

Asset & Derivatives Pricing Lecture 4: Exotic Derivatives & Structured Products

HEC Executive MBA program, Fall 2008

Sebastien Bossu

Disclaimer

This document is for research or educational purposes only and is not intended to promote any financial investment or security.

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

1. Exotic Derivatives

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu 2

4+FC

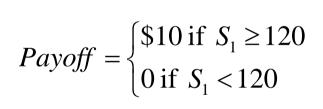
Exotic Derivatives

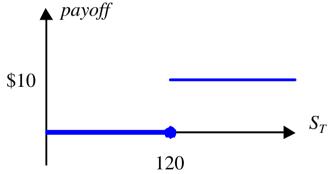
- ▶ Definition: ANY derivative security which is NOT a European or American vanilla call or put on a single underlying S
 - ➤ Examples: barrier options, digital options, asian options, lookback options, ladder options, variance swaps, any derivative security on multiple underlyings (quanto options, basket options, worst-of/best-of/rainbow options...)
- ➤ With the development of Structured Products, particularly in Europe, some exotic options (barriers, asians...) have become standardised and are often traded by vanilla option traders

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu 3

Digital Options

- A digital option (also known as binary option) is the simplest kind of exotic derivative: it pays off a fixed amount A if $S_T > K$ (digital call) or $S_T < K$ (put), and otherwise pays nothing.
- **Example:** digital call, $S_0 = 100 , K = \$120, A = \$10





Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

Digital Options: fair value

► A closed-form formula is easily derived in the lognormal / Black-Scholes model:

$$Digital \ Call_0 = Ae^{-rT} \Pr\left(\left[S_T \ge K\right]\right) = Ae^{-rT} N(d_2)$$
 where
$$d_2 = \frac{\ln \frac{S_0}{K} + \left(r - \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}}$$

▶ Q: Can you guess the formula for digital puts?

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu 5

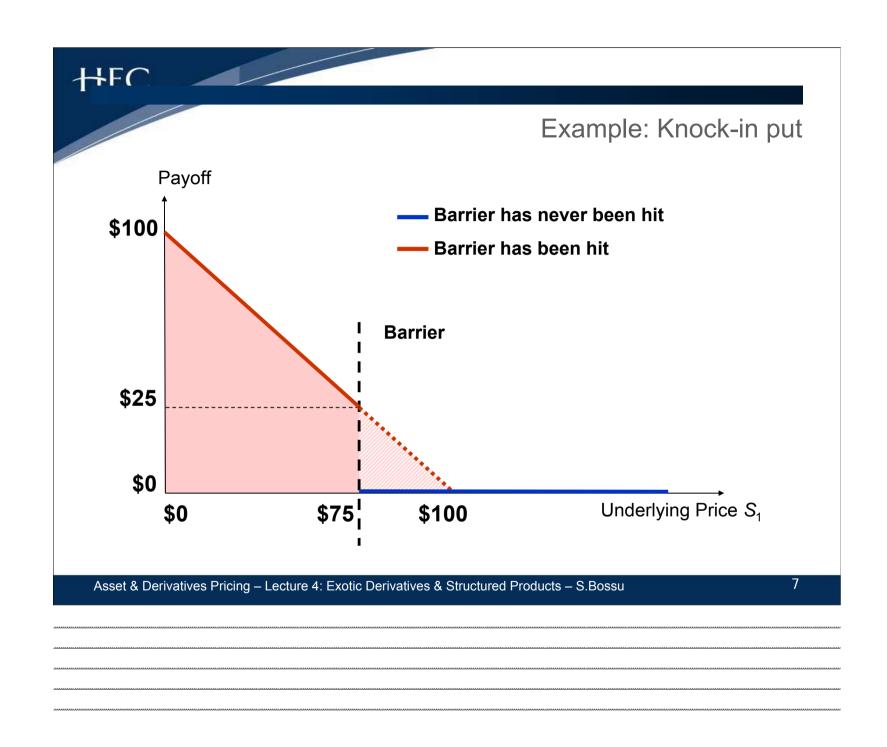
HFC

Barrier Options: Knock-in

- ► A knock-in barrier option is a call or put which is only activated if the underlying asset reaches a certain barrier level *H* before the maturity date *T*, and otherwise has zero payoff.
- Example: Knock-in Barrier Put, $S_0 = K = \$100$, H = \$75, T = 1 year

$$Payoff = \begin{cases} \max(0,100 - S_1) \text{ if } S_t < 75 \text{ at any time } t \le 1\\ 0 \text{ if } S_t > 75 \text{ at all times } t \le 1 \end{cases}$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu



HFC.

Barrier Options: Knock-out

- ► A knock-out barrier option is a call or put which is deactivated if the underlying asset reaches a certain barrier level *H* before the maturity date *T*.
- Example: Knock-out Barrier Call, $S_0 = K = 100 , H = \$120, T = 1 year

$$Payoff = \begin{cases} \max(0, S_1 - 100) \text{ if } S_t < 120 \text{ at all times } t \le 1\\ 0 \text{ if } S_t \ge 120 \text{ at any time } t \le 1 \end{cases}$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

#FC

Barrier options

►Q: Do you expect barrier options to be cheaper o	r more
expensive than their vanilla equivalents?	

- ►A: ...
- ▶Q: What can you say about the price of a portfolio made of a Knock-in barrier call and a Knock-out barrier call (same strike K, same barrier level H)?
- ►A: ...

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

#FC

Asian options

- ➤ An Asian option is a call or put whose payoff formula involves an average of the underlying price
- Example: 1-year call, monthly Asian-out, $S_0 = 100 , K = \$110

Payoff =
$$\max\left(0, \frac{1}{12} \sum_{m=1}^{12} S_{m/12} - 110\right)$$

	Terminal	Floating
	Underlying	Underlying
	Price S_{τ}	Level S _{avg}
Fixed	Vanilla:	Asian-in:
Strike	► Max(0, S ₇	► Max(0, S _{avq}
K	- K)	- K)
	► Max(0, <i>K</i>	►Max(0, <i>K</i> –
	$-S_{\tau}$	S _{ava})
Floating	Asian-out:	Asian-in+out:
Strike	► Max(0, S ₇	►Max(0, S _{avg}
K avg	$-K_{avg}$	$-K_{ava}$
3	► Max(0,	► Max(0, <i>K</i> _{avg}
	$K_{avg} - S_T$	$-S_{avg}$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

++FC

Asian options Q&A

- ▶Q: Are Asian-out options cheaper/more expensive than their vanilla equivalent?
- ►A: ...

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

#FC

Lookback options

- ➤ A lookback option is a call or put whose payoff formula involves an extremum of the underlying price
- Example: 1-year lookback call, monthly monitoring, $S_0 = 100 , K = \$110

Payoff =
$$\max \left(0, \max_{m=1,..,12} S_{m/12} - 110 \right)$$

	Terminal Underlying	Floating Underlying
	Price S_{τ}	Level S _{max/min}
Fixed	Vanilla:	Lookback:
Strike	► Max(0, S ₇	► Max(0, S _{max}
K	- K)	- K)
	►Max(0, <i>K</i>	►Max(0, <i>K</i> –
	$-S_T$	S_{min})
Floating	Floating-	Lookback
Strike	strike	straddle:
	Lookback:	$\triangleright S_{max} - S_{min}$
	$\triangleright S_T - S_{min}$	
	$\triangleright S_{max} - S_{T}$	

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

++FC

Lookback options Q&A

- ▶ Q: Are fixed-strike lookback options cheaper/more expensive than their vanilla equivalent?
- ►A: ...

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

HFC.

Ladder options

- ► A ladder option is a call or put which locks-in the highest/lowest step level reached by the underlying
- Example: 1-year ladder call, $S_0 = K = $100, 10 steps

$$Payoff = \max(0, \max(S_{lock-in}, S_1) - 100)$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

HFC

Basket Options

- ► A basket option is a call or put on a portfolio of several underlying assets
- Example: 1-year basket put on 3 assets $S^{(1)}$, $S^{(2)}$, $S^{(3)}$, equal weights, strike K = 90%, notional amount \$1mn

$$Payoff = 1,000,000 \times \max \left[0,90\% - \frac{1}{3} \left(\frac{S_1^{(1)}}{S_0^{(1)}} + \frac{S_1^{(2)}}{S_0^{(2)}} + \frac{S_1^{(3)}}{S_0^{(3)}} \right) \right]$$

▶Q: What will the payoff be if the price of each underlying asset goes down 25% after 1 year?

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

4+FC

Worst-of and Best-of Options

- ► A Best-of Option is a call or put on the best-performing underlying asset among several [in the sense of the ROR $(S_T S_0) / S_0$]
- Example: 1-year best-of call on 3 assets $S^{(1)}$, $S^{(2)}$, $S^{(3)}$, strike K = 110%, notional amount \$1mn

$$Payoff = 1,000,000 \times \max \left[0, \max \left(\frac{S_1^{(1)}}{S_0^{(1)}}, \frac{S_1^{(2)}}{S_0^{(2)}}, \frac{S_1^{(3)}}{S_0^{(3)}} \right) - 110\% \right]$$

Similarly, a Worst-of Option is a call or put on the worstperforming underlying asset among several

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

2. Structured Products

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu 17

4+FC

Structured Products

- ➤ Definition: a combination of securities packaged ("structured") into a single security ("product")
 - ► Example: 3-year capital guaranteed upside note on S&P500, 70% participation, \$1mn notional

$$Payoff = 1,000,000 \times \max \left(100\%, 100\% + 70\% \times \frac{SPX_3 - SPX_0}{SPX_0} \right)$$

► This payoff can be decomposed as follows:

$$Payoff = 1,000,000 + \frac{700,000}{SPX_0} \max(0, SPX_3 - SPX_0)$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

HFC

Structured Products (cont'd)

$$Payoff = 1,000,000 + \frac{700,000}{SPX_0} \text{max} (0, SPX_3 - SPX_0)$$
Fixed cash flow Vanilla call payoff

- ► This decomposition means that this particular structured product is replicated with a portfolio of:
 - ► A \$1,000,000 zero-coupon bond
 - ► A fixed quantity of European vanilla calls on S&P500
- ➤ The cost of these two ingredients determine the fair value of the structured product.

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu	9

HFC

Basic terminology

- ► The vast majority of structured products are packaged as notes ("bonds") issued by a bank
- Structured notes have very similar characteristics to government bonds: maturity, notional amount (capital), coupons.
 - Capital guaranteed notes: the investor is guaranteed(*) to receive at least his/her capital back at maturity
 - ➤ Non-capital guaranteed notes: the investor may lose all or part of his/her capital (but will never be asked for an additional payment or 'margin call')
 - (*) By the note issuer (which is a bank subject to default risk)

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu	20

₩FC

Termsheet example

Issuer Lezard Brothers (S&P: AA-, Moody's: Aa2)

Notional Amount USD 1,000,000

Issue Date 8 September 2008

Maturity Date 8 September 2011

Coupons Zero

Underlying Index S&P 500 (SPX Index)

Redemption Amount On the Maturity Date, the notes will redeem a USD amount

calculated in accordance with the following formula:

$$1,000,000 \times \max \left(100\%,100\% + 70\% \times \frac{SPX_3 - SPX_0}{SPX_0}\right)$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

HFC.

Basic Terminology (cont'd)

Q: Which redemption formula is capital guaranteed?

1) 1,000,000 ×
$$\left[100\% \times \max\left(0,70\% \times \frac{SPX_3 - SPX_0}{SPX_0}\right)\right]$$

2) 1,000,000 ×
$$\left[100\% + \max\left(0,70\% \times \frac{SPX_3 - SPX_0}{SPX_0}\right)\right]$$

3) 1,000,000 × max
$$\left(0,100\% + 70\% \times \frac{SPX_3 - SPX_0}{SPX_0}\right)$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

HFC

Linearity

- Structured Products which can be decomposed into a portfolio of "basic" securities (including "light" exotics) are called 'linear'.
- ➤ There are yet more complex structured products which combine several features in a correlated fashion; those are called 'non-linear'. For example:

$$Payoff = \begin{cases} 1,000,000 \times \max \left(100\%,100\%, \frac{SPX_3 - SPX_0}{SPX_0} \right) & \text{if } NKY_3 \ge NKY_0 \\ 1,000,000 & \text{otherwise} \end{cases}$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

23

The frontier between linear and non-linear isn't clear-cut; it very much depends on the definition of "basic" securities

Structuring / Financial Engineering

- ➤ Structurers or Financial Engineers are front-office specialists who:
 - ➤ Work with traders to calculate the fair value of a wide range of structured products, based on an analysis of their financial risks [analytical skills]
 - ➤ Work with sales & clients to propose ad-hoc solutions (payoffs) responding to their investment needs [commercial skills]
 - ➤ Develop new products based on current or anticipated market trends [creative skills]

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu	24

Fair value

- In the old days, structured products were all linear and finding their fair value was about breaking down a payoff into its basic components (reverse-engineering)
- Today, structured products are increasingly non-linear and finding their fair value is about understanding whether and how their embedded financial risks can be hedged, as well as calculating the corresponding hedging costs:
 - 1. Program the payoff algorithm, including certain relevant adjustments (e.g. barrier shifting to mitigate Greek letters...)
 - 2. Select an appropriate model ("Black-Scholes", "Local Volatility", "Heath-Jarrow-Morton"...)
 - 3. Select an appropriate numerical method (Monte-Carlo, Finite Differences, closed-form formulas)

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu	25

Fair value example

► Example: 3-year capital guaranteed upside note on S&P500, 70% participation, \$1mn notional

$$1,000,000 \times \max \left(100\%,100\% + 70\% \times \frac{SPX_3 - SPX_0}{SPX_0}\right)$$

Data: 3-year interest rate = 2.49% p.a., 3-year ATM vanilla call on S&P500 = 17.32% x SPX₀

$$FV = 1,000,000 \times \left(\frac{100\%}{(1+2.5\%)^3} + 70\% \times 17.32\%\right)$$
$$= \$1,049,839.41$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu

#FC

Fair value example (cont'd)

- ▶ Problem: the fair value is higher than the notional amount!
- ► Question: what should the participation level 'x' be such that FV = 1,000,000?

$$Payoff = 1,000,000 \times \max \left(100\%, 100\% + x \times \frac{SPX_3 - SPX_0}{SPX_0} \right)$$

Answer: $1,000,000 \times \left(\frac{100\%}{(1+2.5\%)^3} + x \times 17.32\%\right) = 1,000,000$

$$\rightarrow x = \frac{1 - \frac{100\%}{1.025^3}}{17.32\%} = 41.22\%$$

Asset & Derivatives Pricing – Lecture 4: Exotic Derivatives & Structured Products – S.Bossu