T =0.16.

semi-discrete scheme on the same examples. The results are very similar, but the :
discrete scheme is slightly more dissipative than the fully discrete one.

As we have already mentioned, the main advantage of the semi-discrete approach ¢
seen while we apply our scheme to (degenerate) parabolic convection—diffusion equat
Below, we show several examples of such problems.

6.4. One-Dimensional Convection—Diffusion Equations

ExampLE 6 (Burgers-Type Equation with Saturating Dissipation). We begin with tk
convection—diffusion equation with bounded dissipation flux proposed in [28]. Consic
Eq. (1.3) with f (u) = u? subject to the Riemann initial data,

1.2, X <0,

“(X’O)Z{—lz x>0

(6.8)
It was proved in [12] that the solution to this initial value problem contains a subshc
located atx = 0. This is why solving (1.3), (6.8) numerically is quite challenging problen
Our second-order semi-discrete scheme, SD2, provides a very good resolution o
discontinuity (Fig. 6.21) while the fully discrete NT scheme fails to resolve it (Fig. 6.2
see also numerical results in [28]). The SD2 scheme was tested on all the examples
[12]. The numerical results are highly satisfactory, and using this semi-discrete apprc
no operator splitting is needed (consult [12] for details).

ExAaMPLE 7 (Buckley—Leverett Equation). Next, let us consider the scalar convectio
diffusion Buckley—Leverett equation (1.2) witD(u, s) = v(u)s,

U + f(U)x = s(w(U)uy)y, gv(u) >0. (6.9)

This is a prototype model for oil reservoir simulations (two-phase flow). Typically)
vanishes at some values of and (6.9) is a degenerate parabolic equation. Usually, tl
operator splitting technique is used (see [6, 8, 20, 22, 23]) to solve it numerically, but
limitations of such an approach are well known.
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FIG. 6.21. Sharp resolution by the SD2 schene=400,T =1.5.
We takee to be 0.01,f (u) to have ars-shaped form,
u2
fWy=———, 6.10
u?+ (1—-uw? (6.10)
andv(u) to vanishau=0, 1,
v(u) = 4u(l —u). (6.112)
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.6.22. Smeared discontinuity by the NT schene=400,T = 1.5.
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FIG. 6.23. Initial-boundary value problem (6.9)—(6.12).=0.2.

The initial function is

(6.12)

= Wik

A
X
IA

’

{1 —3x,
ux,0) =

wr O
IA
X
IA

the boundary value af(0, t) =1 is kept fixed.

The numerical solution computed by the SD2 scheme for different numbers of ¢
points is presented in Fig. 6.23. No exact solution to problem (6.9)—(6.12) is available,
if compared with the numerical solutions reported in [20], our solutions seem to conve
to the correct entropy solution.

ExampPLE 8 (Gravitational Effects). We now consider the Buckley—Leverett equatio
(6.9), with the same =0.01, the same diffusion coefficient, (6.11), and the flux functio
f (u) including gravitational effects:

2

W= ra—uwe

(1—5(1—u)?). (6.13)
This equation is more complicated than the previous one since we should handle the
(6.13) wheref’(u) changes sign. The numerical solutions to this equation and to Egs. (6.
(6.11) subject to the Riemann initial data,

0, O<x<1l--1,
ucx, 0) = { V2

1
1, l—ﬁfxgl,

are shown in Fig. 6.24. It can be observed that our semi-discrete scheme provides the
high quality of numerical solutions for both of these problems.
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SD2 (with gravitation, N=800) —

SD2 (with gravitation, N=100) +
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FIG. 6.24. Riemann problem for the Buckley—Leverett equation with and without gravitatien0.2.

ExamPLE 9 (Glacier Growth Model). In this example we consider a one-dimensior
model for glacier growth (see [9, 21]). Let a glacier of heigjik, t) rest upon a flat
mountain. Its evolution is described by the nonhomogenious convection—diffusion equa

h: + f(h)x = e(v(h)hy)x + S(x, t, h). (6.14)
Lete =0.01. The typical flux and diffusion coefficient are

6
fhy=" +43h . w(h) = 3n®, (6.15)

We first look at the Riemann problem with

1, X <0,
h(x’o):{o x>0

thatdescribes anoutletinto avalley disregarding seasonal variations. To complete this si
model we use the sourcXx, t, h) = S(x) if h(x,t) >0, andS(x, t, h) = max S (x), 0}
if h(x,t) =0, where

0, X <—0.4,
S =1{ 3(x+04), —04<x<-02
—IX, x> —0.2.

The numerical simulations for different number of grid points and at different times ¢
presented in Figs. 6.25-6.27. These solutions, obtained by our SD2 scheme, seem
more accurate than the solutions obtained by the operator splitting method in [21].
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FIG. 6.25. Moving glacier afT =1.
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FIG. 6.27. Moving glacier afT =4.
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FIG. 6.28. Growing glacier afl =7.5.

Second, we look at the growth of a new glaciefx, 0) = 0). Let the glacier be restricted
to the interval |5, 5]. Then an appropriate source term is

sty =42 X=-5
"7 1 —-0.01x + 0.05 sin2rt), X > —b,
Here the second, trigonometric term models seasonal variations.
Figures 6.28—6.33 illustrate the glacier growth computed by the Rusanov first-order
by our second-order semi-discrete schemes, SD1 and SD2, with different numbers of

05 T . . . .
SD2 (N=600) —
SD2 (N=150) +
04s | SD1 (N=600) -+~ 4
04} 4
035 | -
03| g
025 | —
oz} -
o1s | .
o1 | X
oos | .
o 1 1 1 i
4 2 0 2 4

FIG. 6.29. Growing glacier aff =10.5.
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01 F -1
0.05 | R
0 & )
2 4

FIG. 6.30. Growing glacier afl = 15.

points. The SD2 scheme provides more accurate resolution of the upstream front, but ac
some oscillations on the glacier downstream. The amplitude of these oscillations rem
small but does not diminish with the grid refinement. Moreover, they tend to propagate
to the top of the glacier ald increases. At the same time, applying the SD1 scheme witt
large number of grid points gives a very accurate, nonoscillatory solution, comparable \
the one reported in [21].

ExampPLE 10 (Hyperbolic—Parabolic Equation). We conclude this subsection with
example of strongly degenerate parabolic (or, hyperbolic—parabolic) convection—diffus

0.5 T T T T T
SD2 (N=600) —~
SD2 (N=150) +
045 |- SD1 (N=600) -+---
L 4
o *
04} y .
035 | ; .
03 e
025 4
0.2 | E
0.15 |- -
(R b
0.05 |- b
0 2 ' 1 1 &
-4 2 0 2 4

FIG. 6.31. Growing glacier afl =22.5.
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0.15

0.1

0 1 1 1 1 i
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FIG. 6.32. Growing glacier afl =30.

equation. Consider Eq. (6.9) with=0.1, f (u) =u?, and

0, |u/<0.25
v(u) = (6.16)
1,  |u/>0.25.

This v(u) is a discontinuous function, and the equation is therefore of hyperbolic nat
whenu € [-0.25, 0.25] and parabolic elsewhere.

05 T T

SD2 (N=600) —
SD2 (N=150) +
SD1 (N=600) «---- b

04 |-

0.35 -

03 F

FIG. 6.33. Growing glacier aff =37.5.
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FIG. 6.34. Initial value problem (6.9), (6.16), (6.17).=0.7.

We apply our SD2 scheme to Egs. (6.9), (6.16) subject to the initial data,

1 1
1, —75—0.4<X<—72+0.4,
ux,0) =<¢ -1, % —04<x< % +0.4, (6.17)
0, otherwise

The results for two different number of grid points is shown in Fig. 6.34. We would lik
to point out the high resolution of discontinuities and the accurate transition between
hyperbolic and parabolic regions.

6.5. Two-Dimensional Problems

ExampLE 11 (Two-Dimensional Burgers-Type Equations). Consider the two-dime
sional extension of the equation from Example 10,

Up + (UD)x + (UP)y = e(L(U)Ux + e(V(U)Uy)y. (6.18)

The numerical results obtained by our SD2 scheme are presented in Figs. 6.35 and
In these examples=0.1; v(u) is given by (6.16) (strongly degenerate parabolic problen

FIG. 6.35. Pure hyperbolic problem—solution at tirffie= 0.5 on a 66« 60 grid.
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FIG. 6.36. Degenerate parabolic problem—solution at tifhe- 0.5 on a 66« 60 grid.

orv(u) =0 (hyperbolic problem). The initial data are equattb and 1 inside two circles of
radius 0.4 centered at (0.5, 0.5) anrd)5,—0.5), respectively, and zero elsewhere inside th
square 1.5, 1.5]x [—1.5, 1.5]. As in the one-dimensional examples, our scheme perfor
well in both hyperbolic and hyperbolic—parabolic cases even with relatively small num
of grid points.

ExampLE 12 (Two-Dimensional Buckley—Leverett Equation). Finally, we solve th
two-dimensional convection—diffusion equation

Uy + F(W)x + g(u)y = e(Uxx + Uyy), (6.19)
with ¢ =0.01, the flux function of the form
u2
f(u) = P SNTEETV
1—u)2
(U +( ue) (6.20)
g() = fW (L —51—u?,
and the initial data
2 2
u(x, y,0) = {1’ X4y <05 (6.21)
0, otherwise

Note that the above model includes gravitational effects irytd@ection.

-1 -0.5 0 0.5 1
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1

FIG. 6.37. Problem (6.19)—(6.21)—solution at tinfe= 0.5 on a 206 200 grid.
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FIG. 6.38. Problem (6.19)—(6.21)—solution at tinfe= 0.5 on a 106 100 grid.

The solution, computed in the domair 1.5, 1.5] x [—1.5, 1.5] by the SD2 scheme, is
shown in Figs. 6.37 and 6.38. Our scheme also provides a highly satisfactory approxime
to this model with a nonlinear, degenerate diffusion.
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