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Dewetting Patterns in a Drying Liquid Film
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Failure of a liquid coating to remain continuous on a substrate
that exhibits a significant equilibrium contact angle is a common
occurrence in industrial applications. The term “reticulation” is
sometimes used to describe the resulting formation of a pattern of
defects. The failure may take the form of coating perforations and
dewetting, and it may ultimately lead to a set of isolated drops. We
present mathematical and experimental results for reticulation. The
theoretical and numerical results use a disjoining–conjoining pres-
sure model to represent the substrate energetics. The theory uses
the small-slope or “lubrication” approximation and also includes
the effects of evaporation and drying of the coating. The model
employs a two-component liquid where the viscosity depends on lo-
cal values of the nonvolatile mixture fraction. A linear analysis for
a slightly perturbed uniform layer predicts a most-unstable wave-
length and an associated growth rate. These are in approximate
agreement with the modeling results. Computations employing the
full nonlinear model show the wide variety of patterns that can arise
in the drying liquid. These patterns are both qualitatively and quan-
titatively similar to actual patterns that we observe experimentally.
Small defects that are visible in the experiment are used to initiate
reticulation in the numerical simulation. C© 2001 Academic Press

Key Words: liquid film; dewetting; mathematical model; drying;
pattern formation; reticulation; numerical simulation; surface ten-
sion; disjoining pressure; fluid mechanics.
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1. INTRODUCTION

Normally, it is desirable for an applied protective or decor
tive coating to be of uniform thickness, for both aesthetic a
functional reasons. It is sometimes desired, however, to prod
an effect in the dry coating layer, such as the hammer tone
ish often produced for metallic substrates. These nonunifo
textured finishes generally result from the action of surface t
sion gradients during the drying process, either produced by
additive or by the natural development of such gradients d
to differential evaporation of solvents (1–3). Such effects te
to be maximized for baked finishes but generally do not lead
interruptions of the coating integrity. However, if the substra
is low in wettability or nonuniform in energy, or if the coatin
itself contains particles of low surface energy, the liquid layer
1 To whom correspondence should be addressed.
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subject to rupture or dewetting processes, which are acceler
by higher contact angles of the coating liquid with respect to
substrate or to the nonwetting particle. This process of brea
can proceed to the extent of forming discrete droplets, for
ample, producing a finish resembling water droplets conden
on a cold surface.

More generally, the breakup of a thin liquid layer on a hig
contact-angle surface is a common phenomenon in the na
and industrial worlds. It is observed in agricultural spraying o
erations, especially on plants with waxy leaves. In both grav
printing and photofinishing applications, the effect is genera
undesirable and needs to be mitigated or avoided. It is in th
latter applications that the term “reticulation” has come to
used to describe the effect (4).

The goal of the modeling effort presented here is an impro
understanding of the complex interaction of several physi
chemical processes that influence reticulation. We anticipate
this knowledge base will be useful in product and process
sign. The goal may either be to control the length scales
textures of patterned coating, when this is desired, or, perh
more commonly, to avoid these effects by substrate prepara
or changes in the rate of drying, for example.

Prior experimental and theoretical work has largely been c
cerned with dewetting processes for very thin polymeric or aq
ous films (5–9). Recently, a preliminary report that combin
experimental and theoretical work on a heterogeneous subs
has also appeared (10). In all of these works coating layers
thinner than 100 nm, virtually a factor of a thousand sma
than the protective or decorative coatings considered here
number of these thin film studies are motivated by applicatio
in microelectronics fabrication.

In the next section we present a theoretical model for
evolution of the droplet-forming pattern while rapid drying
taking place. Numerical solutions obtained using the mathem
ical model will subsequently be compared with observatio
made in an experiment of a reticulating coating on a hea
plate. Coupled partial differential equations for the shape
the liquid surfaceh(x, y, t) and the coating-layer-averaged res
fraction c(x, y, t) are formulated. These equations are supp
mented with an evaporation or drying law and a law that giv
the dependence of viscosity on the local mixture compositi
When converted to a computational algorithm, the theoret
3 0021-9797/01 $35.00
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model allows the prediction of the reticulating drop pattern u
the coating liquid becomes dry and immobile. The droplet f
mation process is driven by a significant value of equilibriu
contact angleθe for the coating liquid on the substrate. Ang
θe is almost constant on the substrate; small imposed “defe
on the substrate trigger the dewetting instability. The position
the defects is an important determinant of the final pattern. C
tact angle information is incorporated in the evolution equat
by means of a “disjoining pressure” term of a particular for
as explained below. This modeling represents a new applica
and an extension of our previous work (3, 11, 12). Certain
tails of the numerical model, including issues of computatio
efficiency and robustness, will be discussed in Section 3.

The disjoining pressure model, as used here, is known to
corporate an instability mechanism (13, 14). Thus an exa
uniform initial coating layer, when subjected to disturbanc
will become undulatory with an initial length scale that is det
mined by the coating thickness, the value of the surface tens
and the parameters in the model. In cases considered her
length scale is of the order of 1 mm. As will be shown, t
length is only minimally influenced by the effect of gravity. Th
mathematical model idealizes the defects simply as region
locally high contact angle on an ideally flat substrate. These
fects are, in the experiment, small but visible roughly spher
waxy particles that are fixed on the substrate. Wax particle “fo
prints” on the substrate are approximately circular and app
to have diameters that range from 50 to about 150µm. Due to
the variable particle size, the wax particles sometimes distor
liquid surface as visible “bumps,” while others appear to be fu
under the surface, yet dewetting is produced in both cases
the coating evaporates, the liquid thickness above the part
gets smaller until the coating ultimately dewets at each of th
sites. Thus the mathematical model simulates the process
dewetting, nucleation, and growth of dry patches without ac
ally incorporating complex details of the particle shapes.

Other destabilizing mechanisms due to developed surface
sion gradients arising from either thermal gradients during d
ing or compositional changes, i.e., so-called thermal or sol
Marangoni effects, could also influence the initial instabil
(15). However, it is remarkable that the experimental patte
are well reproduced using only the observed locations of
small deposited waxy particles. Therefore, we conclude
Marangoni effects are not of significant importance, and t
have not been included in the present model.

Section 4 compares predictions of the model with the res
of the experiment. In the experiment a liquid coating layer c
taining the small waxy particles was deposited on an alumin
plate that had been previously coated so as to provide a
a 30◦ contact angle for the liquid. Starting from a continuo
layer of liquid, the coating is seen to break up into a pattern
droplets as it dries. The drying is quite fast so as to faithfu
reproduce typical industrial conditions that use forced dry

to maintain a rapid production rate. Frames taken from a vid
of the experiment are observed to be strikingly similar to t
Z ET AL.
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simulation results. Exact details of the evolving patterns dep
strongly on the initial locations of those waxy particles that se
as nucleation sites. For this reason, differences between th
periment and the simulation generally increase as time proce
In both the experiment and the model prediction, drying ter
nates the motion before a full set of discrete droplets can fo
We then alter the drying rate in the simulation so as to give
tra time for pattern formation. Two different disjoining-pressu
laws are used. For one of these the resulting final pattern for
case does exhibit well-formed final droplets, while, for the oth
the liquid solidifies before drop formation is complete. At ea
times, for the slow-drying case, nucleation and growth of ho
in the film can be seen. Similar early-stage hole production
recently been demonstrated numerically in the modeling w
of Khanna and Sharma (14).

Concluding remarks and possible extensions of this work
given in Section 5.

2. THE MATHEMATICAL MODEL

Invariably, the thickness of a liquid film or coating is muc
smaller than characteristic lengths in the filmwise directi
Thus an important simplification is to assume that the co
ing properties are constant across the thin dimension. Th
plausible because the coating layer is very thin and diffusio
mixing of the mixture components across this small dista
can be expected to happen more rapidly than changes alon
film. This “well-mixed” assumption has previously been us
in two-dimensional flow models by us and others (2, 16). N
all coating mixtures can be expected to be consistent with
model. Coatings that develop a significant “skin” above a fl
underlayer as they dry would require use of a more complica
model than that presented here.

The thickness profile of the liquid coating layer on a plan
substrate is represented by the functionh(x, y, t), wherex and
y are orthogonal coordinates measured along the substrat
t is time. The equation expressing conservation of mass is

ht = −∇ ·Q− E, [1]

where the rate of evaporationE(x, y, t) has the dimensions o
speed. Subscripts signify differentiation. The differential op
ator∇ is two-dimensional in the coordinates (x, y). Using the
slow-flow and small-slope approximations to the Navier–Sto
equations, i.e., the so-called “lubrication approximation,” a
assuming an incompressible Newtonian liquid, the flux rateQ
is proportional to the pressure gradient. Applying the no-s
boundary condition on the substrate and assuming zero s
on the liquid–air interface, the resulting expression is

Q = − h3

3µ
∇ p, [2]
eo
he
whereµ (x, y, t) is the viscosity. Bothp andµ are assumed to
be constant across the thin liquid film. The pressurep includes
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capillary and disjoining contributions; i.e.,

p = −σ∇2h−5. [3]

The first term on the right of (3) is the capillary pressure wh
the curvature of the liquid–vapor interface has been simpli
using the small-slope approximation. The error in this cur
ture approximation is proportional to the square of the surf
inclination. Here,σ is surface tension and5 is the so-called dis
joining pressure as introduced by Frumkin (17) and Deryag
(18). It is given here by the two-term model

5 = B

[(
h∗
h

)n

−
(

h∗
h

)m]
, [4]

whereB and the exponentsn andm are positive constants wit
n > m> 1. The local disjoining energy density

e(d)(h) = −
∫ h

h∗
5(h′) dh′ [5]

has a single stable energy minimum at the thin precursor-l
thicknessh = h∗. In general,h∗ is small compared to the ave
age or initial coating thicknessh0. In the dynamic simulations
presented here,h∗ plays the role of a “slip coefficient” allow
ing motion of the apparent contact lines where a thick coa
layer meets a dry portion of the substrate. Because the dis
ing pressure is assumed to depend only on the local interf
separationh, the validity of expressions such as [4] and [5] a
requires the small-slope approximation.

For a drop at static equilibrium whose surface meets the
strate at an apparent equilibrium contact angleθe, it is possible
to relateθe to the constants in expression [4]. By performing
force balance in the neighborhood of the apparent contact
and assuming thath∗ is very small, it may be shown that

B = (n− 1)(m− 1)

h∗(n−m)
σ (1− cosθe)

≈ (n− 1)(m− 1)

2h∗(n−m)
σθ2

e , [6]

where the approximate equality assumes that the contact a
is small. It is also possible to show that

e(d)(∞) = γLV + γSL− γSV, [7]

wheree(d)(∞) is calculated from (4) andγSL, γSV andγLV = σ
are the interfacial tensions, or interfacial energy densities, w
the solid (S), liquid (L), and vapor (V) meet at the appar
contact line. The detailed derivation leading to [6] and [7] m
be found elsewhere (12).
The final form of the evolution equation for the coating thic
ness, including capillarity, substrate energetics, and evapora
N A DRYING LIQUID FILM 365
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is found by combining [1] to [4] and [6] to yield

ht = − σ

3µ
∇ ·

[
h3

(
∇∇2h+ (n− 1)(m− 1)θ2

e

2h∗(n−m)

×∇
[
C(x, y)

(
hn
∗

hn
− hm

∗
hm

)])]
− E. [8]

The functionC(x, y) allows for the possibility that the conta
angle may vary on the substrate. For a uniform substrateC = 1.

We use a relatively simple drying model but require tha
incorporate the following basic properties:

(i) As the coating dries, material is lost.
(ii) The viscosity of the coating increases as it dries.
(iii) The coating dries more quickly in thin regions.
(iv) The reticulation process is a competition between

interfacial energetics that drive reticulation and drying wh
slows and ultimately stops the motion.

We consider the coating to be a mixture of two compone
a volatile solvent and a nonevaporating resin. The viscosi
a function of the local concentration or resin fractionc(x, y, t)
that increases as the coating dries. Initially, before any ev
ration has taken place, the liquid is assumed to have unif
composition. Thus the initial condition for the resin fraction
c(x, y, 0)= c0, wherec0 < 1, the initial resin fraction, is a pre
scribed constant. The functionµ(c) is taken to be of the form

µ = µ0 exp[a(c− c0)], [9]

where the constanta is sufficiently large so that the viscosity of
dry coating (c = 1) is effectively infinite; then the dried coatin
will be immobile.

As the coating dries the rate of evaporation can be expe
to decrease. The postulated drying law is

E = E0(1− c)ν, [10]

whereE0 is the drying rate for pure solvent, which may be e
pected to be virtually constant in a well-ventilated environme
The exponentν is in the range

0≤ ν < 1.

This restriction on the drying law exponent is made clear
considering drying of a uniform layer, initially at thicknessh0.
The evolution equation is then simply

dh

dt
= −E = −E0(1− c)ν [11]

Since the resin is nonvolatile, we must havech= c0h0; thus [11]
becomes
k-
tion,

0 0

E0 dt
= c2(1− c)ν,
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which may immediately be integrated to find the drying time

E0

c0h0
tdry =

∫ 1

c0

dc

c2(1− c)ν
. [12]

In order for tdry to be finite, the integral must be converge
which requires thatν be strictly less than one. The evaporati
model given above is highly simplified; other factors that m
influence evaporation are discussed by Sharma and collea
(19, 20).

The concentration is a second unknown function of space
time; thus a second evolution equation must be solved simu
neously with [1]. This is done most easily by defining a “res
height” as

hR ≡ ch. [13]

Because the coating is assumed to be well mixed across the
film, the resin flux is given by

QR = cQ. [14]

Since the resin is nonvolatile, the resin evolution equation
simply

hRt = −∇ ·QR = −∇ · (cQ). [15]

Using Eqs. [2], [3], and [13], this may be rewritten as

hRt = −∇ ·
[

ch3

3µ

(
σ∇∇2 hR

c
+∇5

)]
. [16]

As an alternative to Eq. [16], Eqs. [1] and [13] through [15] c
be combined to form the concentration equation

∂c

∂t
+ Q

h
· ∇c ≡ ∂c

∂t
+ u · ∇c ≡ Dc

Dt
= cE

h
, [17]

whereu is the layer-average velocity andD/Dt is the con-
vective derivative, i.e., the time derivative following the motio
of a fluid element. While formally equivalent to [16], Eq. [17
is not in divergence or “conservation form.” Thus the finit
difference form of [17] will not exactly conserve the total amou
of resin in a time-marching numerical algorithm. In order
maintain this important property, Eq. [16] will be used inste
of [17].

Because the coating dries more quickly in relatively thin
gions, the two-component liquid will develop concentration g
dients as it dries. These gradients are partially mitigated by
fusive mixing. Assuming Fickian diffusion, the diffusional flu
of resin is
Q(D)
R = −DhR∇c [18]
Z ET AL.
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where the diffusion constantD may be a function of the con
centrationc. The divergence of the diffusional flux is append
to the resin evolution equation [16].

The equations are solved in dimensionless variables u
the initial wet-film thicknessh0 and the initial viscosityµ0 as
reference quantities. The transformation to dimensionless.
tilded, variables is

h = h0h̃, (x, y) = L(x̃, ỹ), t = T∗ t̃ . [19]

The characteristic time is

T∗ = 3µ0L4

σh3
0

,

while L is chosen to be a characteristic length for pattern for
tion, as discussed below. Theh-evolution equation, using thes
dimensionless variables, is

h̃t̃ = −∇̃ ·
[

h̃3

ea(c−c0)
(∇̃∇̃2h̃+ ∇̃(C̃5̃))

]
− Ẽ0(1− c)ν, [20]

where

5̃ ≡
(

h∗
h

)n

−
(

h∗
h

)m

.

The dimensionless resin evolution equation becomes

h̃Rt̃ = −∇̃ ·
[

ch̃3

ea(c−c0)

(
∇̃∇̃2 h̃R

c
+ ∇̃(C̃5̃)

)]
+∇̃ ·

(
D̃h̃R∇̃ h̃R

h̃

)
. [21]

Equations [20] and [21] along with the definitionhR = ch con-
stitute the basic model.

The independent parameters that appear in the model ar

n,m, C̃ = fnmθ
2
e L2

h0h∗
, Ẽ0 = T∗E0

h0
[22a]

and

a, c0, ν,
h∗
h0
, D̃ = D

L2/T∗
. [22b]

The factor that appears in the definition ofC̃ is

fnm = (n− 1)(m− 1)

2(n−m)
.

Various extensions to the basic model are possible and
been implemented in related work. Rather than use a con

resin diffusivity, it is possible to make the diffusion constantD̃
an inverse function of the local viscosity which depends, in turn,
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on the concentrationc. To the extent that resin diffusion is du
to Brownian motion,D̃ would be inversely proportional toµ as
in the Einstein model of Brownian motion. This is discuss
for example, by Landau and Lifshitz (21). We have made t
simple modification in earlier work involving a two-compone
liquid mixture. Similarly the surface tension need not be cons
but could be a function of the resin fraction. This is known
be the case for certain coatings such as alkyd paints (1).
cause a nonuniform liquid layer dries unevenly, gradients of
face tension will arise during drying for these coatings. A sim
force balance on the liquid surface shows that the surface ten
gradient is equivalent to an applied shear stress that will d
liquid motion. This is the so-calledsolutal Marangoni effect.
Both effects have been included in Ereset al.(3) in their model
for the shape evolution of a drying paint layer. In the simulat
of the experiment considered here, liquid motion is ultimat
controlled by rapid drying. Thus species diffusion has onl
minor effect, and Marangoni effects, if present at all, will
minimal. Consequently, use of the more sophisticated mod
not warranted.

In the dimensionless model, the spatial length scaleL is
chosen to be the wavelength of maximum growth of a sm
amplitude sinusoidal disturbance that is imposed on an ot
wise uniform layer. This length should then be representa
of the most likely initial spacing between mounds or ridges
the developing surface pattern. A simple stability analysis
be employed to determineL. Equation [8] can be considerabl
simplified if we only consider the stability of a uniform layer o
liquid of thicknessh0 to a spatially one-dimensional perturb
tion; thus the two-dimensional operator∇ is replaced by∂/∂x.
Evaporation may also be neglected and we consider the subs
to be uniform; thusC = 1. Forh∗ ¿ h0, we have

C

(
hn
∗

hn
− hm

∗
hm

)
≈ −hm

∗
hm

[23]

becausen > m. Let

h = h0+ h1 [24]

and assume that

|h1| ¿ h0.

Defining

A = (n− 1)(m− 1)θ2
e

2h∗(n−m)
,

the equation governing the perturbed heighth1, i.e., the lin-
earized form of [8], becomes

σh3[ m Ahm ]

h1t = − 0

3µ0
h1xxxx+ ∗

hm+1
0

h1xx . [25]
A DRYING LIQUID FILM 367
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This equation is satisfied by solutions of the form

h1 = const· eωt coskx, [26]

wherek is a wavenumber andω is a disturbance growth rate
Substituting in [25], the growth rate depends on wavenumb
according to

ω = −σh3
0

3µ

[
k4− m Ahm

∗
hm+1

0

k2

]
. [27]

The wavenumber of maximum growthkmax satisfies

∂ω

∂k
= 0,

yielding

k2
max=

m Ahm
∗

2hm+1
0

. [28]

Finally, the predicted wavelength that grows most rapidly, co
responding to the most likely initial spacing between mounds
ridges, is

L ≡ 2π

kmax
= 4πh0

θe

√
n−m

(n− 1)(m− 1)m

(
h0

h∗

)m−1

, [29]

where the previously defined intermediate quantityA has been
restored. The growth rate of disturbances with wavelengthL is
then

ωmax= σθ4
e

48µ0h0

[
(n− 1)(m− 1)m

n−m

]2(h∗
h0

)2m−2

. [30]

The analysis leading to Eqs. (29) and (30) can also be exten
to consider the effect of gravity when the coating is applied on t
of a horizontal substrate. For simplicity, the result is only give
for the special choice of disjoining exponents (n,m) = (3, 2).
With gravity included, the growth rate relation, replacing [27
is

ω = −σh3
0

3µ

[
k4−

(
2θ2

e
h∗
h3

0

− 1

L2
c

)
k2

]
. [31]

Here,Lc =
√
σ/(ρg) is usually called the capillary length. As

before, the wavelength of most rapid growth and the correspo
ing rate can be calculated easily using [31]. Additional desta
lizing effects in thin liquid films that are associated with evap
ration are discussed by Oronet al. (22).

A number of parameters that appear in [29] and [30] can
considered known. These are the initial viscosityµ0, the surface

tensionσ , the equilibrium contact angleθe, and the wet coat-
ing thicknessh0. Equation [29] predicts that the dimensions of
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features in the final pattern can be expected to be proporti
to the coating thickness and to vary inversely with the con
angle. Similarly [30] predicts that characteristic growth rates
pattern formation will increase strongly with substrate cont
angle and will be reduced by large viscosity and large coa
thicknesses. The two exponents (n,m) and the “disjoining” equi-
librium thickness ratioh∗/h0 are less clear, however. Relative
large values of ofn andm can be seen to act similarly to sma
values ofh∗. We will choose, for most of the present simul
tions, the values (n,m) = (3, 2) andh∗/h0 = 0.10. This choice
will be shown to produce very credible behavior when compa
with the experiment. With gravity included, the fastest growi
wavelength and the corresponding rate are changed by less
1% and less than 3%, respectively. Consequently, gravitati
effects can safely be ignored for the present purpose.

3. COMPUTATIONAL ISSUES

Equations [20] and [21] are solved using time-marching fin
difference methods. Straightforward explicit time-marchi
schemes for diffusive equations of this type require that ti
steps be very small in order to maintain numerical stability.
in the model equation

ht = −hxxxx,

a requirement is that1t be less than a small constant multip
of (1x)4, where1x is the space step or mesh size. Thus
computational requirement quickly becomes more severe a
mesh size becomes small for an explicit method. We have fo
that the order of magnitude of1x must be that of the disjoining
layer thicknessh∗ or smaller, in dimensionless units. In order
overcome this time step size limitation, the three-dimensio
solutions given here use an alternating-direction-implicit (AD
technique (23–25). ADI uses alternating sweeps in each d
tion, and a banded system of equations is solved to updat
discrete set ofhi, j or hRi, j values in a “row” or “column” of
the computational domain. Maximum permissible time st
are much larger than the characteristic maximum step for
bility for an explicit method. Apparent “contact lines,” whe
the thick liquid layer meets the disjoining layer, are captu
by the method, and their motion appears as part of the evol
solution. Nonlinear prefactors in the equations are evaluate
the previous time level.

It has been found that an adaptive time-stepping proced
where the time step is adjusted dynamically based on a pr
maximum permissible change in anyh value, greatly increase
computational efficiency. Motions with strong capillary effe
often exhibit alternating slow and rapid events as the liquid p
tern evolves. Thus a time integration scheme that is able to a
to these changes is particularly appropriate. Temporal con
gence is verified by reducing the allowed maximum chang

h. Further details of the basic numerical methods employed h
may be found elsewhere (3, 26, 27).
Z ET AL.
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We also require that the algorithm satisfy what may be ca
a “mixing property,” i.e., that mixing caused by flow alone c
never produce new extrema of the resin concentrationc(x, y, t).
More simply, the mixing property states that, locally, the co
centration at a point at the updated or “new” time cannot be
than (greater than) the minimum (maximum) concentration
its neighboring points at the previous or “old” time. This follow
from the fact that the new concentration, after a time step
elapsed, is a weighted average of the old concentrations. W
ing the concentration equation [17] in discrete form, ignor
both evaporation and diffusion, and considering motion in o
one space dimension, it can be shown that maintenance o
mixing property requires that

u
1t

1x
< 1. [32]

Hereu is the layer-average liquid speed which can become r
tively large near the edges of drops or holes. Equation [32] is
so-called Courant condition that often arises in finite-differen
calculations when convective changes are important.

The computation is performed on a rectangular domain
the (x, y) plane. This domain represents only a portion of
physical substrate used in the experiment. Boundary condit
are required for both the surface profileh and the concentration
distributionc. Two choices have been used for these bound
conditions. Periodic boundary conditions assume, for a dom
of sizeLx by L y, that

h(x + Lx, y, t) = h(x, y+ L y, t) = h(x, y, t),
[33]c(x + Lx, y, t) = c(x, y+ L y, t) = c(x, y, t).

Thus the entire plane is covered by periodic images of the c
putational domain. Alternatively, reflection symmetry con
tions may be used instead. These are

hn = hnnn = cn = 0, [34]

where then subscripts indicate differentiation in the normal d
rection at each boundary. For the present experimental com
ison, we have found the periodic boundary conditions prod
fewer features that caused solely by the presence of the c
putational boundary. The simulation results given below
periodic boundary conditions. When the reflection conditio
[34] are used instead, there is a pronounced tendency for
circular surface features to align their long axes parallel to
computation boundaries.

Calculations given here use a uniform rectangular mesh w
90 by 120 mesh intervals. Thus there are about 2.2× 104 un-
knowns in the vectorsh andhR. A full calculation, starting from
a uniform coating layer and continuing until the coating is d
takes less than 1 h on adesk-top computer with a Pentium-cla

ereprocessor. The numerical algorithm is programmed in Fortran.
The operating system is Linux, a public-domain version of the
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Unix operating system. By comparing results using somew
finer and somewhat coarser meshes, it was verified that the i
ence of grid size on the computed results shown here is minim

4. COMPARISON OF MODEL RESULTS
WITH EXPERIMENT

Aluminum sheets having dimensions 2 cm by 10 cm and thi
ness 0.3 mm were used as substrates. The substrates wer
coated with blue or white pigmented water-based ink usin
second aluminum plate as a spreader. The ink-coated subs
was then baked on a hotplate at 400◦F for approximately 30 s.
After allowing the substrate to cool, the clear topcoat was th
uniformly spread onto the ink-coated surface of the substrate
ing a glass microscope slide. The liquid coating was compri
of an aqueous thermosetting polymer emulsion system cont
ing waxy particle additives. The thickness of the coating w
controlled by the amount of pressure applied to the glass s
The aluminum plate with ink and wet topcoat was then plac
on the surface of the hotplate maintained at a temperatur
400◦F. At the same time, video recording was activated to c
ture the reticulation process. The video camera was mounte
a vertical axis perpendicular to the surface of the substrate.
image was recorded using an S-VHS VCR and was conve
to digital format using a video capture card. It required ab
10 s total time for reticulation to cease, with solidification
the coating. The topcoat was initially continuous and unifo
but rapidly dewetted from the included low-wetting particles
form liquid beads or droplets.

The simulation used the dimensional and nondimensional
rameter values given in Table 1. The equilibrium contact ang
the initial viscosity, the surface tension, the initial resin fractio
and the initial coating thickness are experimental values that
each be considered accurate with an error of no more than 1
The solvent evaporation rateE0 is estimated using the observe
time for immobility of about 10 s. Using the disjoining expone
pair (n,m) = (3, 2), the disjoining thicknessh∗ was selected so
that the instability wavelengthL was equal to 2.0 mm. Thus, a
observed in the experiment, the initial number of “features”
the 8 mm by 6 mm window shown was about 4 across by 3 w

TABLE 1
Parameter Values Used in the Simulation

Physical quantity Symbol Value and units

Contact angle θe 0.5 rad or 28.7◦
Initial viscosity µ0 0.25 p= 0.25 g/(cm s)
Surface tension σ 35 dyn/cm
Initial coating thickness h0 50µm
Disjoining thickness h∗ 5µm
Solvent evaporation rate E0 2µm/s
Diffusion constant D̃ 0.1 (dimensionless)
Initial resin fraction c0 0.3 (dimensionless)

Viscosity exponent a 70 (dimensionless)
Evaporation exponent ν 0.5 (dimensionless)
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FIG. 1. The defect pattern used to start the computational model. The
tion of each defect was taken from observations of wax particles in the ex
mental video. The contact angle is about 15% larger on the defects.

The dimensionless resin diffusion coefficient given in the ta
corresponds to the physical valueD ≈ 1.4(10−5) cm2/s. This is
a reasonable estimate for mixing of low-viscosity liquids. Si
the experiment happened rapidly, resin diffusion is actually q
unimportant, a fact that was confirmed by simulation runs
ing very different values ofD. The viscosity exponenta from
Eq. [9] is essentially determined by the above value ofE0 and
the very large value of viscosity that is required for immobil
Finally the evaporation law exponentν given in the table, and
appearing in Eq. [10], is a plausible intermediate value.

In the video of the experiment, a set of less-wettable w
particles can be seen at an early stage of the experiment, b
the liquid–air interface has deformed appreciably. The obse
particle locations were used as disturbance sites for the sim
tion. Eleven disturbance sites were used in the simulation,
having a diameter of about 0.25 mm. On the disturbance site
equilibrium contact angle was taken to be about 15% larger
on the surrounding field. This defect pattern is shown in Fig
The initial condition was taken to be a perfectly uniform coat
surface and uniform resin concentration. In the simulation,
rate of initiation depends on the intensity of the defects, a q
tity that is assigned arbitrarily. Had the intensity been take
be much smaller, it would have taken longer for the disturban
to grow to recognizable amplitude.

Four frames from the experimental video and the corresp
ing simulation results are shown in Fig. 2. The three-dimensi
simulation images were produced using a public-domain gr
ics program called Geomview. The sequence of events, w
is largely modeled successfully, may be described as follow

(i) Rippling of the surface, followed by perforation in th
vicinity of the imposed defects.

(ii) Expansion of each defect as a circular hole until the ho
approach one another. The liquid removed from the holes
up on the expanding rims.

(iii) The coating between the approaching holes becom

bridging filament or “dike.” Each dike thins as the contained liq-
uid is pumped to the bordering mounds. This local flow is driven
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FIG. 2. Comparison of experiment (left) and model simulation (right). The time difference between frames is about 1 s both for the experimen

simulation. The coating is sensibly immobile at the last times shown for bot arame
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and feature definitions.

by the higher capillary pressure within the dike. The capilla
pressure increases as the radius of curvature decreases.

(iv) The filaments break and typically leave behind isola
small droplets because the filaments break up with a charact
tic instability wavelength which is, in general, incommensur
with the length of the filament. Production of these small drop
is a capillary-driven phenomenon; a similar effect leads to

secondary or “satellite” droplets that often form when a th
liquid stream breaks up, as in ink-jet printing, for example. T
h. The “window” size is 8 mm by 6 mm. See text for values of the physical pters

ry

ed
ris-
te
ts

he

location of these small droplets in a final dry coating patte
therefore, gives information about the previous history of
motion. It is interesting to note that many of the features obser
here for thick coating films are similar to corresponding eve
that are seen in the breakup of very thin polymeric films (7,

The time difference between the pictures in Fig. 2, for b

in
he
the experiment and the simulation, is 1 s. Particular phenomena
are identified by arrows and letters in the figures. The letter “A”
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FIG. 3. Simulation results for slower drying. All parameter values are the same as those in the experimental simulation except that the drying rat

halved. Evolving patterns are shown att = 1.0, 1.3, and 1.9 s. The final pattern fort > 8 s is at the lower right. The pattern at 1.3 s is quite similar to the first
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simulation picture in Fig. 2. The difference is that the secondary indentatio

shows secondary perforations of the liquid film in the simulati
These minor perforations are transient and do not correspo
initial seed locations. As can be seen, they are soon filled i
the expansion of the larger holes. In both the experiment an
simulation, “B” identifies a liquid filament between expandi
holes. When each filament ultimately breaks, a satellite dro
is left behind, indicated by “C.” These satellites are somew
larger in the model, compared to the experiment. Careful ins
tion of the experimental pictures shows several wax partic
which act as “seeds” or nucleation sites for pattern forming. O
of these is indicated by the letter “D.”

Figure 3 shows evolving patterns for a coating that dries m
slowly than that of the experiment. All parameter inputs are
same as those for Fig. 2 except that the initial solvent evapora
rate isE0 = 1 µm/s, one-half the previous value. Because
viscosity remains low for a longer time period, patterns evo
more quickly. The four pictures span a longer pattern-form
interval than those shown in Fig. 2. The first frame, at timet =
1.0 s, shows hole initiation and growth with expanding ridg
around each hole. The hole locations correlate closely with
seed locations in Fig. 1. The second frame, att = 1.3 s, is quite
similar to the first picture in Fig. 2, while the third picture (t =
1.9 s) is about the same as the final dry pattern for the m
rapidly drying experimental case. The last picture shows

final pattern for this slow-dry case that is realized after 8 s
shows a number of well-formed isolated drops. If the goal of
s, indicated by “A” in Fig. 2, do not form.
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industrial process is to achieve such a pattern, this simula
result has identified an appropriate drying rate.

While the rendered pictures shown in Figs. 2 and 3 giv
clear indication of the nature of the patterns, they do not dis
a high degree of quantitative information about actual film th
nesses. Such information is given by plots of coating thickn
contours. Figure 4 shows contour plots of the film thickness
the same times that are shown in Fig. 3. Contours are show
thicknesses in intervals of 50µm.

Finally we consider the effect of changing the disjoining
ponents on the simulation results. Changing the exponent p
the disjoining expression [4] will affect the subsequent mo
in at least two ways. The “steepness of the energy well” at
equilibrium slip layer thicknessh = h∗ is given by the secon
derivative

[
d2e(d)

dh2

]
h=h∗
= −

[
d5

dh

]
h=h∗
= σθ2

e

2h∗2
(n− 1)(m− 1) [35]

using equations [4], [5], and [6]. Changing the exponent
from (3, 2) to (4, 3), for example, increases this steepnes
curvature by a factor of three. The resulting behavior of appa
moving contact lines will also be changed. Apparent dyna
. It
an
contact angles will differ less from the static angle during mo-
tion; in effect the “stiffness” of the dynamical system will be
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FIG. 4. Contour plots for the slow-dry simulation shown in Fig 3. The contours are shown for constant multiples of the original film thicknessh0 = 50µm.
Distances along the substrate are measured in centimeters. Thus, the thickest formed drop in the last figure has a height of about 250µm and a diameter of about
2 mm.

FIG. 5. Simulation results using the disjoining-model exponent pair (n,m) = (4, 3) rather than (3, 2). All other input parameters are the same as those

for Figs. 3 and 4 except for the defect strength, which has been increased by a factor of five, as explained in the text. The times are the same as in Fig. 3, namely,
t = 1.0, 1.3, and 1.9 s; as in Fig 3, the final dry pattern is shown at the lower right.
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increased. Further discussion of the dynamical effect of
disjoining exponent choice is given in Ref. (11).

A more immediate effect of the exponent choice conce
the initial rate of growth of unstable disturbances on a unifo
coating layer. The stability analysis leading to Eq. [30] indica
that, for the system parameter values given in Table 1, chan
the exponent pair from (3, 2) to (4, 3) will reduce this growth r
by about a factor of five. In our simulation, it is the larger value
equilibrium contact angle on the spots shown in Fig. 1 that dr
the dewetting pattern formation. In order to preserve the t
scale for initial perforation of the coating film, for example, w
the reduced growth rate, it is necessary to increase still fur
the contact angle on the spots. Using Eq. [8], we find tha
approximate criterion is that the product of the initial grow
rate and the quantity

θ2
spot

θ2
field

− 1

should be held constant in order to maintain the time scale.
the (4, 3) exponent pair, therefore, the spot contact angle is t
to be 58% larger than the field contact angle. This compares
the previously used 15% value for the (3, 2) case.

Simulation results using the (4, 3) exponent pair are sh
in Fig. 5. These four pictures may be compared with the c
responding pictures in Fig. 3. The film perforation patterns
seen to be quite similar at the two earliest timest = 1.0 and 1.3
s. Significant differences can be seen at later times, and the
dry configuration for the (4, 3) case shows less complete dro
formation when compared with the (3, 2) case. Ridges sep
ing dry spots appear to be of more-uniform width than for
(3, 2) exponent choice. We believe this effect is associated
the increased “stiffness” of the model as mentioned above.
four stages of pattern formation, as identified in the experim
and the simulation using the (3, 2) pair, can also be seen cle
in the sequence of pictures in Fig. 5.

As stated above, several of the parameter values used i
simulations have been chosen to provide good agreement
the experiment. These are the spot contact angles, the d
rate, and the slip-layer thicknessh∗. Minor adjustments in thes
values would have allowed the simulation using the (4, 3) ex
nent pair to provide much closer agreement with the experim
We feel that it is more instructive to show, as we have done
effect of a change in the exponent pair with all other parame
held constant. The similarities between the simulation fram
suggest that the choice of disjoining exponents affects qu
tative rather than qualitative features, and is a less impor
determinant of dewetting patterns than many of the other in
quantities.

5. CONCLUDING REMARKS
A mathematical and numerical model has been developed
the evolution of a thin liquid coating layer on a low-energy su
N A DRYING LIQUID FILM 373
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strate. The coating forms particular patterns of holes, rid
filaments, and, ultimately, droplets as it dries. Most of the f
tures exhibited by the model are also seen in videos taken
an experiment. While the agreement between the model
experimental results is generally quite good, there are some
ferences which can be attributed to the various simplificati
employed in developing the model. The experimental pictu
show somewhat more sharply defined features than do the m
results. These include narrower ridges around expanding h
and smaller satellite droplets than those given by the model.
model uses a number of assumptions that contribute to an
all smoothing effect, including compositional uniformity acro
the film thickness, a particularly simple law expressing visc
ity dependence on composition, an assumed perfectly flat in
layer, and periodic boundary conditions on the computatio
domain. The small-slope approximation that is inherent in
brication theory, as used here, is another, relatively minor, so
of error.

In addition, the postulated two-term disjoining model us
here, must be considered an empiricism, as far as the initia
stability is concerned. Once apparent contact lines form,
class of models can incorporate appropriate contact-angle i
mation and permit motion of contact lines for various choi
of exponent pairs. This fact was demonstrated by us in a dro
breakup simulation that was accompanied by experimental
firmation (11). There (3, 2) and (4, 3) models were compa
with the Lennard–Jones-based (9, 3) exponent pair used by
ers (13, 14). Each model was shown to provide an adequa
to the experimental data. For a wetting layer of 50-µm thick-
ness and an assumed perfectly uniform composition, howe
no model that is based on molecular interactions can be expe
to be the explanation for the initial instability. In the experime
we believe that it is the finite size of the wax particles, the larg
of which may be comparable in size to the coating thickness,
causes the initial nucleation.

It has been established that the principal determinant of
reticulation pattern is the location of the “seed” disturbanc
Since the seeds used in the model are taken from the experim
and the fluid flow and drying model appear to capture the m
important aspects of the physics, the simulation gives a g
match to the experimental profiles until the coating becom
immobile. This is perhaps remarkable since pattern format
while surely being a deterministic process, embodies the b
attribute of chaos. That is, as time evolves, strong sensitivit
the details of the initial conditions should make long time p
diction increasingly difficult (28, p. 320). Apparently, it is th
short duration of the experiment, because of rapid drying,
makes quantitative comparison possible. For longer proce
chaotic behavior is expected to become dominant. Even for
cases, however, we believe that the model has the ability to
resent the evolving patterns in the sense that statistical mea
of the patterns will be correctly predicted.

for

b-
Possible extensions and improvements to the model can ad-

dress other forces that can arise in coating flow, as well as more
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complex fluid rheology. In addition to the solutal Marangoni
fect that is important for solvent-based coatings, the presenc
surface-active material can cause surface tractions that drive
in the liquid film. Common coating mixtures often are shear th
ning. A three-constant generalized-Newtonian flow model
be shown to be consistent with the lubrication approximati
Often substrates to be coated have significant surface feat
The present model could also be extended to incorporate no
substrates. Each of these extensions has been demonstra
earlier work on related problems (2, 29–31).

ACKNOWLEDGMENTS

This work is supported in part by the ICI Strategic Research Fund and
NASA Microgravity Program.

REFERENCES

1. Overdiep, W. S.,Prog. Org. Coatings14,159–175 (1986).
2. Weidner, D. E., Schwartz, L. W., and Eley, R. R.,J. Colloid Interface Sci.

179,66–75 (1996).
3. Eres, M. H., Weidner, D. E., and Schwartz. L. W.,Langmuir15,1859–1871

(1999).
4. Kodak Web Site, Glossary of film/video terms, Eastman Kodak Comp

1994–2000,http://www.kodak.com.
5. Elbaum, M., and Lipson, S. G.,Phys. Rev. Lett.72,3562–3565 (1994).
6. Sharma, A., and Reiter, G.,J. Colloid Interface Sci.178,383–399 (1996).
7. Reiter, G., Sharma, A., Casoli, A., David, M.-O., Khanna, R., and Au

P.,Langmuir15,2551–2558 (1999).
8. Sharma, A., and Khanna, R.,J. Chem. Phys.110,4929–4936 (1999).
9. Thiele, U., Mertig, M., and Pompe, W.,Phys. Rev. Lett.80, 2869–2872

(1998).

10. Konnur, R., Kargupta, K., and Sharma, A.,Phys. Rev. Lett.84, 931–934

(2000).
Z ET AL.

f-
e of
flow
in-
an
n.
res.

nflat
ted in

the

ny,

oy,

11. Schwartz, L. W., and Eley, R. R.,J. Colloid Interface Sci.202,173–188
(1998).

12. Schwartz, L. W.,Langmuir14,3440–3453 (1998).
13. Mitlin, V. S.,J. Colloid Interface Sci.156,491–497 (1993).
14. Khanna, R., and Sharma, A.,J. Colloid Interface Sci.195,42–50 (1997).
15. Oron, A., and Bankoff, G.,J. Colloid Interface Sci.218, 152–166

(1999).
16. Howison, S. D., Moriarty, J. A., Ockendon, J. R., Terrill, E. L., and Wilso

S. K.,J. Eng. Math.32,377–394 (1997).
17. Frumkin, A. N.,Zh. Fiz. Khim.12,337 (1938). [In Russian]
18. Deryaguin, B. V.,Zh. Fiz. Khim.14,137 (1940). [In Russian]
19. Sharma, A.,Langmuir14,4915–4928 (1998).
20. Padmakar, A. S., Kargupta, K., Sharma, A.,J. Chem. Phys.110,1735–1744

(1998).
21. Landau, L. D., and Lifshitz, E. M.,“Fluid Mechanics.” Pergamon, Oxford,

1959.
22. Oron, A., Davis, S. H., and Bankoff, G.,Rev. Modern Phys.69, 931–980

(1997).
23. Peaceman, D. W., and Rachford, H. H.,J. Soc. Ind. Appl. Math.3, 28–41

(1955).
24. Conte, S. D., and Dames, R. T.,J. Assoc. Comput. Machinery7, 264–273

(1960).
25. Yanenko, N. N.,“The Method of Fractional Steps.”Springer-Verlag,

Berlin/New York, 1971.
26. Moriarty, J. A., and Schwartz, L. W.,J. Colloid Interface Sci.161,335–342

(1993).
27. Weidner, D. E., Schwartz, L. W., and Eres, M. H.,J. Colloid Interface Sci.

187,243–258 (1997).
28. Strogatz, S. H., “Nonlinear Dynamics and Chaos,” p. 320. Addison–Wes

Reading, MA, 1994.
29. Schwartz, L. W., Moussalli, P., Campbell, P., and Eley, R. R.,Trans. Inst.

Chem. Eng.76,22–29 (1998).
30. Schwartz, L. W.,in “Advances in Coating and Drying of Thin Films”

(F. Durst and H. Raszillier, Eds.), pp. 105–128. Shaker Verlag, Aach
1999.
31. Schwartz, L. W., and Roy, R. V.,J. Colloid Interface Sci.218, 309–323
(1999).


	1. INTRODUCTION
	2. THE MATHEMATICAL MODEL
	3. COMPUTATIONAL ISSUES
	4. COMPARISON OF MODEL RESULTS WITH EXPERIMENT
	TABLE 1
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	5. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

