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The small magnetic Prandtl number approximation
suppresses magnetorotational instability
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Abstract. Axisymmetric stability of viscous resistive magnetized Couette flow is re-examined,
with emphasis on flows that would be hydrodynamically stable according Rayleigh’s criterion:
opposing gradients of angular velocity and specific angular momentum. In this regime, mag-
netorotational instability (MRI) may occur. The governing system in cylindrical coordinates is
of tenth order. It is proved, by methods based on those of Synge and Chandrasekhar, that by
dropping one term from the system, MRI is suppressed, in fact no instability at all occurs, with
insulating boundary conditions. This term is often neglected because it has the magnetic Prandtl
number, which is very small, as a factor; nevertheless it is crucially important.
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1. Introduction

Magnetorotational instability (MRI) is important to theoretical astrophysics be-
cause it is the only linear instability known to grow robustly under the conditions
prevailing in most accretion disks: an electrically conducting fluid; a positive gra-
dient of specific angular momentum, ∂(r2Ω)2/∂r > 0; and a negative gradient
of angular velocity, ∂Ω2/∂r < 0 ([1]). Some believe that purely hydrodynamic
nonlinear or non-modal mechanisms may drive turbulence in such disks, but this
point is controversial ([14], [9]). Turbulence, though not directly observable, is
required to explain the luminosity of the disk by dissipation of orbital energy.

MRI was originally conceived as an ideal-MHD instability ([23]; [2]) but liq-
uid metals are far from ideal on laboratory scales, especially in their magnetic
diffusivity (η), which is typically ∼ 106 times larger than their kinematic viscos-
ity (ν). This makes MRI experimentally challenging. Until recently, the litera-
ture on liquid-metal Couette flow has treated magnetic effects as modifications
to the Taylor instability, in which viscous and inertial forces are comparable and
∂(r2Ω)2/∂r < 0. In this regime, as first shown by Chandrasekhar, the equa-
tions of motion can be scaled so that terms proportional to the magnetic Prandtl
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number Pm ≡ ν/η ∼ 10−6 are manifestly negligible, permitting a reduction of
the axisymmetric stability analysis from tenth to eighth order in radial deriva-
tives ([3]). Chandrasekhar’s “small−Pm” approximation governed essentially all
analyses of magnetized Couette flow for the following forty years; none of these
works predicted MRI, nor did contemporary experiments observe it (e.g., [4]; [8];
[24]; [22];[20]; [5]). Yet recently, several groups have embarked on experiments
to demonstrate MRI in liquid-metal flows ([12]; [13]), and one has even claimed
success ([19]).

More recent theoretical analyses of magnetized Couette flow do predict MRI
([16]; [7], henceforth (GJ); [17]; [18]). These studies do not use Chandrasekhar’s
small−Pm approximation, but they tend to express their results in terms of Pm ,
even though Pm ∼ 10−6 in the liquid metals that are to be used in experiments.
GJ argued that it is more natural to describe the onset of MRI in terms of dimen-
sionless parameters that do not involve ν. The authors of [17] confirmed that the
critical values of such parameters for MRI are insensitive to Pm when it is suffi-
ciently small. It remains interesting to understand why the standard small−Pm

approximation is inappropriate given that Pm is so very small in experiments. An
attempt to clarify this was made by GJ, who argued that MRI cannot occur with-
out one of the terms that Chandrasekhar dropped from his dimensionless equations
on the grounds that it is proportional to Pm. However, GJ proved their assertion
only in the limit of a narrow gap between the cylinders—a regime that is entirely
impractical for laboratory MRI.

The purpose of the present paper is to extend GJ’s results to wide-gap Cou-
ette flows. That is, we prove that Chandrasekhar’s reduced system of equations
predict stability when ∂(r2Ω)2/∂r > 0, at least for insulating magnetic boundary
conditions, which are particularly relevant to experiments. Our proof makes use
of insights and techniques developed by Herron and Ali ([11]) (see also [10]).

2. The small magnetic Prandtl number equations and proof of
stability

The background flow is v = rΩeθ (in cylindrical coordinates r, θ, z) between two
cylinders of radii r1, r2 and angular velocities Ω1,Ω2:

Ω(r) = a +
b

r2
, a =

Ω2r
2
2 − Ω1r

2
1

r2
2 − r2

1

, b =
Ω1 − Ω2

r−2
2 − r−2

1

. (2.1)

The assumption that ∂(r2Ω)2/∂r > 0 implies ab > 0, and we take a, b > 0, so that
Ω(r) > 0, without loss of generality. The profile (2.1) supports a radially constant
viscous torque 4πρνb per unit height dz, in which ρ is the density of the fluid and
ν the kinematic viscosity. A uniform magnetic field B = B0ez permeates the fluid.
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2.1. The governing equations

Following ([3]), linear perturbations are taken to be sinusoidal in z. In the con-
ventions of GJ ([7]),

δvr = ϕr(r, t) sin kz, δBr/
√

µρ = βr cos kz,

δvθ = ϕθ(r, t) sin kz, δBθ/
√

µρ = βθ cos kz,

δvz = ϕz(r, t) cos kz, δBz/
√

µρ = βz sin kz.

Notice that the magnetic components have been scaled so as to have dimensions
of Alfvén velocity; it is convenient to express the background field similarly, VA ≡
B0/

√
µρ. The linearized equations of motion become (GJ)

β̇θ = η(DD∗ − k2)βθ + kVAϕθ + rΩ′βr, (2.2)

ϕ̇θ = ν(DD∗ − k2)ϕθ − kVAβθ − r−1(r2Ω)′ϕr, (2.3)

β̇r = η(DD∗ − k2)βr + kVAϕr, (2.4)

(DD∗ − k2)ϕ̇r = ν(DD∗ − k2)2ϕr − kVA(DD∗ − k2)βr − 2Ωk2ϕθ. (2.5)

Primes denote radial derivatives of background quantities. For perturbations, we
follow Chandrasekhar’s notation Df ≡ ∂f/∂r, D∗f ≡ r−1D(rf), and use dots for
time derivatives. The vertical components ϕz and βz have been eliminated from
eqs. (2.2)-(2.5) using ∇ · v = ∇ ·B = 0.

The underlined term in (2.2) is the one which Chandrasekhar ([3]) argued was
negligible on the grounds that Pm ¿ 1. This term represents the twisting of
radial magnetic components into azimuthal ones by the background shear. One
can see why it might be thought to be unimportant: near marginal instability,
where the dotted terms vanish, eqs. (2.2) and (2.4) suggest that the magnetic
perturbations are ∼ O(kVAL2/η) compared to the velocity perturbations, where
L is a characteristic length such as r2, r2 − r1, or k−1. Since η is large, the
underlined term would seem to be small compared to the two terms preceding it
in eq. (2.2). But the importance of the underlined term cannot depend upon Pm

alone, since the viscosity does not appear in eq. (2.2), and yet Pm → 0 as ν → 0
at fixed η. In fact, when Pm is small, the relative importance of the magnetic
perturbations depends upon dimensionless ratios such as the magnetic Reynolds
number Rm ≡ L2Ω/η and Lundquist number S ≡ LVA/η that do not involve ν.
MRI is possible when Rm and S are & O(1) (GJ).

The boundaries are impenetrable and “no-slip”, so that

ϕr = ϕ′
r = 0, (2.6)

ϕθ = 0, at r = r1, r2. (2.7)

The condition on ϕ′
r derives from the continuity equation D∗ϕr = −kϕz since ϕz =

0. We take the cylinders to be perfectly insulating, and the magnetic perturbations
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to match onto exterior solutions of ∇× δB = 0 that are well-behaved as r → 0
and as r →∞:

∂

∂r
(rβr) = βr

[krI0(kr)]
I1(kr)

at r = r1, (2.8)

∂

∂r
(rβr) = −βr

[krK0(kr)]
K1(kr)

at r = r2, (2.9)

βθ = 0, at r = r1, r2, (2.10)

where In(kr) and Kn(kr) are the modified Bessel functions (of orders n = 0, 1 in
this work). Eqs. (2.6)-(2.10) impose ten boundary conditions on the tenth-order
differential system (2.2)-(2.5).

To proceed with the analysis, we assume a mode with a growth rate s. Equa-
tions (2.2)-(2.5) become, with ωA ≡ kVA,

sβθ = η(DD∗ − k2)βθ + ωAϕθ, (2.11)
sϕθ = ν(DD∗ − k2)ϕθ − ωAβθ − r−1(r2Ω)′ϕr, (2.12)
sβr = η(DD∗ − k2)βr + ωAϕr, (2.13)

s(DD∗ − k2)ϕr = ν(DD∗ − k2)2ϕr − ωA(DD∗ − k2)βr − 2Ωk2ϕθ, (2.14)

where the underlined term in (2.2) was dropped from (2.11). Note that for
marginal modes, where s = 0, βr appears in the combination (DD∗ − k2)βr only,
which can be eliminated between eqs. (2.13) and (2.14) to yield a reduced system
of eighth order in radial derivatives. Chandrasekhar exploited this simplification.
A peculiar feature of this system is that the radial magnetic boundary condition
is irrelevant to the marginal mode, in the sense that it does not enter the rela-
tion between wave number k and the parameters of the background flow. Still for
the eighth order system, in the Rayleigh-unstable case, Herron ([10]) was able to
establish the principle of exchange of stabilities (PES).

2.2. Abstract formulation

In order to simplify the proof, we make an abstract formulation. An operator
notation is introduced, which clarifies the nature of the analysis. The system
thereby becomes

−sMϕr = νM∗Mϕr + ωAM1βr − 2Ωk2ϕθ. (2.15)

sβθ = −ηM0βθ + ωAϕθ, (2.16)

sϕθ = −νM0ϕθ − ωAβθ − r−1(r2Ω)′ϕr, (2.17)

sβr = −ηM1βr + ωAϕr. (2.18)

In this notation, M, M∗, M0, and M1 all denote −DD∗ + k2, but are considered
different operators because of the distinct boundary conditions satisfied by the
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functions on which they act, while M∗M denotes (−DD∗ + k2)2 ([10]). That is,
M acts on functions that have the same boundary conditions as ϕr [eq. (2.6)], M∗

assumes that the functions satisfy no particular boundary condition, whereas M0

uses the boundary conditions of ϕθ and βθ [eqs. (2.7), (2.10)] and M1 those of βr

[eqs. (2.8), (2.9)].
Introduce an inner product,

〈f, g〉 =

r2∫
r1

rf(r)ḡ(r)dr, (2.19)

in which the overbar denotes complex conjugation. The differential operators
M, M∗M, M0, and M1 all have the property of being positive definite in this
inner product. For example, let us show that 〈Mϕr, ϕr〉 > 0. This follows quite
readily by defining

〈Mϕr, ϕr〉 =

r2∫
r1

rϕ̄r(r)(−DD∗ + k2)ϕr(r)dr (2.20)

=
∫ r2

r1

{
−rϕ̄r

d

dr

[
1
r

d

dr
(rϕr)

]
+ rk2 |ϕr|2

}
dr

(and integrating by parts to obtain)

=
∫ r2

r1

r
(
|D∗ϕr|2 + k2 |ϕr|2

)
dr > 0.

The boundary conditions (2.6), ϕr = ϕ′
r = 0 at r = r1, r2 were applied.

The calculations for 〈M0ϕθ, ϕθ〉 and 〈M0βθ, βθ〉 are similar to those for 〈Mϕr,
ϕr〉, except that ϕθ = βθ = 0, (2.7), (2.10), at r1, r2 are applied. Likewise, it
may be shown that 〈M∗Mϕr, ϕr〉 = 〈Mϕr,Mϕr〉 ≡ ‖Mϕr‖2 > 0. However, for
〈M1βr, βr〉 one notes that since βr satisfies (2.8, 2.9), the boundary terms do not
vanish after integration by parts; instead

〈M1βr, βr〉 =
∫ r2

r1

rβ̄r

(−DD∗ + k2
)
βr(r)dr

=
[−rD∗βr(r)β̄r(r)

]r2

r1
+

∫ r2

r1

[
D∗βr(r)

d

dr

(
rβ̄r(r)

)
+ k2r |βr|2

]
dr

=
∫ r2

r1

(
r |D∗βr|2 + k2r |βr|2

)
dr

+
kK0(kr2)
K1(kr2)

r2 |βr(r2)|2 +
kI0(kr1)
I1(kr1)

r1 |βr(r1)|2

> 0.
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2.3. Proof of stability

Theorem 2.1. MRI is suppressed, in fact no instability at all occurs with insulat-
ing boundary conditions, if the underlined magnetic shear term in (2.2) is ignored.
We also conclude that there are no marginal modes.

Proof: Make use of the inner product (2.19) as in (2.20), forming that of (2.15)
with ϕr to obtain

〈(νM∗M + sM)ϕr, ϕr〉+ ωA〈M1βr, ϕr〉 − 〈2Ωk2ϕθ, ϕr〉 = 0. (2.21)

From (2.18) this may be re-written as

〈(νM∗M + sM)ϕr, ϕr〉+ 〈M1βr, (ηM1 + s)βr〉 − 〈2Ωk2ϕθ, ϕr〉 = 0. (2.22)

The last term on the left of (2.22) can be found by making use of (2.17), by taking
its inner product with 2Ωk2ϕθ. This gives

〈r−1(r2Ω)′ϕr, 2Ωk2ϕθ〉+ 〈(νM0 + s) ϕθ, 2Ωk2ϕθ〉+ ωA

〈
βθ, 2Ωk2ϕθ

〉
= 0. (2.23)

Since r−1(r2Ω)′ = 2a is a positive constant, the first term on the left of (2.23) is
the complex conjugate of what is sought for (2.22) except that now, the last term
of (2.23) must be managed. So, take the inner product of (2.16) with 2Ωk2βθ. The
result is

〈(ηM0 + s)βθ, 2Ωk2βθ〉 − ωA〈ϕθ, 2Ωk2βθ〉 = 0. (2.24)

Combining (2.22), (2.23) and (2.24) gives

〈(νM∗M + sM)ϕr, ϕr〉+ 〈M1βr, (ηM1 + s)βr〉+
(2a)−1

{〈(νM0 + s̄) ϕθ, 2Ωk2ϕθ〉+ 〈(ηM0 + s)βθ, 2Ωk2βθ〉
}

= 0.
(2.25)

It was established by Synge ([21]) and by Chandrasekhar ([3]), that for the az-
imuthal velocity function ϕθ, the following is true:

Re〈(−DD∗ + k2)ϕθ, 2Ωk2ϕθ〉 > 0, (2.26)

by virtue of (2.7). Likewise, for the azimuthal component of the magnetic field βθ,

Re〈(−DD∗ + k2)βθ, 2Ωk2βθ〉 > 0, (2.27)

using (2.10). Hence, taking the real part of (2.25), combining terms having the
growth rate s, the result is

Re(s)
{〈Mϕr, ϕr〉+ 〈M1βr, βr〉+ (2a)−1〈2Ωk2ϕθ, ϕθ〉

+(2a)−1〈2Ωk2βθ, βθ〉
}

(2.28)

= −ν ‖Mϕr‖2 − η ‖M1βr‖2
−(2a)−1

{
νRe

(〈M0ϕθ, 2Ωk2ϕθ〉
)

+ ηRe
(〈M0βθ, 2Ωk2βθ〉

)}
< 0.

An immediate consequence of this is Re(s) < 0, and hence stability. Since Re(s) is
strictly negative, there are no marginal modes when the magnetic shear term is
ignored, with insulating boundary conditions.
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The counterpart to (2.27) for perfectly conducting boundaries, that is for
D∗bθ(1) = 0 and D∗bθ(η) = 0, does not readily follow and indeed may not be
true. Thus, we cannot exclude the possibility of MRI in wide gaps under the
small-Pm approximation if the boundaries are conducting. It would be of interest
then to see if the analysis may be extended to the conducting case. However, much
like the dilemma which Chandrasekhar ([3], p.298) experienced in his attempt to
deduce the PES, a lack of positive definiteness is a major hindrance.

3. Concluding comments

In summary, when using dimensionless equations of motion scaled by viscosity, as
is traditional in analyses of Taylor-Couette flow, one must be cautious about dis-
carding terms proportional to the magnetic Prandtl number even when Pm ¿ 1.
Whether these terms matter depends upon the type of disturbance envisaged. In
particular, we have proved that neglect of one such term predicts axisymmetric
stability when the angular-momentum gradient is positive; in fact, however, such
states may be subject to axisymmetric magnetorotational instability if magnetic
Reynolds number and Lundquist number are sufficiently large (GJ, [7]). For analy-
ses of MRI in liquid-metal experiments, one would do better to scale the equations
of motion by the diffusivity rather than the viscosity, as one finds that viscosity
has rather little influence on MRI growth rates if Pm ¿ 1 (GJ). This is not to say
that Pm is unimportant: for example, when Pm ∼ O(1), non-axisymmetric MRI
modes may be preferred ([18]). Also, the smallness of Pm has practical implications
for experiments if, as is usual, the background flow is established or maintained
by viscous stresses at the boundaries. In that case, the Ekman time-scale for
spin-up is longer than the magnetic diffusion time, and hence for marginal MRI
also longer than the reciprocal of the final rotation rate, by a factor∼ P

−1/2
m ∼ 103.

This material is based upon work supported in part by the U. S. Department of
Energy under Grant No. DE-FG02-05ER25666 (to I.H.) and the National Science
Foundation under Grant No. PHY-0215581 and Grant No. AST-0205903 (both
to J. G.).
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