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Abstract

We examine the implications of shape on the process
of finding dense correspondence and half-occlusions for a
stereo pair of images. The desired property of the dispar-
ity map is that it should be a piecewise continuous function
which is consistent with the images and which has the min-
imum number of discontinuities. To zeroth order, piecewise
continuity becomes piecewise constancy. Using this ap-
proximation, we first discuss an approach for dealing with
such a fronto-parallel shapeless world, and the problems
involved therein. We then introduce horizontal and verti-
cal slant to create a first order approximation to piecewise
continuity. In particular, we emphasize the following ge-
ometric fact: a horizontally slanted surface (i.e., having
depth variation in the direction of the separation of the two
cameras) will appear horizontally stretched in one image
as compared to the other image. Thus, while correspond-
ing two images, N pixels on a scanline in one image may
correspond to a different number of pixels M in the other
image. This leads to three important modifications to ex-
isting stereo algorithms: (a) due to unequal sampling, ex-
isting intensity matching metrics must be modified, (b) un-
equal numbers of pixels in the two images must be allowed
to correspond to each other, and (c) the uniqueness con-
straint, which is often used for detecting occlusions, must be
changed to an interval uniqueness constraint. We also dis-
cuss the asymmetry between vertical and horizontal slant,
and the central role of non-horizontal edges in the context
of vertical slant. Using experiments, we discuss cases where
existing algorithms fail, and how the incorporation of these
new constraints provides correct results.

1. Introduction

The dense correspondence problem consists of finding a
unique mapping between the points belonging to two im-
ages of the same scene. If the camera geometry is known,
the images can be rectified, and the problem reduces to the
stereo correspondence problem, where points in one image

can correspond only to points along the same scanline in
the other image. If the geometry is unknown, then we have
the optical flow estimation problem. In both cases, regions
in one image which have no counterparts in the other im-
age, are referred to as occlusions (or more correctly ashalf-
occlusions). In this paper, we demonstrate that scene shape
has profound implications for any process of establishing
point correspondence and occlusion detection. In particu-
lar, we show that correspondence, segmentation, occlusion
detection, and shape estimation have to be done in concert.

1.1. Previous work

There exists a considerable body of work on the dense
stereo correspondence problem. Scharstein and Szeliski [1]
have provided an exhaustive comparison of dense stereo
correspondence algorithms. Most algorithms generally uti-
lize local measurements such as image intensity (or color)
and phase, and aggregate information from multiple pix-
els using smoothness constraints. The simplest method of
aggregation is to minimize the matching error within rect-
angular windows of fixed size [2]. Better approaches uti-
lize multiple windows [3, 4], adaptive windows [5] which
change their size in order to minimize the error, shiftable
windows [6, 7, 8], or predicted windows [9], all of which
give performance improvements at discontinuities.

Global approaches to solving the stereo correspondence
problem rely on the extremization of a global cost func-
tion or energy. The energy functions which are used in-
clude terms for local property matching (‘data term’), ad-
ditional smoothness terms, and in some cases, penalties for
occlusions. Depending on the form of the energy function,
the most efficient energy minimization scheme can be cho-
sen. These include dynamic programming [10], simulated
annealing [11, 12], relaxation labeling [13], non-linear dif-
fusion [14], maximum flow [15] and graph cuts [16, 17].
Maximum flow and graph cut methods provide better com-
putational efficiency than simulated annealing for energy
functions which possess a certain set of properties. Some
of these algorithms treat the images symmetrically and ex-
plicitly deal with occlusions (e.g., [17]). The uniqueness



constraint [18] is often used to find regions of occlusion.
Egnal and Wildes [19] provide comparisons of various ap-
proaches for finding occlusions.

The issue of recovering a piecewise planar description
of a scene has been previously explored in the context of
stereo (e.g., [10]) and motion (e.g., [20]). Recently, some
algorithms [21] have explicitly incorporated the estimation
of slant while performing the estimation of dense horizon-
tal disparity. Lin and Tomasi [22] explicitly model the scene
using smooth surface patches and also find occlusions; they
initialize their disparity map with integer disparities ob-
tained using graph cuts, after which surface fitting and seg-
mentation are performed repeatedly. Previously, Devernay
and Faugeras [23] have used local image deformations to
obtain differential properties of 3D shapes directly.

1.2. Organization of the paper

When we compute the disparity map of a real scene, we
would like to model it ideally as apiecewise continuous
function which explains the observed images and has the
minimum possible number of pieces (minimum segmenta-
tion). The simplest approximation to piecewise continuity
is piecewise constancy. In this paper, Section 2 deals with
the problem of estimating correspondence and performing
disparity segmentation in a Mondrian flatland which con-
sists of flat fronto-parallel surfaces only. In this shape-
free world, we argue that correspondence and segmentation,
which appear to be chicken-and-egg problems, can only be
solved together. We provide a simple algorithm which cap-
tures the spirit of this approach and also estimates occlu-
sions using the uniqueness constraint.

Departing from Flatland, we then examine the central
role of shape in establishing correspondence, and show why
shape must also be estimated concurrently with the cor-
respondence and the segmentation. Section 3 addresses
the stereo correspondence problem in the presence of hor-
izontally slanted surfaces (a part of this section appeared
in [24]). We lay emphasis on the following geometric ef-
fect: a horizontally slanted surface (i.e., having depth vari-
ation in the direction of the separation of the two cameras)
will appear horizontally stretched in one image as compared
to the other image. Thus, when we correspond two images,
N pixels on a scanline in one image must be allowed to cor-
respond with a different number of pixels M in the other
image. Furthermore, it is evident that the intensity function
on the true horizontally slanted scene surface is sampled
differently by the two cameras, which is another low-level
effect which needs to be addressed. The uniqueness con-
straint, which is often used to find occlusions by forcing a
one-to-one correspondence between pixels within regions
which are visible in both views, does not hold true in the
presence of horizontally slanted surfaces, since a N-to-M

correspondence is possible; we show how the uniqueness
constraint must be reformulated in terms of scene visibility
in the presence of horizontally slanted surfaces. To illustrate
these ideas, we present a simple scanline algorithm by ex-
tending the approach of Section 2. In Section 4, we discuss
the fundamental differences between vertical and horizon-
tal slant, and show how vertical slant imposes additional
restrictions on the manner in which disparity smoothness
constraints can be used. We show how non-horizontal in-
tensity edges play an important role in disparity estimation
in the presence of vertical slant. In Section 5, we discuss
the effects of higher order models of shape. Section 6 con-
cludes by presenting experimental results and comparisons.

Figure 1. Top row: Left image, Right image,
True disparity. Bottom row: Absolute inten-
sity difference of left and right images for hor-
izontal shift δx = 0, 1, 2

2. Correspondence in Flatland

2.1. Chicken-and egg problems

Establishing correspondence between two images of a
scene involves first selecting a local metric, such as the in-
tensity (gray level) or color of a pixel which forms the ba-
sis for local comparisons. However, matching on the basis
of such local information alone is almost impossible since
many pixels have similar intensity or color. To reduce the
correspondence possibilities for a pixel to a single possi-
bility, regions around that pixel must be used along with
additional continuity or smoothness assumptions about the
scene depth. Thus, information around a pixel must beag-
gregatedto obtain a unique match. Enforcing smoothness
without a prior knowledge of depth discontinuities (seg-
mentation) will inevitably lead to errors, especially near the
discontinuities. Hence, prior knowledge of the segmenta-
tion is essential in order to correctly define regions around



a pixel for information aggregation. Conversely, if exact
correspondence is known, the segmentation may be easily
deduced.

Thus, if we knew the segmentation, then we could bet-
ter estimate the correspondence. But we need correspon-
dence in order to achieve segmentation. As we shall show
in Section 3, scene shape critically affects correspondence,
but then again, we need the correspondence in order to find
the shape. Correspondence, segmentation and shape are
chicken-and-egg problems: we need one in order to solve
the other. Any recipe for solving such cyclic problems must
involve feedback, either implicitly or explicitly. In the fol-
lowing sections, we examine these loops in an incremen-
tal manner. First, we study the relationship between cor-
respondence and segmentation by working in a shapeless
world called Flatland - a world which contains only fronto-
parallel surfaces. Then, in Section 3, we introduce shape
into the picture, and proceed to make explicit the relation-
ship between shape and correspondence.

2.2. Connected matching regions

Let I1(x, y) and I2(x, y) be a given pair of rectified
stereo images. The absolute intensity difference image is
found using equation 1, whereδx denotes the relative hori-
zontal shift between the two input images.

∆I(x, y, δx) = |I1(x, y)− I2(x + δx, y)| (1)

The first row of Figure 1 shows a random dot pair of
stereo images and the true disparity map. The second row
shows the absolute intensity difference images for three hor-
izontal shiftsδx = 0, 1, 2. If we observe the intensity dif-
ference images (second row), we notice that large connected
regions of matching pixels (shown in black) appear for cer-
tain values of the shift. By the word ‘match’, we mean that
the absolute intensity difference is below a certain threshold
t, i.e. ∆I(x, y, δx) < t.

The appearance of large connected sets of matching pix-
els is the first observation of interest.

In the case of the random-dot pair, the background
matches forδx = 0 forming a large connected region, and
the central square matches forδx = 2. We know from the
true disparity map that these shifts correspond to the correct
disparities of the background and the square. However, we
also notice that some pixels in the central square will match
and form smaller connected regions even when the shift is
wrong (not equal to 2). The same is true for the background
pixels.Thus, a pixel may form a part of a connected match-
ing region even when the shift does not correspond to the
true shift.So how do we choose the correct shift for a pixel?

2.3. Boundaries and connectivity maximization

Recall our definition of Flatland - a world containing
only fronto-parallel surfaces. Consider a uniformly colored
regionR1 in imageI1 having a disparityδx. It corresponds
to a regionR2 in the imageI2. Thus, if we shift imageI1 by
δx and overlay it onI2, then regionsR1 andR2 will overlap
and match perfectly and yield a connected region having an
area equal to the size ofR1(andR2). However, if the shift
is notδx but has some other value, parts ofR1 andR2 may
still overlap and yield some connected matching region.

The area of overlap will be maximum only when the
boundaries ofR1 and R2 match perfectly, which occurs
only for the true shiftδx.

For all other shifts, the connected matching area will be
less.

Similarly, in case the regionR1 (and henceR2) is tex-
tured, connected matching regions will also be obtained for
shifts other than the true shiftδx. For example, if the re-
gions contain a periodic texture such as a checkerboard,
with square sizeλ, then we will obtain connected matching
regions even if the shifts areδx + 2mλ, wherem is an inte-
ger. Even if this happens, the largest connected region will
occur only when the boundaries ofR1 andR2 match, which
happens only if the shift equals the true shiftδx. It is clear
that only the knowledge of region boundaries allows us to
assign correct shifts to the interior pixels. Maximizing the
area of connected matching regions around a pixel is inti-
mately related to the matching of region boundaries. As dis-
cussed later in Section 5, maximizing the size of matching
regions is equivalent to minimizing the disparity segmen-
tation. Thisprinciple of minimum segmentationis a more
general constraint than connectivity maximization.

Using the above arguments, it is straightforward to show
that in Flatland:for any image pixel(x, y), the correct shift
δx maximizes the areaA(x, y, δx) of the connected match-
ing region containing that pixel, and vice-versa.

2.4. Vertical connectivity and horizontal edges

In Figure 2, we see a stereo pair of images having a gray
background which has zero disparity, and a white square in
front which has a non-zero disparity. On the right of the fig-
ure, we show the absolute intensity difference between the
two images for zero relative shift. The black portion of this
image indicates regions whose intensities cancel out (i.e.,
match) perfectly for zero relative shift. Notice that a part
of the white foreground object also matches for zero shift,
and is connected to the large matching background region.
This will cause the entire black portion visible in the right
hand side image to be labeled with zero disparity, which is
clearly an incorrect result. The problem lies in the propa-
gation of connectivity across horizontal edges. In a stereo



pair, if two single colored regions with different disparity
are separated by a horizontal edge, then as we try out differ-
ent horizontal shifts, points above and below the horizontal
edge will always match regardless of the shift being tried.
Thus, when we build connected components, regions on the
two sides of the horizontal edge will form part of the same
connected component, which causes both sides to be even-
tually assigned the same disparity. Hence, before we build
connected components on our thresholded intensity differ-
ence images, we must explicitly sever connections across
horizontal edges.
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Figure 2. Vertical connectivity must not be es-
tablished across horizontal edges

2.5. Occlusions and uniqueness

Theuniqueness constraintstates that a pixel in one im-
age may not match more than one pixel in the other image.
This basically means that if a regionPL in imageIL cor-
responds to a regionPR in imageIR, then there exists a
one-to-one correspondence between pixels inPL and pixels
in PR. Hence, except for the occluded pixels, every pixel in
one image is paired with exactly one pixel in the other im-
age. Thus, there is a competition between pairs(pL, pR) of
pixels, wherepL is a pixel in the left image, andpR is a pixel
in the right image. The competition is based on the princi-
ple of maximum connectivity, outlined in the earlier section.
If a pair (pL, pR) wins, it automatically precludes the exis-
tence of all pairs of the form(pL, pR′) and(pL′ , pR), such
thatpL′ 6= pL andpR′ 6= pR. Some pixels, which do not
form a part of any of the winning pairs, are the occlusions.
It is possible to enforce the uniqueness constraint within the
correspondence search itself as it progresses: whenever we
assign a new partner to a given pixel, we make sure that its
previous partner (if it was previously paired) is marked as

unpaired.

2.6. An algorithm for Flatland

Our algorithm for Flatland is outlined in Figure 3. Basi-
cally, the algorithm consists of the following steps:

1. For every shiftδx ∈ {δ1, δ2, ..., δk}, do

(a) Shift the left imageIL horizontally byδx to get
I ′L, and matchI ′L with IR

(b) If a horizontal edge separates a pixel(x, y) and
its vertical neighbor(x, y − 1), their connection
must be severed.

(c) Build connected components taking into account
the vertical connections established in the previ-
ous step.

(d) Find the sizes or weights of the connected com-
ponents.

(e) For each pixel, if the connected component con-
taining it is larger than the previous shifts, up-
date left and right disparity maps, while enforc-
ing uniqueness.

Thus, the process consists of matching pixels (using thresh-
olded absolute intensity differences) for various shifts (dis-
parity/flow candidates), finding connected components and
maximizing a measure of the connectivity for each pixel.
In [25], Boykov et al. present a method which uses the
same principle of maximizing connected components, but
the vertical connectivity constraints are not imposed.

Measures of connectivity other than the area may also be
used; for example, we may use a combination of the area of
the connected component and the total intensity difference
inside the connected component. Also, pixels which locally
match fork shifts out ofd possible shifts can be assigned
to have an area of1/k; this ensures that pixels which match
frequently do not dominate the estimation.

For d possible shifts and an image withN pixels, the
total running time isΘ(Nd). Processing times on real im-
ages are given in Section 6. In our implementation, we use
the technique of Birchfield and Tomasi [26] to calculate the
absolute intensity differences. For color images, matching
two pixels implies matching all their color channels.

Real world scenes are quite unlike Flatland, since they
rarely consist of fronto-parallel surfaces. In the follow-
ing sections, we shall identify new issues which arise in
the presence of slanted surfaces, which require us to alter
our definitions of correspondence and introduce novel con-
straints for detecting occlusions. We shall also see that the
problems with vertical connectivity are aggravated in the
presence of slanted surfaces.
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Figure 3. An algorithm for Flatland



3. Horizontal slant

Let us leave Flatland by introducing horizontally slanted
surfaces into the scene, i.e., the disparity on such surfaces
changes as we move along the X-axis (horizontally), and
does not change if we move along the Y-axis. Let us also
assume for simplicity that we are using a stereo system with
a parallel viewing geometry and in which the cameras are
separated only by a translation along the X-axis. Our sys-
tem therefore provides us with rectified images.

a1 b1
a2 b2

A B

C1 C2

a1 b1
a2 b2
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C1 C2
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a2 b2
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a2 b2

Figure 4. (a) unequal projection lengths of a
horizontally slanted line (b) equal projection
lengths of a fronto-parallel line

3.1. Unequal projection lengths and interval match-
ing

Figure 4(a) shows that a horizontally slanted lineAB
in the scene projects onto the line segmenta1b1 in camera
C1, anda2b2 in cameraC2. Clearly, the lengths ofa1b1

anda2b2 are not equal. Assume that the cameras have fo-
cal length equal to 1. Let the pointA have coordinates
(XA, ZA) in space with respect to camera 1, and pointB
have coordinates(XB , ZB), where theX-axis is along the
scanline, and theZ-axis is normal to the scanline. Then,
if the cameras are separated by a translationt, we can im-
mediately find the lengthsL1 andL2 of the projected line
segments in the two cameras.

L1 = XB/ZB −XA/ZA

L2 = (XB − t)/ZB − (XA − t)/ZA
(2)

Clearly, in general,L1and L2 are not equal. For the
fronto-parallel line shown in Figure 4(b),ZA = ZB = Z,
hence

L1 = L2 = (XB −XA)/Z (3)

C1 C2

A

B

C1 C2

A

B

Figure 5. Sampling problem for a horizontally
slanted line

Thus, we have the following:

• Except for the fronto-parallel case, horizontally
slanted line segments in space will always project onto
segments of different lengths in the two cameras.

• Consequently, N pixels on a scanline in one image can
correspond to a different number of pixels M on a scan-
line in the other image.

We must ensure that our stereo algorithms permit unequal
correspondences of this nature; hence, an interval on a scan-
line in one image must be matched to an interval on a
scanline in the other image, where the two intervals being
matched may have different lengths. Note that the scanline
is treated as a continuous entity rather than a discrete pix-
elized entity.

Conclusion: We must perform interval matching instead
of pixel matching.

3.2. Slant affects Sampling

Since a horizontally slanted line segment in space has
different projection lengths in the two cameras, its intensity
function is also sampled differently by the two cameras as
shown in Figure 5. Birchfield and Tomasi [26] have pro-
vided a very useful method for matching pixel intensities,
which is used by many of the best performing stereo algo-
rithms. Let us briefly describe what this procedure does:



Given two scanlinesIL(x) andIR(x), we have to find the
absolute intensity difference between pixelxL in the left
scanline and pixelxR in the right scanline. We first find
IL(xL − 1/2), IL(xL + 1/2), IR(xR − 1/2) andIR(xR +
1/2) by a simple linear interpolation. These values are used
to findImin

L = min{IL(xL−1/2), IL(xL), IL(xL+1/2)},
Imax
L = max{IL(xL − 1/2), IL(xL), IL(xL + 1/2)}, and

similarly Imin
R and Imax

R . The left difference isdL =
max{0, IL(xL)− Imax

R , Imin
R − IL(xL)} and the right dif-

ference isdR = max{0, IR(xR)− Imax
L , Imin

L − IR(xR)}.
Finally, the absolute intensity difference between the pixels
is d = min{dL, dR}. The procedure is therefore symmet-
ric and linearly interpolates the intensity function between
neighboring pixels. Such a matching procedure cannot be
applied directly in the presence of horizontal slant, due to
the unequal sampling.

Left image Right image 
(horizontally stretched 

by a factor of 1.2)

Left image Right image 

180 pixels

180 pixels

150 pixels

180 pixels

Figure 6. Stretch and match

We must first resample each scanline correctly, and then
apply the Birchfield-Tomasi matching method. In other
words, we first stretch one of the scanlines, by an amount
related to the horizontal slant we are considering, and then

match this stretched scanline with the other unstretched
scanline using the Birchfield-Tomasi matching method as
usual. For example, if we are considering the linear cor-
respondence functionxR = mxL + d between points of
camera L and R, then we must stretch the image of cam-
era L by a factorm before performing the intensity based
matching. Thus, we first computeImin

L andImax
L for the

unstretched scanlineIL, then stretch all three by a factor
m, and then apply the remainder of the Birchfield-Tomasi
method. As we try various values of the slant, we appro-
priately resample the scanlines before matching. Figure 6
shows how corresponding line segments of unequal length
attain the same length after stretching one of the images.

Conclusion: Stretch one of the images first and then
match .

dashed regions indicate occlusions

Stretch Shrink

Left Right

Figure 7. Top: stereo pair of images. Bottom:
Corresponding intervals on the left and right
scanlines can have different length. The or-
der (left-right) of matching intervals can also
change (see the blue and gray intervals).

3.3. Occlusions and the new interval uniqueness
constraint

The uniqueness constraint [18] is often used to find oc-
clusions. In its present form, it states that a pixel in one
image may not match more than one pixel in the other im-
age. This basically means that if a regionPL in imageIL

corresponds to a regionPR in imageIR, then there exists a
one-to-one correspondence between pixels inPL and pixels
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Figure 8. The modified uniqueness constraint operates by preserving a one-to-one correspondence
between intervals on the left and right scanlines, instead of pixels.

in PR. Hence, except for the occluded pixels, every pixel in
one image is paired with exactly one pixel in the other im-
age; the unpaired pixels are the occlusions. However, since
horizontal slant allows N pixels in one image to match with
a different number of pixels M in the other image, we can
no longer impose a one-to-one correspondence for finding
occlusions. We propose a new uniqueness constraint which
enforcesa one-to-one mapping between continuous inter-
vals (line segments) in the two scanlines, instead of pixels.
An interval in one scanline may correspond to an interval of
a different length in the other scanline, as long as the corre-
spondence is unique. This is equivalent to enforcing unique-
ness in the scene space instead of the image space, hence we
may also refer to this constraint as the 3D uniqueness con-
straint. Figure 7 illustrates the idea of interval mapping and
occlusions detection using a real example. In this figure, we
see how intervals of different length can correspond to each
other, leaving behind the occlusions.

Figure 8 shows how the new uniqueness constraint can
be implemented. Part (a) shows an existing one-to-one cor-
respondence between intervals on the left and right scan-
lines. This denotes an intermediate state in the progress of
a stereo matching and segmentation algorithm. Notice that
the intervals may correspond in any order (i.e., the ordering
constraint is not needed). Now, in part (b), we wish to insert
a new pair of corresponding intervals, shown in blue. (This
new pair of matching intervals improves upon the existing
matches according to some energy metric which depends
on the stereo algorithm being used). In part (c), we see that

the insertion of this pair of intervals conflicts with existing
intervals (shown in red). In order to enforce uniqueness, the
red pair of intervals on the right must be removed, while the
red pair of intervals on the left must be resized. In part (d),
we see the new correspondences. The interval pair which
was resized is shown in green, and the newly inserted pair
is shown in blue.

Conclusion: There exists a one-to-one mapping between
intervals (possibly having unequal lengths), and not be-
tween pixels.

3.4. An algorithm to deal with horizontal slant

We now describe a simple scanline algorithm which im-
plements the ideas presented above; this algorithm also uses
the concept of connectivity maximization presented in Sec-
tion 2 along scanlines instead of the whole image, and si-
multaneously searches the space of possible disparities and
horizontal slants. It processes a pair of scanlinesIL(x) and
IR(x) at a time without using any vertical consistency con-
straints. Horizontal disparities∆L(x) are assigned to the
left scanline within a given range[∆1, ∆2], and∆R(x) to
the right scanline in the range[−∆2,−∆1]. The disparities
are not assigned to pixels, but continuously over the whole
scanline. The disparities are not directly estimated, but in-
stead, we search for functionsmL(x) anddL(x) for the left
scanline, andmR(x) anddR(x) for the right scanline, such
that given a pointxL on the left scanline, its corresponding



pointxR in the right scanline would be

xR = mL(xL) · xL + dL(xL) (4)

and reciprocally:

xL = mR(xR) · xR + dR(xR)

Clearly,

mR(xR) = 1/mL(xL)
dR(xR) = −dL(xL)/mL(xL)

The disparities are then computed as:

∆L(xL) = xR − xL = (mL(xL)− 1) · xL + dL(xL)
∆R(xR) = xL − xR = (mR(xR)− 1) · xR + dR(xR)

(5)
The functionsmL and mR are the horizontal slants,

which allow line segments of different length in the two
scanlines to correspond. The scanlines are represented con-
tinuously by linearly interpolating intensities between pixel
locations. Thus, ifmL = 2, then the left scanline is
stretched (resampled) by a factor of 2, and then matched
with the unstretched right scanline using the Birchfield-
Tomasi method. Due to the stretching of one scanline before
performing the intensity based matching, we are automati-
cally modifying the traditional Birchfield-Tomasi method to
properly deal with horizontal slant. For each possiblemL

anddL, absolute intensity differences between correspond-
ing points are computed, and thresholded by a thresholdt;
in Section 6, we briefly discuss extensions which eliminate
the need for a threshold. Then, the best value ofmL anddL

for a point is chosen such that it maximizes the size of the
matching line segment containing that point (i.e., the maxi-
mum connectivity approach of Section 2).

The values of the horizontal slant which are to be ex-
amined are provided as inputs, i.e.,mL,mR ∈ M , where
M = {m1,m2...,mk}, such thatm1,m2, ..., mk ≥ 1. The
disparity search range[∆1, ∆2] is also provided as an input.
In order to find the occlusions, we enforce the uniqueness
constraint in its modified form as shown in Figure 8. We
maintain a one-to-one correspondence between intervals in
the two scanlines. Hence, at any stage of the process, we
have a setSL of non-overlapping intervals in the left scan-
line and a setSR of non-overlapping intervals in the right
scanline. An intervali is of the form[x1, x2). The unique-
ness constraint enforces a one-to-one mappingU between
the elements ofSL and the elements ofSR. When a new
corresponding pair of intervalsiL andiR is found, the seg-
ment previously corresponding toiL is removed if present,
and the same is done foriR. Then,iL is added toSL, andiR
to SR, and the one-to-one mapping inU is updated. Thus,
we always ensure that a line segment in the left scanline

uniquely maps to a line segment in the right scanline. In the
end, line segments which remain unmapped are the occlu-
sions. In our implementation, we have used hash-tables to
maintain the interval information and detect overlaps. The
skeleton of the algorithm is shown below.

1. For allmL ∈ M , ∆L ∈ [∆1, ∆2], do

(a) stretchIL by mL to getI ′L
(b) find range fordL using given range for∆L and

eqn. 5

(c) for every dL, match I ′L and IR and find con-
nected matching segments and their sizes; update
correspondence map while enforcing the unique-
ness constraint.

2. For allmR ∈ M , ∆R ∈ [−∆2,−∆1], do

(a) stretchIR by mR to getI ′R
(b) find range fordR using given range for∆R and

eqn. 5

(c) for everydR, matchI ′R and IL and find con-
nected matching segments and their sizes; update
correspondence map while enforcing the unique-
ness constraint

3. mL = mR = 1

(a) for every dL ∈ [∆1,∆2], match IR and IL

and find connected matching segments and their
sizes; update correspondence map while enforc-
ing the uniqueness constraint

4. Vertical slant

4.1. Fundamental differences between vertical and
horizontal slant

Assume that we are given a rectified stereo pair of im-
ages. Due to the discrete (pixelized) nature of the images,
changes in disparity as we move from left to right along a
scanline may be caused by one of two factors:

• There exists a depth discontinuity (as seen in Fig-
ure 9(a)), or

• The pixels form a part of a horizontally slanted surface
(Figure 9(b)).

In this case, we can distinguish between these two possibil-
ities because only a true depth discontinuity will cause an
occlusion to appear (as seen in Figure 9(a)). However, if we
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Figure 9. Top: Horizontal changes in hori-
zontal disparity due to a discontinuity create
an occlusion. Middle: Horizontal changes in
horizontal disparity due to horizontal slant
lead to stretching/shrinking but no occlu-
sions. Bottom: Vertical changes in horizon-
tal disparity due to discontinuity and vertical
slant cannot be distinguished (since no oc-
clusions occur in either case).

move vertically and find a disparity change (as seen in Fig-
ure 9(c)), we have no way of distinguishing whether the ver-
tical change is caused by a discontinuity or by a vertically
slanted surface, since neither causes occlusions to appear.
Thus, there is a fundamental difference between horizontal
and vertical slant.

Left Right

Position of maximum 

areal overlap

Overlapping portion

Figure 10. Top: images of a vertically slanted
plane. Middle: images overlaid to maximize
overlap. Bottom: area of largest overlap

4.2. Vertical connectivity and non-horizontal edges

Since we cannot distinguish whether purely vertical
changes in disparity are due to a true discontinuity or due
to a vertically slanted surface, additional assumptions must
be employed if we are to enforce any vertical consistency
constraints on the disparity map. Consider this example: in
the image, if we have a horizontal intensity edge (a horizon-
tal line), we have two possibilities (a) this edge corresponds
to a depth discontinuity, and pixels separated by it do not
lie on the same surface, or (b) the edge is just an intensity
edge, and pixels separated by it lie on the same surface. If
we commit the error of assuming that the pixels separated
by the horizontal edge are connected and it happens to be a
discontinuity, our solution will yield a disparity map with-
out the depth discontinuity, which is clearly incorrect. It is
safer to assume that such pixels arenot connected, to allow
the possibility that there may be a depth discontinuity.

Therefore, vertical neighbors separated by a horizontal
edge or no edge at all should not be connected.

Also, as shown in Figure 10, if we have two images of a
single-colored object, and we assume vertical connections
in the interior, then we will get a single disparity in the en-



tire interior (when maximum overlap of the images takes
place) instead of a vertical gradient. Thus, we cannot as-
sume that disparity is vertically constant even if two verti-
cal neighbors have the same color/intensity.Disparity can
change even when there is no change in color or intensity.
(Note that wecan assume that disparity iscontinuous, but
not necessarilyconstant,if intensity or color do not vary in
a region.)

Magnified view Edges

Connections

Figure 11. Vertical connections between pix-
els are established only along non-horizontal
edges

However, if we have a non-horizontal edge running
across the image, it will cause occlusions to appear if it is a
discontinuity, and no occlusions will appear if both sides of
it lie on the same surface. This distinguishing ability allows
us to make the assumption that:

Vertical neighbors lying on non-horizontal edges should
be connected (Figure 11).

This can be implemented by introducing a simple mod-
ification to the scanline algorithm presented earlier. If we
assume that each pixel is connected by links to the pixel
directly above it and the pixel directly below it, then the

only links which are left intact are the ones lying on non-
horizontal edges. Then, the connected component labeling
can be performed as before, and if two vertical neighbors
are linked, then they belong to the same connected compo-
nent. Edge detection is done using a standard Canny edge
detector, and edge directions are found by computing the
gradient direction.

4.3. Cue integration along the vertical direction

We have examined the differences in the character of ver-
tical and horizontal slant in the previous sections. It is clear
that if there are vertical changes in the horizontal disparity,
we cannot distinguish whether we have a discontinuity or
merely a vertically slanted surface. In this situation, it is
conceivable that inputs from ‘Shape from X’ modules (e.g.,
shape from texture, shape from shading) are critical to es-
tablish vertical consistency and construct vertically smooth
models of the scene shape and structure.

We believe that such external cues may strongly influ-
ence the estimation of vertical slant in the human visual
system, although not so much the horizontal slant. There
exists some support for this idea in studies dealing with the
perception of slanted surfaces by humans, which conclude
that there is an anisotropy in the perception of stereoscopic
slant [27, 28, 29, 30, 31], i.e., a horizontally slanted surface
and a vertically slanted surface having the same slant are
perceived differently. For example, [28] states that vertical
gradients of horizontal disparity are more easily perceived
compared to the horizontal gradients, which means that
horizontally slanted surfaces tend to appear more fronto-
parallel than vertically slanted surfaces. The authors ex-
plored the role of orientation disparity cues which may
influence the case of vertically slanted surfaces, but con-
cluded that even if the orientation disparity cues are equally
strong for the horizontally and vertically slanted case, the
anisotropy in slant perception persists. They conclude that
there must exist other anisotropic processes which are in-
volved in the computation of slant. Studies by Gilliam and
Ryan [29, 31] also discuss the role of configural proper-
ties (such as surface contours) in determining the slant for
a given disparity gradient. They also conclude that there
exist configural effects other than orientation disparity and
perspective which also contribute to the anisotropy in slant
perception. If shape from disparity is being integrated with
other cues such as shape from texture differently in the ver-
tical direction than the horizontal, such an anisotropy in
slant perception could arise; this has recently been explored
in [32], and we feel that our arguments regarding vertical
and horizontal slant provide a reason for such anisotropic
cue combination to occur.
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Figure 12. Columns 1 to 4: Left image, right image, graph cuts result for the left disparity map, our
result for left disparity map. Row 1: horizontally slanted object, Row 2: vertically slanted object.
Occlusions are shown in red.

5. Higher order models of shape

When we compute the disparity map of a real scene, the
desirable property of such a disparity map is that it should
explain the observed images while minimizing the number
of discontinuities. In other words, we would like to model
the disparity map as apiecewise continuousfunction which
is consistent with the observed images and has the minimum
possible number of pieces. Thisprinciple of minimum seg-
mentationimplies that we desire each segment to have the
maximum possible size, which is consistent with the ideas
on connectivity maximization which we have introduced in
Section 2.

To simplify the problem computationally, we often
choose more restrictive versions of the general model of a
piecewise continuous disparity map. The simplest but most
restrictive version models the disparity map as apiecewise
constantfunction, which we discussed in Section 2. An
obvious improvement is to model the disparity map as a
piecewise linearfunction (i.e., the depth is piecewise hyper-
bolic), which we discuss in Sections 3 and 4. This method
works well for a world consisting of planar surfaces, but
we need even better models to properly deal with curved
surfaces. The method we have discussed can be easily ex-
tended to include more complex models of the disparity and
shape, such as quadratic and cubic models, in an attempt to

get closer to the true property of piecewise continuity. How-
ever, these models increase the dimensionality of the search
space. We are also developing methods which allow us to
progressively increase the complexity of the models by us-
ing the results of a simpler model (such as piecewise planar)
to restrict the search space for a more complex model (such
as piecewise quadratic). This approach will allow us to use
quadratic or cubic models for the disparity while preserving
the low dimensionality of the search space.

6. Experiments

We have shown in the previous sections that horizon-
tal and vertical slant play a critical role in the estima-
tion of correspondence and occlusions. The first row
of Figure 12 shows a stereo pair of images in which
the blue object is horizontally slanted (i.e., depth varies
from left to right), and the second row shows a stereo
pair in which the blue object is vertically slanted. The
third column of this figure shows the results of the graph
cuts [17] algorithm, while the fourth column shows our
results for each of these stereo pairs. In these results,
occlusions are shown in red. The graph cuts result was
obtained using software kindly provided by the authors
(www.cs.cornell.edu/People/vnk/software.html). It is clear
that for both these stereo pairs, the graph cuts result gives a



constant disparity for the blue object, while our result cor-
rectly shows the slant and still finds the occlusions.

We expect that the constraints presented above will im-
prove the results of many existing dense stereo algorithms
in both qualitative and quantitative ways. However, for the
sake of completeness, we compare our results with other al-
gorithms using the test procedure created by Scharstein and
Szeliski [1] available atwww.middlebury.edu/stereo.They
compare the disparity mapdout generated by an algorithm
to the true disparitydtrue, and the pixels which deviate by
more than 1 unit from their true disparity are labeled as
‘bad’ pixels. The percentage of bad pixels in the entire im-
age, in the untextured regions and near depth discontinuities
are used to compare the results of various algorithms. The
percentages of bad pixels are reported in Table 1, which
was generated by submitting our disparity maps (Figure 14)
to the web-based evaluation program created by Scharstein
and Szeliski. Our algorithm (‘connectivity-slant’) ranks
sixth overall, while the ranks in each column are showed in
brackets, below the error percentages. For the bottom left
of the Venus sequence, it is not possible to assign correct
disparities, since the corresponding points in the second im-
age lie outside the image. Scharstein and Szeliski exclude a
ten pixel boundary before evaluation, but it is not adequate
to remedy this situation (a twenty pixel left boundary will
suffice). The execution time of the algorithm on these im-
age pairs is in the range of 1-5 seconds on a Pentium 2.4
GHz machine (some of our matching code is available at
www.cs.umd.edu/users/ogale).

The results shown here use the vertical connectivity con-
straints discussed in Section 4. Compared to the scanline
algorithm, the addition of these constraints improves the
results marginally and reduces some of the streaking. To
see the effect of these vertical consistency constraints, the
reader can compare the results given here to the results of
the scanline algorithm which appear in [24].

Figure 15 shows the results for two more stereo pairs:
the tree branch pair and the corridor pair. The tree branch
illustrates the ability of the algorithm to correctly handle
thin overlapping objects. The corridor scene contains many
untextured surfaces which are strongly slanted. Note the
correctness of the results for the walls, and especially for
the left wall, which has a very large slant.

It is important to mention at this point that our current
algorithm presents us with the problem of choosing a hard
thresholdt to decide if two pixels match or not, and the
choice of this threshold can affect the results. To address
this problem, we have proposed a new method in [33] which
generalizes the connected component process discussed in
this paper to a single-pass diffusion process. This modified
representation does not require a threshold to be set, and
can even correspond images with very different contrast and
additive noise; an example result is shown in Figure 16.

7. Conclusion

We have analyzed the effects of shape in establishing
dense point correspondence between a stereo pair of im-
ages. Ideally, it is desirable to model the disparity map as
a piecewise-continuous function having the minimum num-
ber of pieces, which upto zeroth order, can be approximated
by a piecewise-constant function. The idea of connectiv-
ity maximization was proposed for this flat fronto-parallel
world, which is equivalent to finding the minimum segmen-
tation. Proceeding to a first order approximation, we then
examined the effects of horizontal slant: unequal projection
lengths, sampling issues, and invalidation of the uniqueness
constraint for finding occlusions. It was shown that inter-
val matching and a new uniqueness constraint are required
to handle horizontal slant. We then highlighted qualitative
differences between horizontal and vertical slant, and dis-
cussed the importance of non-horizontal edges for the latter.
Experimental results with quantitative and qualitative com-
parisons were provided. The ideas presented in this paper
for the case of stereo correspondence are directly applicable
to the case of dense optical flow and, in [34], these exten-
sions have been discussed. In conclusion, as indicated in
Figure 13, we have shown that correspondence, segmen-
tation, occlusion detection, and shape estimation influence
each other and have to be solved in concert, with other
modalities such as ‘Shape from X’ possibly influencing the
computation of shape in an anisotropic manner.
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Table 1. Performance comparison from the Middlebury Stereo Vision Page (overall rank is 6’th among
28 algorithms). The table shows only the top ten algorithms. Error percentages and rank (in brackets)
in each column is shown.

Rank Algorithm Tsukuba Sawtooth Venus Map 

all untex disc. all untex disc. all untex disc. all disc.

1 Layered 1.58

(4)
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(7)
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(5)
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(1)

0.00

(1)
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1.52
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2.62

(2)

0.37
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0.30

(13)
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(7)

0.11
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Figure 14. Top row (Left frames), Middle row (ground truth), Bottom row (our results). Occlusions
were filled in as required by the evaluation procedure.
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Figure 15. Top row: tree stereo pair and disparity map. Bottom row: Corridor stereo pair with the
disparity map and occlusions (blue regions). Note the disparity variation for the left and right walls
of the corridor.

Figure 16. Contrast invariant stereo correspondence (see [33]): left image, right image, disparity map
with occlusions (white). Note that the right image has a different contrast than the left, and that the
contrast is spatially varying.
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