
Fractal Response of Physiological
Signals to Stress Conditions,
Environmental Changes, and
Neurodegenerative Diseases

In the past two decades the biomedical community has witnessed several applications of nonlinear system theory to the
analysis of biomedical time series and the development of nonlinear dynamic models. The development of this area of
medicine can best be described as nonlinear and fractal physiology. These studies have been intended to develop more
reliable methodologies for understanding how biological systems respond to peculiar altered conditions induced by
internal stress, environment stress, and/or disease. Herein, we summarize the theory and some of our results showing the
fractal dependency on different conditions of physiological signals such as inter-breath intervals, heart inter-beat
intervals, and human stride intervals. © 2007 Wiley Periodicals, Inc. Complexity 12: 12–17, 2007

N onlinear dynamics, chaos theory and fractal analysis have suggested strategies

where the focus has shifted from the traditional study of averages, histograms

and simple power spectra of a physiological variable to the study of the

patterns in the fluctuations of the variable [1– 4]. In fact, it has been known for a long

time that biophysical time series are stochastic, but it is only more recently that these

time series have been identified as fractals and as being generated by scaling

phenomena. This novel approach is justified by the fact that physiological time series

fluctuate in an irregular and complex manner as a response to the dynamics of the

entire biological system under study. These fluctuations are indeed found to exhibit

complex autocorrelation patterns and fractal properties suggesting that the dynam-

ics and the structure of the underlying biology are indeed nonlinear, chaotic and/or

fractal, either in space, time, or both.

An example of such physiological time series consists of the beat-to-beat intervals

of the human heart, called the heart rate variability (HRV) time series. Peng et al. [5]

were the first to show that the scaling of the central moments of HRV time series

yield the fractal dimension of the cardiovascular control system. It was shown in a

number of subsequent studies [6] that the HRV time series, rather than being

monofractal, are in fact multifractal. Walking is another phenomenon that is de-

scribed by scaling time series when looked at properly. Hausdorff et al. [7] were the
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first to show that the stride-to-stride in-
terval time series, called stride rate vari-
ability (SRV), manifest scaling in a way
similar to the HRV time series and that
SRV memory patterns might depend on
aging or disease [8]. The SRV time series
were subsequently shown to also be
multifractal rather than monofractal [9].

Thus, an important class of physiolog-
ical phenomena has been proven to be
characterized by fractal and/or multifrac-
tal properties. Historically, fractal or long-
range correlated processes [10, 11] have
been classified as 1/f-phenomena, be-
cause their time series have power spec-
tra that exhibit an inverse power law with
respect to frequency, P( f ) � 1/f �. In ad-
dition to the power spectrum exponent �,
the degree of long-range correlation of a
time series can be equivalently assessed
from the Hurst exponent H � (� � 1)/2
and from the fractal dimension D � 2 �

H [10, 11]. The algorithms used to esti-
mate directly the Hurst exponent are usu-
ally quite simple and stable [12]. One of
these algorithms is based on the estima-
tion of the standard deviation of the dif-
fusion process D(�) generated by integrat-
ing the data of the time series. This
function of the diffusion time �, in the
case of long-range correlations, yields a
curve of the type D(�) � c�H, where c is a
constant and H is the Hurst exponent
[12]. Another common algorithm used to
evaluate the Hurst exponent H is the de-
trended fluctuation analysis [13].

The interpretation of the Hurst ex-
ponent is as follows. The value H � 0.5
characterizes random sequences that
are known as white noise because their
power spectrum is flat, � � 0. A value
0 � � � 1 or 0.5 � H � 1 characterizes
persistent or long-range correlated se-
quences, where an event is correlated
positively with the previous ones. Thus,
persistent sequences are characterized
by a stochastically up-up or down-

down pattern. A value � � 1 or H � 1
characterizes pure 1/f-phenomena
known in the literature as pink noise. In
a generalized sense it is possible to have
values � � 1 or H � 1. Sequences char-
acterized by these values would not
properly be characterized as noises but
processes that are more properly referred
to as walks, that is, integrals of noises.
The simplest example of a walk is the
random walk, which is the integral of ran-
dom noise, that has � � 2 or H � 1.5.
Finally a value � � 0 or 0 � H � 0.5
characterizes antipersistent sequences
where each event is correlated negatively
with the previous one. Antipersistent se-
quences are characterized by a rapid sto-
chastically alternating up-down pattern.

It has been found that physiological
sequences are persistent noises and/or
walks, that is, they are characterized by
a value of the Hurst exponent ranging
from H � 0.5 to H � 1.5. This finding
suggests that biological systems, far
from being random processes, are in-
deed processes that are regulated by
complex dynamics that incorporate
memory of past events. The strength of
this memory, which is measured by the
Hurst exponent, is expected to be altered
under internal stress, environment stress,
and/or disease because the dynamics of a
biological system are likely modified by
altered physiological conditions.

In addition, modern scientific litera-
ture distinguishes monofractal time se-

FIGURE 1

(A) Comparison between a typical R-R interval sequence and a monofractal computer generated sequence
having the same average, variance and Hurst exponent. (B) Hölder exponent histograms for the two sequences.
The real R-R sequence is multifractal as indicated by the wider width of its Hölder exponent histogram.

. . . it has been known for a long
time that biophysical time series

are stochastic, . . .
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ries, where a single scaling exponent
characterizes the sequence, from multi-
fractal time series that are characterized
by an infinite hierarchy of sets, each with
its own fractal dimension [11, 14]. There
is also a wide class of phenomena in
which the fractal dimension changes
from point to point in the time series.
These local scaling exponents are com-
monly referred to as local Hölder expo-
nents [15]. So, rather than the fractal di-
mension having a single value, it may
take on many values and the time series
may be considered multifractal. The full
range of the scaling properties of multi-
fractal phenomena is more properly de-
scribed by a singularity spectrum or a
probability distribution of local Hölder
exponents. These curves are character-
ized by at least three independent param-
eters: the position of the maximum, the
width and the asymmetry of the singular-
ity spectrum or probability distribution
curve. These multifractal parameters are
likely to be altered under internal or en-
vironment stress and/or disease.

Data processing techniques based
on wavelet transforms are generally

used to determine singularity spectra
and local Hölder exponent distributions
[9, 14, 15]. There exists also a method
called multifractal detrended fluctua-
tion analysis [16]. The average Hölder
exponent, h0, is approximately related
to the Hurst exponent as h0 � H � 1 [9].
Figure 1 shows an example that ex-
plains the importance of the multifrac-
tal analysis. Figure 1(A) shows two long
sequences: an actual inter-beat (R-R)
sequence and a surrogate sequence.
The surrogate sequence was obtained
by means of a computer algorithm such
that the two sequences have the same
average, the same standard deviation,
and the same Hurst exponent, which
has a value slightly larger than H � 1,
corresponding to the average Hölder
exponent h0 � H � 1 � 0. Thus, they
would be considered equivalent by
adopting traditional measures and also
a monofractal measure of the data, such
as the Hurst analysis. However, Figure
1(B) shows the Hölder exponent distri-
butions of the two sequences, and al-
though the two distributions are ap-
proximately centered on the same

values of the Hölder exponents, a clear

difference in the widths of the two dis-

tributions emerges. In fact, the surro-

gate sequence is a monofractal se-

quence, whereas the real R-R sequence

presents multifractal properties, as in-

dicated by a wider Hölder exponent dis-

tribution. Note that according to the

adopted algorithm, the Hölder expo-

nent distribution of a monofractal se-

quence of a limited length will be char-

acterized with a certain width that

might depend on the signal length, but

the distribution width for an equally

long sequence increases for a multifrac-

tal sequence, indicating a higher level of

variability and complexity [9].

Examples of fractal dependency of

physiological time series such as inter-

breath intervals, inter-beat (R-R) inter-

vals, and human stride intervals on envi-

ronmental stress and physiological

pathologies deriving from acute hypo-

baric hypoxia, progressive central hypo-

volemia, and neurodegenerative diseases,

as well as from different kinds of physical

exercises, are shown in the following.

FIGURE 2

Typical Hölder exponent histograms for the stride interval sequences during free walking and metronome-paced conditions for normal, slow and fast paces and
for a normal elderly person and a subject with Parkinson’s disease. The histograms are fitted with Gaussian functions. (L, Left; C, Center; R, Right). Data from
http://www.physionet.org.
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An interesting first example regards
human stride interval sequences under
different conditions. Figure 2 shows
typical Hölder exponent distributions
obtained from these sequences. The
fractal and multifractal nature of the
stride interval fluctuations becomes
slightly more pronounced under faster
or slower paced frequencies relative to
the normal paced frequency of a subject
[9, 17]. This is indicated by the shift
toward the right, that is, toward higher
values of the Hölder exponent distribu-
tion and by the increased width of the
distributions. In fact, the meaning of
this finding might be that under this
type of stress a subject has to focus on
the task and as a consequence the cor-
relation of the physiological system in-
creases. On the contrary, the random-
ness of the fluctuations increases (the
Hölder exponent distributions shift to-
ward the left) if subjects are asked to
synchronize their gait with the fre-
quency of a metronome. The rationale
might be that the psychological syn-
chronization acts continuously and dis-
rupts the natural physiological tempo-
ral correlations of walking.

In Figure 3 we have analyzed stride
interval sequences of a group of patients
with Huntingdon’s disease. We have
measured their mean Hölder exponent,

h0, and found that it is strongly correlated

with the total functional capacity (TFC)

score that measures the severity of im-

pairment: the more severe the impair-

ment the more random the sequence.

These findings can be modeled by means

of a super central pattern generator [17].

As a result of neuronal deterioration, a

network of neurons controlling human

locomotion could be expected to become

less correlated than a healthy neuronal

network, and the leftward shift of the

Hölder exponent distribution is expected

to increase with the severity of the neu-

rodegenerative disease, as Figure 3

shows. Thus, fractal analysis is found to

be a powerful tool to investigate physio-

logical control mechanisms during exer-

cise and in health, for example, in neuro-

logical diseases.

In another study we determined the

dependency of the fractal properties of

R-R interval time series during progres-

sive central hypovolemia with lower

body negative pressure [18]. We found

that by increasing the lower body neg-

ative pressure these time series became

more persistent and the distributions of

Hölder exponents became wider as

shown in Figure 4. Because physiologi-

cal responses to lower body negative

FIGURE 3

Mean Hölder exponent vs. TFC score for stride interval sequences for a group of patients. Disease
severity is measured by using total functional capacity (TFC) score of Unified Huntington’s disease
rating scale (0 � most impairment; 13 � no impairment). The mean Hölder exponent decreases (that
is, the sequences become more random) as the disease severity increases. The two measures are
highly correlated (r 2 � 0.64, P � 0.005). Data from http://www.physionet.org.

FIGURE 4

Typical Hölder exponent histograms for R-R interval time series for a patient subjected to progressive central
hypovolemia using lower body negative pressure [18]. Results regarding sequences for three different
values of the pressure are shown. The histograms are fitted with Gaussian functions (solid curves).
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pressure are similar to those experi-
enced during hemorrhage shock, multi-
fractal analysis may be a powerful tool
to predict incipient shock.

In a preliminary study we analyzed
inter-breath interval sequences of a
resting normal human volunteer during
normoxia and during a 2-h period of
acute hypoxia. Figure 5 shows that
these time series exhibit persistence, al-
though after 2 h of hypoxia inter-breath
interval time series tended to become
more random, or less correlated, as in-
dicated by a decrease in the value of the
Hurst exponent. This finding suggests
that respiratory rhythm generation is
disrupted by sudden acute hypoxia. The
same individual was also asked to exer-
cise for approximately 10 min during
each condition and, although these
time series also became more random
during acute hypoxia, we observed that
for each condition under exercise the
sequences were more persistent (higher
values of the Hurst exponent) than at
rest. The latter finding is equivalent to
what we have observed for the stride
interval sequences (Figure 2), which be-
come more persistent during exercise.
This suggests that, in general, forced ex-

ercise induces an increase of the dy-
namical correlation of a physiological
system. Thus, we can hypothesize that
fractal analysis might be a useful tool
with which to probe mechanisms in-

volved in control of breathing under dif-

ferent environmental conditions. In this

particular case it might be argued that

the physiology of a subject might slowly

adapt to a hypoxic environment and the

breathing might become more regular.

The fractal analysis of the inter-breath

intervals might indicate when this phys-

iological adaptation occurs.

In another preliminary study we an-

alyzed postoperative inter-breath inter-

val sequences of a group of patients.

The purpose of the study was to deter-

mine whether the Hurst exponent of

these data could be correlated with re-

spiratory depression, as indicated by a

high end-tidal PCO2. This study is im-

portant because the continuous moni-

toring of arterial blood PCO2 is imprac-

tical, and measurement of end-tidal

PCO2 inaccurate. Moreover, although re-

spiratory depression is conventionally

associated with a low respiratory rate,

we have found that a simple diagnosis

based on respiratory rate can be se-

verely misleading. On the contrary, we

have found that a significant correlation

seems to exist between mean end-tidal

PCO2 pressure and Hurst exponent value

of the square of the volatility of the in-

ter-breath interval sequences (see Fig-

FIGURE 5

Typical Hurst exponents of inter-breath interval sequences for a subject during normoxia (N) and
hypoxia in a hypobaric chamber at a simulated altitude of 15,000 feet. H-0 is a measurement at the
beginning of the hypoxic exposure; H-2 is after 2 h of continuous hypoxia. The analysis is done for
a subject at rest and during exercise.

FIGURE 6

Mean Hurst exponent for the square of the volatility index of the inter-breath interval sequence for the
first 36 h after upper abdominal surgery in four patients. The Hurst exponent is highly correlated with
mean end-tidal PCO2 (r 2 � 0.93, P � 0.008).
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ure 6). Volatility has been defined as the
difference between two consecutive in-
ter-breath intervals. Thus, the develop-
ment of a novel diagnostic strategy
based on the simple study of a relatively
inexpensive and noninvasive continu-
ous monitoring of inter-breath interval
might be of great utility.

The above physiological phenomena
and their response to stress or environ-
mental changes can be modeled by a
simple stochastic central pattern gener-
ator that ideally reproduces the control
system, which then drives respiratory
neurons, causing contraction of respira-
tory muscles, producing a cyclical out-
put [17]. The central nervous system is

capable of firing at time intervals whose
sequences present persistent correla-
tion patterns. However, the intensity of
the autocorrelation of the actual neural
firing time intervals is expected to be
influenced by both a change of internal
neural correlation among the nervous
firing centers and/or a change in pe-
ripheral feedback. Thus, such simple
models can reproduce observed data in
humans obtained under a variety of cir-
cumstances.

In conclusion, we have shown a few
examples where fractal and multifractal
analysis of physiological signals have
been of great utility for better charac-
terized complex biological systems un-

der different conditions and, as a direct
consequence, we believe these novel
techniques could help develop novel
clinical strategies for diagnosing pathol-
ogy and detecting adverse events.
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Ann Biomed Eng 2004, 32, 1077–1087.

. . . we believe these novel
techniques could help develop
novel clinical strategies for

diagnosing pathology and
detecting adverse events.
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