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With the introduction of readily available technolo-
gy, the subject of physical representations of mathe-
matical concepts has become more of an issue for
mathematics educators (Kaput, 1989).  How technolo-
gy is to be used for student learning may depend on
the choice of representations inherent in the particular
technological tools used. In discussing the idea of re-
flective abstraction and representations Steffe said:

Our operationalization of reflective abstraction
is compatible in its general outline with Kaput's
(1988) view of how mathematical representa-
tional systems arebuilt in computer learning en-
vironments. (1989, p. 7) 

The purpose of this paper is to explore one example
of Kaput's model of multiple linked representation
systems and how that example is compatible with
constructivism.  

Kaput's Representational Systems

James Kaput (1989) has stated that mathematical
meaning-building can come from essentially four
sources, grouped in two categories:

Referential Extension
Via translations between mathematical repre-

sentation systems
Via translations between mathematical repre-

sentation systems and non-mathematical
systems...;

Consolidation
Via pattern and syntax learning through trans-

formations within and operations on the no-
tations of a particular representation
system;

Via mental entity building through reification
of actions, procedures, and concepts into
phenomenological objects which can serve
as the basis for new actions, procedures,
and concepts at a higher level of organiza-
tion...[i.e.] reflective abstraction (p. 168)

For the purposes of this paper, we will consider
only the processes of translations between groups of
mathematical representation systems. According to
Kaput, the translations occur in two different areas
(See figure 1), the mental world and the physical
world.  The mental world is the "...essentially private
world of mental events and state changes..."  1989, p.
169) and the physical world is the "...public world of

characters and lines in some physical medium..."
(1989, p. 169).  Both of these world views, as well as
the correspondences between them, make up a repre-
sentation system, and in this particular case, a mathe-
matical representation system. 

Figure 1: Correspondences between mental
and physical representation systems (Kaput,
1989, p. 169).

Both the mental and physical representations may be
used by the learner to make changes in a particular
mathematical concept of the learner.  The correspon-
dences shown comprise a representation system.
These systems act to help organize the thought pro-
cesses so the learner can build an internal representa-
tion based on an external model (Kaput, 1988).

Referring to Kaput, Goldin defines a representation
system as containing five components:

(a) a represented world;
(b) a representing world;
(c) aspects of the former which are represented;
(d) aspects of the latter which do the     

representing;
(e) the correspondence between them.

(Goldin, 1987, p. 126)  
Based on the above definitions, Kaput (1989) illus-

trates three representation systems of algebra that he
calls "core" systems.  These three systems include the
notational system of algebra, the graphical system as-
sociated with the notations, and the tabular system as-
sociated with both the graphical and notational sys-
tems.  These three systems are linked in a way that
essentially provides equal importance to each compo-
nent.  The formal, set theoretic system associated with
the other systems is included as a central, unifying 
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structure.  Each node of the network is considered to
be a notation system1 and the notation systems are
linked to form a broader, super-system in algebra (See
figure 2).  Kaput goes on to state that the balance of
the importance of each of the individual notational
systems depends on the way in which we define what
it means to "know algebra".

Since working with the external representations of
mathematical functions of one variable is a major em-
phasis of the teaching of algebra and of mathematics
in general, the linked representation example in figure
2 will be the model used as the basis for the remainder
of the paper.  Figure 2 shows Kaput's model for func-
tions of one variable.  As an example of representation
systems, Kaput's multiple linked representations mod-
el lends itself well to further analysis.  The system E-2
represents single valued functions of real numbers
written as an equation such as y = x2 or f(x) = 3x + 1.
Syntax rules in E-2 are the familiar rules for solving
equations that are common in the algebra curriculum.
The system of G-2 consists of the graphs in the Carte-
sian coordinate system of functions of one variable
such as the familiar parabola graph of a quadratic
function or the line graph of a linear function.  The
system T-2 contains the values of the independent and
dependent variables that would be generated for an ar-
bitrary number of substitutions in E-2 or an arbitrary
number of discrete points of G-2.   G-2 may be
thought of as the familiar "T" tables of first year alge-
bra. The three core representations are linked by virtue
of the fact that all of these notation systems are used to
represent the concept of function.  

Figure 2: Interrelationships among various two-
variable algebraic notational systems (Kaput,
1989).

B-2 is also a representation of function.  It consists
of the abstract definition of function given as a set of
binary relations on real numbers.  This system is "fea-
ture-bare" (Kaput, 1989, p. 170) but common in for-
mal discussions of mathematics.  "B-2 is usually
thought of as occupying a privileged position in that
the other systems are regarded as representing it"

(Kaput, 1989, p. 170).
The system E-2 is an example of what Kaput

(1987) describes as a symbol system, in that E-2 is a
symbol scheme2 along with a field of reference (the
real number field) and a systematic rule of correspon-
dence between them.  E-2 also satisfies Goldin's defi-
nition of representation system.  The represented
world is the field of real numbers.  The representing
world is the system of symbols usually associated
with algebra.  The aspects of the represented world
are the field properties of real numbers. The aspects
of the representing world are the syntax rules that are
associated with the manipulations involved in the pro-
cess of solving equations.  The correspondence be-
tween the worlds is the preservation of the field prop-
erties whenever the manipulations of algebra are
performed.  Thus E-2 is both a representation system
and a symbol system.  As a representation system, E-
2 lacks the richness that we usually assume it con-
tains.  That is, it alone is not a strong enough repre-
sentation system to represent the world of physical
experience that we in education usually try to force
upon it (Herscovics, 1989). 

Likewise, the systems G-2 and T-2 are not com-
plete representation systems in the sense that alone,
they do not necessarily convey the information we ex-
pect.  Information may be gained from Cartesian
graphs, but the graphs themselves are not enough to
give a complete picture of the function concept.  Sim-
ilarly, a table of data by itself is not complete.  It can
only convey a discrete picture of a concept that is, in
most school situations, a continuous one.  The least
informative representation system is B-2  because the
concept of binary relations and set-theoretic defini-
tions are so general that the system fails to communi-
cate much more than a mere sketch of the concept of
function.  But as a system, "...the cognitive linking of
[these] representations creates a whole that is more
than the sum of its parts ..." (Kaput,1989, p. 179).

A Constructivist View of the Example 

The multiple linked representation system of Ka-
put's model generally refers to an external system of
presentations that the learner may use to organize
concepts (von Glasersfeld, in press).  von Glasersfeld
views the "didactic" use of what he calls graphic and
schematic representation as being based on "selective
isomorphisms." (von Glasersfeld, 1990 p.10)  That is,
graphic and schematics representations "help to focus
the naive perceiver's attention on particular operations
that are deemed desirable." (1990, p.10)  This appears
to be a basic requirement for building concepts.  With
the basic mental representations of notation, graph
and table in place, and without answering the ques-
tions involved with construction of those basic struc-
tures, the linked physical representations of Kaput are
consistent with the constructivist view.  But, as Kaput
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states, "meanings are developed within or relative to 
particular representations or ensembles of such" (Ka-
put, 1989, p. 168).  

 The overriding concern of the constructivist episte-
mology is the issue of reality (von Glasersfeld, 1984).
In this example, the question centers on the idea of
what is the "real" definition of function.  In the case
of algebra, the formal, mathematical definition, as
represented by B-2 in figure 2, is not the definition
that the learner eventually constructs.  The goal of the
activities with the representations should be to lead
the learner to a definition of function that is more than
the sum of the parts of the representation.  The repre-
sentations should serve as a language with which the
student organizes and reorganizes experiences about
function (von Glasersfeld, 1987).  Instead of viewing
the representations of G-2, T-2, and E-2 as stepping
stones to the formal definition of function, the con-
structivist would say that experiences with G-2, T-2,
and E-2, as well as B-2, could lead to a concept of
function that is always changing with new experienc-
es and never complete.  Thus the physical representa-
tions are all part of the same thing (are compatible or
isomorphic), and may act as ways and means to com-
municate about the experiences.  This compatibility
and overlapping is needed for satisfactory communi-
cation (von Glasersfeld, 1987). Thus, for the construc-
tivist, "there is no absolute meaning for the mathemat-
ical word function, but rather a whole web of
meanings woven out of the many physical and mental
representations of functions and correspondences
among representations" (Kaput, 1989, p. 168).

The links in Kaput's model refer to the regularities
that one finds in moving from one system of represen-
tation to another.  The similarities of one system to
another make it possible for a learner to use one rep-
resentation to build a stronger concept in another sys-
tem.  Further, the learner must find "a way to fit avail-
able conceptual elements into a pattern that is
circumscribed by specific constraints" (von Glasers-
feld, 1987, p. 9).  These "conceptual elements" are the
assimilated constraints made in the language of the
subsystem of the representation system.  Thus, the act
of moving from one system to another while compar-
ing and reorganizing the concepts of function, pro-
motes the reflection and self-monitoring necessary for
further assimilation and abstractions.  Multiple repre-
sentations act to enrich the activities from which ex-
periences are gained, thus perhaps leading to learning
in both representations like the learning  referred to
by von Glasersfeld as  "[drawing] conclusions from
experiences and to act accordingly" (von Glasersfeld,
1987, p. 8).

In the constructivist view, the model for multiple
linked representations would probably look similar to
the model in figure 2 that Kaput has formulated.  The
main difference would be that the system B-2 would
not have the prominence in the figure that Kaput has

implied.  The model would probably look more like
figure 3, with B-2 lowered to the same cognitive level
or a slightly lower level than the other nodes.  The
constructivist would view the formal definition of
function as an important part of the definition, but not
more important than the examples and experiences
that go into making the concept of function for the
learner (Steffe, 1989b).  Thus B-2 could be effective-
ly eliminated in the early stages of learning.  Indeed,
B-2 would be a minor part of the concept until the
corresponding concepts of E-2, G-2, and T-2 are firm-
ly in place.  For school algebra, this would imply that
the formal definitions be postponed until a rich back-
ground of concepts has been developed by the stu-

dent.

Figure 3: The constructivist view of Kaput's
model.

The links of Kaput's model would still be in place
in the constructivist view.  Each of the nodes are con-
nected to all the other nodes directly, with a bi-
directional path of length one from each node to the
others.  A learner would move from one representa-
tion to another in much the same way as the marchers
make "progress" in M. C. Escher's Ascending and De-
scending (a simplified version is shown in figure 4),
always going upward by building on those concepts
already formed, and then returning to previously
formed concepts on a richer conceptual level, com-
pleting a "strange loop" (Hofstadter, 1979), that is a 

Figure 4: Simplified version of Ascending and
Descending. (Jacobs, 1974, p. 538).
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circular journey that ends at the beginning but on a
different level.  One can imagine that the steps are
drawn in such a way that the learner could move di-
rectly upward to any of the other three nodes without
going through any intervening nodes.  Likewise, the
learner could move backwards to a comfortable level
and then take another path upward.  Each step would
involve self-monitoring and possible reconceptual-
ization.  

One suggestion that Kaput (1989) has proposed is
that the representations model be implemented in a
computer environment in such a way that the links
from one representation to another be actual transla-
tions from one setting to the other on the computer
screen.  In this form, a learner could have windows
containing the three basic representations of a func-
tion.  The student could change parameters in one rep-
resentational window and the modifications would au-
tomatically be made in the other windows.  For
example, suppose f(x) = x2 + 1 is shown in the equa-
tion window, the graph of y = f(x) is shown in the
graph window, and a table of the data points is shown
in the table window.  The learner could change the
function to f(x) = x2 - 1, for instance.  The resulting
changes in the graph would be made in the graph win-
dow and the table of data would be changed accord-
ingly.  Likewise, the learner could modify the shape
of the graph in the graph window, perhaps by using a
mouse as in FUNCTION PROBE by Confrey (1989),
and the resulting change would be made to the equa-
tion displayed in the equation window.  The appropri-
ate correction would also be made automatically in
the table display.  Or an alteration to the  data would
result in a changed graph and modified equation.
Thus the work-space would provide a dynamic setting
for activities in each of the representation windows.

This dynamic window setting would fit the con-
structivist view of the way the learner builds knowl-
edge.  Switching from one window to another and
watching the changes made, could lead to reflection
and reorganization of concepts.  Operating in one
window by using the references of the other windows
could help the learner build new operations from the
old ones.  The teacher's responsibility, in such an en-
vironment, would be to help with the decisions about
which representation to turn to next and to make sug-
gestions about possible misconceptions (Steffe,
1989b).  

So, the example of the representation system of Ka-
put, with some modifications, would be consistent
with the constructivist view.  The differences between
constructivism and other world views is in the way re-
ality is defined.  For the constructivist, the reality of
function is the learner's own definition of function.
Making a physical representation for the learner to
use is not a sufficient condition for the construction of
the function concept, but activities with those repre-

sentations may help the learner to develop the con-
cept.

Notes:

1. "When A and its syntax are considered apart from a
field of reference, they are called a notation system"
(Kaput, 1989, p. 169).

2. "A symbol scheme  is a concretely realizable col-
lection of characters together with more or less ex-
plicit rules for identifying and combining them" (Ka-
put, 1987, p. 162).
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From Dr. Wilson's Notebook...

Spider Web

A spider has woven a web beginning with segment CA and then zigzagging between lines BA and BC as shown
in the diagram below.  Suppose that BC = 1 and that angle ABC has measure 45 degrees.  Calculate the length
of the zigzag path from C to B.

Possible Extensions/Variation:  Vary the measure of angle ABC.


