
Perceptual Grouping Based on Iterative
Multi-Scale Tensor Voting

Leandro Loss1, George Bebis1, Mircea Nicolescu1, and Alexei Skourikhine2

1Computer Vision Laboratory, University of Nevada, Reno
2Space and Remote Sensing Sciences Group, Los Alamos National Laboratory

(loss,bebis,mircea)@cse.unr.edu, alexei@lanl.gov

Abstract. We propose a new approach for perceptual grouping of ori-
ented segments in highly cluttered images based on tensor voting. Seg-
ments are represented as second-order tensors and communicate with
each other through a voting scheme that incorporates the Gestalt prin-
ciples of visual perception. An iterative scheme has been devised which
removes noise segments in a conservative way using multi-scale analysis
and re-voting. We have tested our approach on data sets composed of
real objects in real backgrounds. Our experimental results indicate that
our method can segment successfully objects in images with up to twenty
times more noise segments than object ones.

1 Introduction

Grouping processes, which ”organize” the given data by eliminating the irrele-
vant items and sorting the rest into groups, each corresponding to a particular
object, are indispensable in computer vision. Determining groups in a given set
of points or edgels can be a very difficult task, as the actual measurement of
compatibility within a sub-set is not well defined. There has been considerable
research work in this area over the last two decades.

In [1], Lowe discusses the importance of the Gestalt principles of collinearity,
co-curvilinearity and simplicity for perceptual grouping. Ahuja and Tuceryan [2]
have introduced methods for clustering and grouping sets of points having an
underlying perceptual pattern. Mohan and Nevatia [3] have assumed a-priori
knowledge of the contents of the scene (i.e., aerial images). A model of the
desired features was then defined, and groupings were performed according to
that model. Ullman [4] has suggested that a curve joining two edge fragments
is formed by a pair of circular arcs that minimizes the integral of the square of
the curvature. He also proposed a network model, but no results were shown.
Clearly, elliptical curves cannot be constructed by joining only a pair of circular
arcs. Also, this scheme cannot be easily generalized to a set of three or more edge
fragments, and does not allow for outliers. Parent and Zucker [5] have described
a relaxation labeling scheme where local kernels were used to estimate tangent
and curvature. These kernels used support functions based on co-circularity.
Somewhat similar kernels are used in our methodology, but applied in a different
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way. Ullman and Sha’ashua [6] have proposed the use of a saliency measure to
guide the grouping process, and eliminate erroneous features in the image. Their
scheme prefers long curves with low total curvature by using an incremental
optimization scheme.

More recently, Williams and Thornber [7] have proposed a probabilistic ap-
proach based on Closed Random Walks. In their approach, saliency is defined
relatively to the number of times an edge is visited by a particle in a random
walk. The main restriction assumed in that work was that the movement has to
start and finish on the same edge (i.e., closed random walk). This reduces the
number of paths to consider along with the complexity of the problem, however,
it imposes a restriction that is not practical. Their technique was compared with
five other methods in the literature and found to outperform them considering
a benchmark of real objects.

The use of voting for salient feature inference from sparse and noisy data was
introduced by Guy and Medioni [8] and then formalized into a unified tensor vot-
ing framework [9]. Tensor voting represents input data as tensors and interrelates
them through voting fields which are built from a saliency function that incor-
porates the Gestalt laws of proximity and continuation. The methodology has
been used in 2D for curve and junction detection and for figure completion. It
has also been applied in 3D for dense reconstruction from stereo or multiple
views and for tracking.

In this paper, we propose a new approach for perceptual grouping of oriented
segments in highly cluttered images based on tensor voting. Specifically, we have
devised an iterative scheme that removes noise segments using multi-scale anal-
ysis and re-voting. In contrast to traditional tensor voting approaches, that use
hard thresholding and single-scale analysis, our method removes noise segments
conservatively according to their behavior across a range of scales, and applies re-
voting on the remaining segments to estimate saliency information more reliably.
Our experimental results illustrate that this iterative, multi-scale thresholding
scheme, coupled with re-voting, improves segmentation results remarkably.

The rest of this paper is organized as follows: Section 2 reviews the tensor
voting framework, discusses the main challenges in employing tensor voting for
grouping, and presents the new approach. Section 3 describes the datasets used
in our experiments and the evaluation methodology. Section 4 presents our ex-
perimental results and comparisons. Finally, conclusion and directions for future
work are presented in Section 5.

2 Perceptual Grouping Using Tensor Voting

2.1 The Tensor Voting Framework

In the framework proposed by Guy and Medioni [8], input data is encoded as
elementary tensors. Support information (including proximity and smoothness of
continuity) is propagated from tensor to tensor by vote casting. Tensors that lie
on salient features (such as curves in 2D, or curves and surfaces in 3D) strongly



Lecture Notes in Computer Science 3

support each other and deform according to the prevailing orientation, producing
generic tensors. Each such tensor encodes the local orientation of features (given
by the tensor orientation), and their saliency (given by the tensor shape and
size). Features can be then extracted by examining the tensors resulted after
voting.

In 2D, a generic tensor can be visualized as an ellipse. It is described by
a 2 × 2 eigen-system, whose eigenvectors e1, e2 give the ellipsoid orientation,
while eigenvalues λ1, λ2 (with λ1 ≥ λ2) give its shape and size. The tensor is
represented as a matrix S:

S = λ1 · e1e
T
1 + λ2 · e2e

T
2 (1)

There are two types of features in 2D - curves and points (junctions) - that
correspond to two elementary tensors. A curve element can be intuitively en-
coded as a stick tensor where one dimension dominates (along the curve nor-
mal), while the length of the stick represents the curve saliency (confidence in
this knowledge). A point element appears as a ball tensor where no dimension
dominates, showing no preference for any particular orientation.

Input tokens are encoded as such elementary tensors. A point element is
encoded as a ball tensor, with e1, e2 being any orthonormal basis, while λ1 =
λ2 = 1. A curve element is encoded as a stick tensor, with e1 being normal
to the curve, while λ1 = 1 and λ2 = 0. Tokens communicate through a voting
process, where each token casts a vote at each token in its neighborhood. The
size and shape of this neighborhood, and the vote strength and orientation are
encapsulated in predefined voting fields (kernels), one for each feature type -
there is a stick voting field and a ball voting field in the 2-D case. Specific details
about the voting generation process can be found in [8].

At each receiving site, the collected votes are combined through simple tensor
addition, producing generic tensors that reflect the saliency and orientation of
the underlying salient features. Local features can be extracted by examining
the properties of a generic tensor, which can be decomposed in its stick and ball
components:

S = (λ1 − λ2) · e1e
T
1 + λ2 · (e1e

T
1 + e2e

T
2 ) (2)

Each type of feature can be characterized as: (a) Curve (saliency is (λ1−λ2),
normal orientation is e1), and (b) Point (saliency is λ2, no preferred orientation).
After voting, curve elements can be identified as they have a large curve saliency
λ1 − λ2 (and appear as elongated tensors), junction points have a local large
point saliency λ2 and no preferred orientation (appear as large ball tensors),
while noise points have low point saliency. Therefore, the voting process infers
curves and junctions simultaneously, while also identifying outliers (tokens that
receive little support). The method is robust to considerable amounts of outlier
noise and does not depend on critical thresholds, the only free parameter being
the scale factor σ which defines the voting fields.
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2.2 Applying Tensor Voting for Grouping

Although the tensor voting framework has only one free parameter, the scale σ,
several other issues must be considered when using it for perceptual grouping
and segmentation. The voting dimensionality, the features to be used as tokens,
and the encoding of the input tokens are examples of issues that need our atten-
tion. The voting dimensionality is determined by the number of features to be
used to represent the information at hand. Ideally, a small number of features
with maximal representation capability is desired. This raises the issue of what
features to use as input tokens. Token encoding has considerable impact on the
performance of the framework. In the case of edges, one can choose several dif-
ferent tensor representations. For example, one way would be assigning a ball
tensor at each pixel of the contour. Alternatively, one can assign a stick tensor
at each pixel location with position and orientation information computed ac-
cording to its adjacent neighbor; since tensors have no direction, the choice of
the neighbor does not matter. Finally, one could also select representatives of
the contour and initialize them as stick tensors. In this study, we follow this last
approach. In our case, we re-sample the contour using a fixed sampling step,
and initialize the framework using the sampled pixels which are encoded as stick
tensors. Their position is determined by the position of the sample and their
orientation by using the direction proportional to the gradient.

Another issue that needs careful consideration is the selection of the scale
parameter σ. In [10], it was found that the framework has low sensitivity with
respect to σ. However, finding the appropriate σ value might not be easy in
practice. It is well known that small scales capture local structures while large
scales capture global configurations. In a real scenario, it is unlikely that we
would have any a-priori information about the size of objects in the scene,
making the choice of the scale parameter a ”trial-and-error” process. In general,
the choice of the scale parameter will vary from application to application, or
even worse, from image to image. Moreover, analyzing information at a single
scale can compromise or make hard the detection of structures having different
sizes.

This situation can be illustrated using an image with two similar figures, one
smaller than the other, shown in Fig. 1. To help the visualization, we have plotted
”Scale versus Saliency” curves, thereafter called saliency curves. Specifically, a
saliency curve is created by voting in different scales and computing the saliency
of each segment in each scale. We then normalize the saliency curves according
to the average saliency of all segments in the image. This is done in order to
prevent a monotonically increasing curve. Such a situation could result from the
fact that, as the voting neighborhood increases, the segment saliency increases
simply because new segments are considered.

As the voting neighborhood increases, the smaller circle starts becoming more
salient since more of its segments are considered in the voting process. Its saliency
maximum is reached when the voting neighborhood covers all its segments, (i.e.,
when scale σ is around 10). After this point, not having any more segments to
strengthen its saliency, the smaller circle starts ”losing” saliency for the larger
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Fig. 1. Two circles having different size and saliency. (a) Segments having their saliency
behavior analyzed. (b) Normalized saliency curves corresponding to the segments cho-
sen in (a). The saliency of the smaller circle grows until the voting neighborhood
covers all of its segments. After this point, the saliency of the larger circle surpasses
the saliency of the smaller circle and keeps growing until it reaches its own maximum.

one, which becomes more salient as more of its segments are included the voting
neighborhood. After the larger circle reaches its saliency maximum, at scale σ
around 35, its saliency curves stabilizes since there are no more segments to
consider beyond this scale.

Another important issue when segmenting a figure from background is the
choice of a threshold to filter out non-figure segments. It is reasonable to expect
that if the saliencies of the figure are quite different from those of the background,
then it would be easy to find a threshold value to separate them completely. Fig.
2 shows a simple example. In this example, we consider a well-formed circle
surrounded only by random noise at a signal-to-noise ratio (SNR) equal to 70%.
If we apply tensor voting to the image segments and plot the saliency histogram,
it is easy to see that eliminating segments with saliencies below a threshold value
T equal to 45% filters out noise completely.

However, this is hardly the case in practice. Let us consider, for example,
the image shown in Fig. 3(a). If we apply tensor voting to its segments and plot
the corresponding saliency curves or saliency histogram at a large scale, we can
easily verify that there is no way to get a perfect segmentation of the figure from
the background. This would be also true at different scales. Moreover, even if we
choose an optimal threshold value using the saliency histogram, the number of
misclassified segments would be unavoidably large (i.e., see Fig. 3(d), 3(e), 3(f)).

2.3 Iterative Multi-Scale Tensor Voting Scheme

Aiming at eliminating the largest number of background segments while pre-
serving most figure ones, we have developed an iterative scheme based on multi-
scale analysis and re-voting. The main idea is removing segments from the image
conservatively in an iterative fashion, and applying re-voting on the remaining
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Fig. 2. A simple example where figure and background can be separated by using a
single threshold. (a) Original image. (b) Saliency histogram and choise of threshold T.
(c) Resulted segmentation.

segments, to estimate saliency information more reliably. Improvements in figure
segmentation come from the fact that, after each iteration, low salient segments
are filtered out and, after the subsequent re-voting sessions, the support to back-
ground segments is reduced. After a conservative elimination of segments, the
difference in saliency between figure and ground segments becomes much more
pronounced.

In our methodology, the conservative elimination is done by applying a low
threshold value Ts, which removes almost always background segments. A new
application of tensor voting follows so that a new saliency map is obtained,
without considering the eliminated segments. After re-voting, the threshold value
is increased to adapt to the strengthening of figure saliency due to elimination
of noise. In practice, we increase Ts after each re-voting session by a fixed step
Steps.

Multi-scale analysis is incorporated to this scheme by voting in a number of
scales and thresholding according to the behavior of saliency along them. Specif-
ically, the saliency curve is computed by voting in different scales and computing
the saliency of each segment in each scale. Segments are then eliminated if they
do not present any significant peaks of saliency across a range of scales. This
preserves salient segments of any size. Algorithmically, this is implemented by
counting how many times the saliency curve of a segment is above the threshold
Ts. If the number of times does not exceed another threshold Tσ, we consider
that the segment does not have a significant saliency peak and it is eliminated.
As mentioned in the previous section, we normalize the saliency curves according
to the average saliency of all segments in the image.

Fig. 4 shows the behavior of figure (red) and background (blue) saliencies as
the multi-scale, adaptive thresholding is applied. The image has a SNR equal
to 15% (i.e., about 7 times more background segments than figure ones). The
threshold values Ts goes from 10% up to 40% with Steps equal to 10%. The
voting was performed with a σ ranging from 1 (5% of image size) to 20 (100% of
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Fig. 3. An image with SNR equal to 15% processed by different threshold values. A
fixed threshold value (T), cannot result in a good segmentation at any scale. (a) Original
image. (b) Saliency curves corresponding to segments of the figure and background
in the ambiguity region. (c) Saliency histogram with various threshold choices. (d)
Thresholding at 40%. (e) Thresholding at 55%. (f) Thresholding at 70%.

image size). The improvements over the using a fixed threshold and single scale
(i.e., näive approach) are remarkable.

3 Datasets and Evaluation Methodology

Experiments were performed based on the set of fruit and texture sampled sil-
houettes provided in [7]. As in [7], each benchmark image was created from a
pair of sampled silhouettes belonging to a fruit or a vegetable (thereafter called
figure) and textured background (thereafter called background). Nine figure sil-
houettes were re-scaled to an absolute size of 32x32 and placed in the middle of
nine 64x64 re-scaled ground windows. We experimented with five different SNRs
in order to reduce the number of figure segments proportionally to the number
of background segments. Further details regarding this benchmark can be found
in [7]. Fig. 7 shows some examples of benchmark images at different SNRs. The
total number of images used in our experiments was 405.
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Fig. 4. Image with SNR equal to 15% processed by our iterative, multi-scale threshold-
ing scheme. By conservatively eliminating segments, the saliency difference between fig-
ure and background starts becoming more pronounced. (a) Original image. (b) Saliency
curves of background segments in the ambiguity region. (c) Saliency histogram at the
largest scale. (d) Resulting image using Ts = 20%. (e) Saliency curves of the segments
in the ambiguity region for image (d). (f) Saliency histogram at the largest scale for
image (d). (g) Resulting image using Ts = 40%. (h) Saliency curves of the segments
in the ambiguity region for image (g). (i) Saliency histogram at the largest scale for
image (g).
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Quantitative evaluations and comparisons of different methods were per-
formed using Receiver Operational Characteristic (ROC) curves, (i.e. False Pos-
itives (FP) versus False Negatives (FN)). A FN is a figure segment detected as
background; conversely a FP is a background segment detected as figure. The
ROC curves presented are average curves over all images in the dataset. In order
to allow a direct comparison with Williams and Thornber’s method (WT) [7],
SNR vs FP and SNR vs FN graphs are also shown.

4 Experimental Results and Comparisons

Saliency histograms were plotted for the different SNRs used in [7] (see Fig. 5).
For each histogram, we used 81 images (9 figures and 9 backgrounds).
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(b) SNR at 15%
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(c) SNR at 5%

Fig. 5. Saliency behaviors assuming various SNRs (red corresponds to figure and blue
corresponds to background). σ was set to 20 (i.e., voting field covers the entire image).
As SNR decreases, background and figure start to overlapping up to the point where
figure becomes indistinguishable from background.

It can be noted that, as SNR decreases, figure (red) and background (blue)
start overlapping up to a point where figure becomes indistinguishable from
background. The larger the overlap between figure and background, the harder
is to visually separate the object in the image. At some point (for instance,
when SNR is below 10%) the structures of the background are visually more
distinguishable than the figure itself. This effect is mainly due to the use of
sampled textures (leaves, bricks, etc) as background instead of random noise.

Figure 6(a) shows the ROC curves assuming a single-scale and a fixed thresh-
old. The scale was chosen based on knowledge of the benchmark images (i.e., σ
was set equal to 20, yielding a voting field that covers the entire image).

Figure 6(b) shows the ROC curves using the proposed iterative, multi-scale
adaptive thresholding scheme. The scale parameter σ varies from 2 to 20 (cover-
ing from 5% to 100% of the image), Steps was equal to 5%, and Tσ was equal to
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Fig. 6. (a) ROC curves for different SNR limit acceptance. At SNR below 10%, the
perception of the figure becomes more difficult. This is reflected by the overlapped
curves in their histograms of Fig. 5, and the worst performance for the ROC curves for
SNR up to 10% and 5%. (b) ROC curves for different SNR limits according to the multi-
scale, adaptive threshold with Steps equal to 5%. It is possible to note improvements
in all ROC curves comparing to the curves for the näive approach (single-scale, fixed
threshold) shown in (a). In addition, the curve for SNR up to 10% is closer to the higher
ones (25%, 20% and 15%), showing that the iterative, multi-scale adaptive thresholding
deals better with cluttered images.

50% (i.e., the saliency curve must be above Ts in at least half of the processed
scales). This allows structures to pop out in any region of the scale range. Sig-
nificant improvements can be noted by comparing Figure 6(b) to Figure 6(a).
In addition, the curve corresponding to SNR equal to 10% is closer to the ones
corresponding to higher SNRs (i.e., 25%, 20% and 15%). This indicates that the
iterative multi-scale adaptive thresholding approach deals with cluttered scenes
much better. Fig. 7 shows three representative results using the iterative multi-
scale tensor voting approach.

To compare our results with those given in [7], we have created plots of
SNR vs FP, shown in Fig. 8(a). Specifically, Fig. 8(a) compares results obtained
using the näive approach (single-scale, fixed threshold at T=30% - Fig. 6(a)),
the best result obtained by our iterative, multi-scale tensor voting scheme (i.e.,
3 iterations using Steps=5% - Fig. 6(b)), and the results reported in [7]. Since
the results in [7] were not provided explicitly, we used a ruler over a hard copy
of their plots to infer the values shown for their method in Fig. 8(a).

Fig. 8(b) is a plot of SNR vs FN. In this case, a direct comparison with [7]
is not possible since they do not report FN rates. As it can be seen from the
graphs, our iterative, multi-scale tensor voting approach shows improvements of
more than 14% over [7] when SNR is equal to 25%, and improvements of almost
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(d) (e) (f)

Fig. 7. Representative results based on our methodology: (a,d) avocado on bark at
SNR equal to 20%, (b,e) pear on wood background at SNR equal to 15%, (c,f) pear
on wood at SNR equal to 5%.

90% when SNR is equal to 5%, while keeping a low FN rate (i.e., eliminates noise
without compromising figure information). Compared to the näive approach, the
iterative multi-scale approach improves figure vs noise discrimination by 5% on
the average for all SNRs considered. The graphs also show a significantly smaller
depreciation of performance as SNR decreases.

5 Conclusions and Future Work

We have presented a new approach for perceptual grouping of oriented segments
in highly cluttered images based on tensor voting. Our approach uses an iter-
ative scheme that removes noise conservatively using multi-scale analysis and
re-voting. We tested our approach on data sets composed of real objects in real
backgrounds. Our experimental results indicate that our method can segment
successfully objects in images with up to twenty times more noise segments than
object ones.

For future work, we plan to test our method on more challenging data sets
including objects with open contours as well as multiple objects of the same and
of different sizes. Moreover, we plan to devise a procedure for choosing Steps

and Tσ automatically at each iteration. Although the choice of Steps did not
seem to be very critical in our experiments, we feel that choosing this parameter
in a more optimal way would probably help in certain situations.
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Fig. 8. Plots of (a) SNR vs FP and (b) SNR vs FN. The iterative, multi-scale tensor
voting approach outperforms the method in [7] (WT) as well as the näive approach.
Also, it has a low FN rate and performs consistently as SNR decreases).
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