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Abstract. A new observational-inductive framework for science is emerging due to recent developments in sensors, data 
systems, computers and knowledge discovery techniques. This new framework complements the standard hypothetical-
deductive model that has sometimes been held up as the standard of what is meant by “science.” The hypothetical-
deductive/inductive schemas were developed before the massive growth (by orders of magnitude) in the volume of 
observational data and power of high performance computing.  The strength of the observational-inductive model is its 
firm foundation on both of these revolutionary developments in the history of science. 
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INTRODUCTION 

For the first time in the 400 years since Francis Bacon introduced induction, a confluence of new technologies is 
enabling an observational-inductive approach to scientific inference that is complementary to the standard 
hypothetical-deductive approach. This standard approach has been marvelously successful in high-energy physics 
and certain other fields where quantitative theories can provide well-defined, falsifiable predictions that can be 
directly tested in controlled, laboratory experiments. The hypothetical deductive framework was developed prior to, 
and has not significantly changed since the massive growth (by orders of magnitude) in the volume of observational 
data and power of high performance computing techniques. Further, for complex, interrelated multi-scale systems 
like ecology, space physics or cosmology, especially without a focus on in-principle falsifiability of hypotheses, it 
can lead to circumstances in which a particular research program becomes an arbiter of acceptable data [1]. Such 
conditions can excessively shield a preferred theoretical framework from falsification (as happened with the 
uniformitarian doctrine in geology prior to plate tectonics). This tendency towards theory-dependence is a key 
weakness of the hypothetical-deductive approach, a weakness that can be offset by the observations-driven approach 
of the observational-inductive framework. 

FRAMEWORKS FOR KNOWLEDGE DISCOVERY 

There have been many ways to represent the scientific method (hypothesis formation, experimental preparation, 
test, model refinement…). Most scientists agree that there is no one single method and that simplistic reference to 
the scientific method is insufficient; however, it remains unclear what these methods are when more fully evaluated 
and expressed. One thoughtful attempt to capture the essence of the scientific process led to seeing the “scientific 
method as information-seeking by questioning” and “problem-solving power [keeping in mind] the basic theoretical 
presupposition… of one’s questioning procedure” [2]. An inductive logic of theories remains incomplete in 
philosophy of science. 

Table 1 outlines the three basic frameworks of scientific method and their characteristics in terms of theory to 
observation level; emphasis on logical versus causal implication; and principal driver (theory vs. observation). Brief 
explanations and examples are provided for both the hypothetical-deductive and hypothetical-inductive frameworks. 
The following three sections provide more background, detail and finally four specific examples of the 
observational-inductive framework. 

 



TABLE 1.  Frameworks of scientific method. 
 

 HYPOTHETICAL-
DEDUCTIVE 

HYPOTHETICAL-
INDUCTIVE 

OBSERVATIONAL-
INDUCTIVE 

LEVELS top-down interplay of levels bottom-up 

FOCUS logical implication causal implication causal implication 

DRIVER theory theory/observation balance observations 

 
Hypothetical-deductive framework: The standard hypothetical-deductive methodological framework for 

science, which focuses on logical implication, derives its strength from the consistency, coherence, and testability of 
deduced consequences resulting from initial hypotheses. Its first clear formulation as a methodological framework 
was carried out by Karl Popper in the 1930s [3]. Hypotheses in this framework are, in part, inspired by observations 
but may be highly dependent on prior theory as, for example, research on dark matter or dark energy. When 
controlled, laboratory experiments are routinely available, the hypothetical-deductive framework, with its top-down 
strategy and focus on logical implication, has proven to be very robust in fields such as atomic physics or high-
energy physics. 

For example, in 1957, two competing theories (hypotheses) of weak interactions had two very different deduced 
consequences – one that mirror-reflection or parity symmetry is conserved and the other for which parity is not 
conserved. A crucial experiment was carried out that year by C. S. Wu and collaborators demonstrating that parity 
symmetry was not conserved, which clearly falsified the theory requiring parity symmetry (details of this episode are 
provided in [4]). 

As noted in Table 1, the hypothetical-deductive framework tends to be theory-driven and top-down (from 
creatively-inferred hypotheses to deduced consequences) with a focus on logical implication. 

Hypothetical-inductive framework: Until the 1970s, early problems with the concept of induction contributed 
to a nearly exclusive focus on the hypothetical-deductive framework in philosophy of science circles. Recent work 
has recognized fundamental limitations with this standard account of scientific process and has introduced 
hypothetical-inductive inference in addition to hypothetical-deductive inference. In particular, Niiniluoto and 
Tuomela show how inductive and deductive inference remain as irreducible elements of the scientific process [5], 
and this recognition has led to new research in inductive inference [e.g., 6, 7]. The hypothetical-inductive framework 
adequately addresses scientific practice in many fields that lack controlled experiments but retain some balance 
between theory and observation. 

For example, many quantitative space plasma studies employ a combination of plasma and field observations and 
single-particle, kinetic plasma or magnetohydrodynamic (MHD) simulations, which are applied iteratively in a 
theory-model-observation trialogue. Recent examples include the following: (1) Nonadiabatic acceleration of ion 
beams in the plasma sheet boundary layer have been demonstrated using four-point in situ Cluster spacecraft 
observations and single-particle model calculations [8]; (2) Successful correlations have recently been made of 
observed changes in Earth’s ionospheric polar cap in response to solar wind input parameters by comparisons with 
global MHD simulations of Earth’s magnetosphere [9]. 

As noted in Table 1, the hypothetical-inductive framework maintains a rough balance of theory and observation 
with a focus on causal implication. 

Observational-inductive framework: See next three sections – four examples are provided in the section on the 
observational-inductive framework. 

TAKING DATA TO KNOWLEDGE 

Space science research has faced many challenges within the past few decades: high-data-rate sensors and the 
data explosion [10], the subtleties of plasmas and multiscale physical systems [11], and the complexities of 
nonlinear systems [12]. In response, new technologies have emerged that promise to meet these profound 
challenges: Grid systems and virtual observatories, broadband linkage of distributed data systems, and advanced 
visualization, among others [13, 14]. These new technologies can be represented by the Data-Sensor-HPC-Model 
linkages illustrated in Figure 1. Visualizing this as a tetrahedron with Data at the center (or top) emphasizes the 
importance of data and new data grids for meeting the data explosion; turning it over on another side places Sensor 
in the middle and points to new Sensor Webs being developed in Earth systems science; putting high performance 



computing (HPC) in the center indicates the power of Grid computing; and placing Model in the middle can be 
associated with virtual modeling centers [15].    

 
 

Figure 1. Data-Sensor-HPC-Model as a unifying concept for Grid systems, virtual observatories, and related developments. 
 

In the late 20th century, breakthroughs in nonlinear dynamics emerged from the HPC-Model linkage with the 
advent of new supercomputer resources. Considered within the broader perspective of Data-Sensor-HPC-Model 
linkages, Grid systems and virtual observatories may have a similar transformative impact well beyond their initial 
role to expand access to data and computing resources and to enhance analysis tools across distributed databases 
worldwide.   

KNOWLEDGE DISCOVERY IN DATABASES 

In parallel with the increased synergism of Data-Sensor-HPC-Model, there have been major advances in data 
mining, neural networks, pattern recognition, clustering, principal component analysis, Bayesion networks, Markov 
models and other tools, which are here referred to collectively as Knowledge Discovery in Databases (KDD). KDD 
is particularly useful for the discovery of hidden relationships in large, complex databases that can exceed the limits 
of human pattern recognition or even model application. Knowledge discovery denotes “the nontrivial extraction of 
implicit, previously unknown, and potentially useful information” [16]. 

Data selection, automating access through registries, translation and formatting are just a few of the many data 
preparation steps that are essential for successful KDD applications, which can take up to 80% of a data-mining 
project [17]. With such preparation and with sufficiently robust data sets, however, previously hidden facts can be 
discovered such as specific rare events, anomaly detection, patterns, correlations, linkages, complex multi-variable 
interdependencies and more [18]. Emergence of the International Virtual Observatory (IVO) [19] and other new 
venues for data access provide important new opportunities for applying KDD tools. 

OBSERVATIONAL-INDUCTIVE FRAMEWORK 

The observational-inductive framework is emerging from the confluence of both KDD and Data-Sensor-HPC-
Model linkages, as described above. This framework is especially needed in those fields such as geophysics and 
space science where direct testing of certain initial conditions or core hypotheses is difficult, if not impossible, but 
where gigabyte to petabyte datasets are rapidly expanding. As noted in Table 1, the observational-inductive 
framework is observations-driven and bottom-up (from observations to inductively-inferred hypotheses, with testing 
via deduced consequences) with a focus on causal implication. 

Four examples of the Observational-Inductive Framework: (1) A KDD study using spatial-temporal Earth 
science data across multiple domains with multiple time lags has discovered correlations and unexpected event 
associations in human activity, the rise of atmospheric carbon dioxide, decreases in global leaf cover, and natural 
disasters [20]. (2) Another study using association mining discovered patterns in spatial-temporal data that correctly 
predicts El Nino events [21]. In these two KDD studies, both by the same NASA Ames research team, the 
correlations and associations discovered came out of applying KDD directly to the data and not from a specific test 
about some previously predicted effect (as in the hypothetical-deductive approach) or from parameter searches 
linked to known hypotheses (as for the hypothetical-inductive approach), except for some data preparation such as 
making the data “deseasonalized.” (3) Through extensive dataset preparations for diagnostics, classification, and 
spectra, extensive searches of large Two Micron All Sky Survey (2MASS) datasets have been carried out leading to 



the discovery of T dwarf stars. Search criteria emerged iteratively from KDD analyses and only partially from 
model-inspired parameter ranges (as for the hypothetical-inductive approach), and not by a focus on identifying 
particular stars with specific characteristics predicted by theory (as for the hypothetical-deductive approach). Using 
searches based on spectral correlations, this data mining procedure has now yielded more than 50 of these stars, 
which are the coldest and most intrinsically faint brown dwarfs [22]. (4) An iterative data mining method 
substantially reduces the number of calculations needed to reach a given predictive accuracy in ab initio quantum 
mechanical calculations for inferring properties of broad classes of materials. This example utilizes the hypothetical-
deductive approach with respect to particular ab initio quantum calculations, but focuses on applying data mining 
methods to order candidate structures for new alloy possibilities. Such KDD-boosted data analysis decreased the 
number of required calculations by a factor of four in obtaining successful crystal structure prediction for binary 
alloys [23]. These four cases represent nascent examples of the observational-inductive framework because they are, 
at least in part, observations-driven, bottom-up, and focused on causal implication (see Table 1) through the 
application of both KDD tools and linkages of Data-Sensor-HPC-Model. 

All three frameworks of scientific methodology discussed here benefit from the best ideals of the scientific 
process, which include systematic examination of presuppositions, framing of testable hypotheses (falsifiable in 
principle), model development (preferably quantitative), and careful design of observational tests. Though KDD 
embodies certain assumptions with regard to data relevance, etc., these are transparent. Unlike theory-based 
assumptions imbedded in many research activities, KDD assumptions must be fully explicated in order to design and 
use KDD tools. Many KDD tools can help to reduce this theory dependence. The hypothetical-deductive/inductive 
and observational-inductive frameworks are complementary and synergistic; however, reduction in theory 
dependence through applying observational-inductive inference may be especially valuable in resolving scientific 
controversies in fields such as cosmology. Datasets providing for new tests of cosmological theories are becoming 
available, such as the Sloan Digital Sky Survey and large redshift Hubble datasets. In addition, new computer and 
data-intensive Grid systems are bringing these datasets to researchers worldwide [19]. 
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