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Lecture 19

Penetration Theory
(unsteady-state mass transfer model / surface renewal model)

1.0 Answers needed:

1.1 what is the correction factor?

1.2 what is [k] in terms of binary k’s?

1.3 can also give kij

N( ) C β[ ] k[ ] Ξ[ ] y0 yδ–( )=
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2.0 What is the Model? (section 9.1)

2.1 surface renewal idea?

2.2 transient model

2.3 exposure time (te)

2.4 Higbie (1935)
all surface elements have same exposure time

2.5 Danckwerts (1951)
chance of surface element being replaced with
fresh fluid is independent of the thime for which it
has been exposed

where s is the fraction of the surface area that
is replace with fresh fluid in unit time

ψ t( ) 1
te
----=

ψ t( ) se
st–

=
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3.0 Binary Analysis (section 9.2):

3.1 Higbie low mass flux mass transfer coefficient k:

3.2 Danckwerts low mass flux mass transfer coef. k:

3.3 Correction factor Ξ :

where

3.4 ‘A priori’ need for te or s

3.5 iterative method needed

k 2 D
πte
-------=

k Ds=

Ξ Φ2
– π⁄( )exp

1 erf Φ π( )⁄( )+{ }
--------------------------------------------------=

Φ Nt ctk( )⁄=
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4.0 Multicomponent Analysis (sec. 9.3)

4.1 exact analytic solution of this approximate model is
not useful (too cumbersome).

4.2 Linearized theory approximation useful

4.3 assuming constant [D],
evaluated at average properties
4.3.1 form for multicomponent [k]:

4.3.1.1 Higbie model: equation 9.3.33
4.3.1.2 Danckwerts model: equation 9.3.34

4.3.2 form for correction factor for both models
given in equations 9.3.31 and 9.3.32

4.4 using modal matrix approach
equations 8.4.25, 9.3.37-39
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5.0 Limitation of Penetration(classical) Theory

5.1 boundary condition (eq. 9.1.6):

5.1.1 the penetrating, or diffusing component does
not see the bulk fluid

5.1.2 strictly true only for short contact times

5.2 for long contact times and/or short distances
between the interface and the core (δ) of the fluid
phase need improved penetration theory!

5.3 thus is the case for many bubbles, drops, jets:

z ∞→ t 0> xi xi∞=

Fo
Dt

δ2
------ 0.20<=

⇒
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6.0 Fractional Approach (section 9.4.1)

6.1 define the fractional approach to equilibrium:

6.2 find the Sherwood Number for spherical particle at
time t by taking the driving force to be

where

6.3 When substituted and solved to give Sh as a func-
tion of time:

6.4 Or averaged across time to give:
 or

where  is the surface area per unit volume
and t is the contact time.

F
x10 x1〈 〉–( )
x10 x1I–( )

-----------------------------≡

x10 x1〈 〉–( )
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2

3 1 F–( )
---------------------
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6.5 Note: this results in Sh at large Fo approaching a
limit where k varies with D (as in the film model) as
opposed to D1/2 as in the classical penetration
model.

6.6 This model has also been revised for internal circu-
lation (see eqns. 9.4.9 and 9.4.10)

6.7 The solution for cylinders (jets) is also shown (see
eqns. 9.4.12 - 9.4.14)

7.0 Multicomponent Analysis (sec. 9.4.2)

7.1 analysis with constant [D].

7.2 solution using Sylvester’s formula: eqn. 9.4.26

7.3 solution using modal matrix of the Fick matrix [D]

7.4 see example 9.4.1
which shows sensitivity to Fo.
this revised method improves the multicomponent
analysis significantly
(can even change the direction of the mass trans-
fer)


