The Structure of Quasicrystals

Quasicrystals are neither uniformly ordered like crystals nor
amorphous like glasses. Many features of quasicrystals can
be explained, but their atomic structure remains a mystery

by Peter W. Stephens and Alan I. Goldman

hen alwminum, copper and

iron are melted together and

cooled, they can solidify to
form a prain in the shape of a perfect
dodecahedron, a geometric solid whose
12 faces are regular pentagons. Al-
though this dodecahedral grain looks
like a crystal, it is not. Crystals are
composed of identical building blocks
called unit cells, each containing pre-
cisely the same distribution of atoms
and each fitting together with its neigh-
hors in the same way. A dodecahedral
grain cannot be constructed from atoms
in unit cells of a single shape whether
they be small cubes or even dodeca-
hedrons. The dodecahedral grain is a
quasicrystal.

Indeed, all probes of atomic-scale
striucture show that quasicrystals are
not made up of repeated unit cells. It
is clear that these exotic new materi-
als cannot be crystals, but it is not im-
mediately apparent just what they are.
As physicists, chernists and materials
scientists have investigated the struc-
ture of quasicrystals, they have come
to realize that periodic crystals, whose
atomic structures they have studied
over the past 78 years, are but a subset
of the possible types of ordered solids.

Since 1984, when Dan §. Shechtman
and his colleagues at the National In-
stitute of Standards and Technology
(n15T) discovered the first quasicrystal,
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workers have fabricated many different
species of guasicrystalline alloys [see
“Quasicrystals,” by David R. Nelson;
SCIENTIFIC AMERICAN, August 1986].
They have learned how to improve
samples to the point that they can
guantitatively study issues that were
only idle speculations seven years ago.
The study of quasicrystals has ad-
vanced three theories about their struc-
ture; the Penrose, glass and random-
tiling models.

The Penrose model—derived from
the work of mathematician Roger Pen-
rose of the University of Oxford—sug-
gests that guasicrystals are composed
of two or more unit cells that fit to-
gether according to specific mles. The
model accurately describes some of the
basic properties of guasicrystals, but
it has difficulty explaining how these
rules might be related to atomic growth
Pprocesses,

The glass model, in contrast, relies
on local interactons to join clusters of
atoms in a somewhat random way. Ac-
cording toc the model, all the clusters
have the same orientation, but because
of random growth, the structure con-
tains many defects.

It now seems that the two mod-
els are converging toward a third, the
random-tiling model, which combines
some of the best features of its prede-
cessors. In the past few years the struc-
ture of quasicrystals has been one of
the most hotly debated topics in solid
state physics. The resolution of this de-
bate may lead to a theory of quasicrys-
talline structure and guide the develop-
ment of materials with unusual struc-
tural and electrical properties

o produce the first quasicrystals,
Shechtman and his colleagues at
N1$T melted together alurninum
and manganese and then squirted the
molten metals against a rapidly spin-
ning wheel, thereby achieving a cooling
rate of about one million kelvins per
second, This abrupt cooling process,
called quenching, can “shock” the alloy

into a variety of novel structures, or
phases. To understand these unusual
phases of matter, one must first havea
grasp of some of the principles of basic
crystaliography.

A crystal can possess only certain
symmetries hecause there are a limit-
ed number of ways that identical unit
cells can be assembled to make a so-
id. For instance, a salt crystal is com-
posed of cubic unit cells that stack
to form: cubic grains. Consequently, the
salt crystal has fourfold rotational sym-
metry: when the crystal is simply rotat-
ed through a guarter turn around the
appropriate axis, atoms of the rotated
crystal occupy the same pesitions 3
those of the unrotated crystal. Crystals
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can have only twofold, threefold, four-
-fold and sixfold symmetry.
A crystal can never have, say, five-
* symmetry, because a single unit
_that has fivefold symmetry, such as
dodecahedron, cannot be assembled
o completely fill space. There will al-
vays be gaps between the dodecahe-
dral unit cells.
To determine the structure of a crys-
tal, investigators use an indirect, but
- well understood, technigue. Atoms in
b 2 crystal are arranged in families of
parallel planes. Each such plane acts as
mirror to incoming X rays, electrons
and other rays or particles that trav-

=

el through space as a wave. Each plane
reflects the incident waves very weakly.
But if the reflected waves from each
member of a family of planes combine
in phase, the total intensity of the re-
flected wave can hecome quite strong.
This phenomenon is called diffraction;
it occurs whenever any type of wave in-
teracts with an ordered structure of the
appropriate spacing.

When a crystal is bombarded by a
beamn of X rays or electrons, the angles
through which the waves are diffracted
reveal the shape and dimensions of the
unit cells of the crystal. The diffracted
waves can be recorded, for example, on

a photographic emulsion, where they
appear as a pattern of bright spots.

All the symmetries of a crystal are
reproduced in its diffraction patiern. A
crystal with sixfold rotational symme-
ry will produce a diffraction pattern
that also has sixfold symmetry. Because
no crystal can have a fivefold symme-
try axis, one would not expect to see a
diffraction pattern that has fivefold ro-
tational symmetry. ;

Nevertheless, when Shechtman and
his colleagues illuminated a grain of the
aluminum-manganese alloy with elec-
trons, they found a diffraction pattern
that had fivefold rotational symmetry.
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PERIODIC OR QUASIPERIODIC pattern can arise when a plane
cuts through a stack of cubes (left). The green plane inter-
sects the cubes to form the green pattern at the right. It is

Indeed, by rotating the sample by the
appropriate angles, they deduced that
the alloy had six fivefold symmetry
axes. In technical terms, the alloy has
icosahedral symmetry, because an ico-
sahedron is a 20-sided solid that has
six fivefold rotational axes in the same
orientation as the alloy.

The icosahedral alloys are only one
of many families of quasicrystals dis-
covered during the past seven years.
All these materials have symmetries
that are “forbidden” in conventional
crystals. Leonid A. Bendersky of NisI
found that aluminuwm and manganese
can form a material that is periodic
along one direction and has tenfold ro-
tational symmelry in the perpendicular
plane. Workers have also recently fabri-
cated quasicrystals with eightfold and
12-fold symmetry. In somie sense, these
quasicrystals provide a link between
quasicrystalline and crystalline order.
They also demonstiate that the phe-
nomenon of guasicrystallinity extends
far beyond ideas about icosahedral
symmetry and the stability of specific
fcosahedral clusters of atoms.

he first model for quasicrystals

emerged from the mathematics

of tling—a field advanced by
Penrose and others during the 1970s
[see “Mathematical Games,” by Martin
Gardner; SCIENTIFIC AMERICAN, Janu-
ary 19771 Penrose examined how two
or more shapes could be assembled in
a guasiperiodic way to tile a plane, that
is, to cover it completely with shapes
that do not overlap. Each of these gua-
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siperiodic tilings, now known as Pen-
rose tilings, could be constructed using
a set of instructions called matching
rules [see box on page 51].

In 1982 Alan L. Mackay of the Uni-
versity of London calculated the dif-
fraction properties of a theoretical qua-
siperiodic structure. He demonstrated
that i atoms were placed at the cor-
ners of each shape in a Penrose tiling,
they would give rise to a diffraction pat-
tern that had tenfold symmetry. Then,
in 1984, Peter Kramer and Reinhardt
Neri of the University of Tihingen ex-
trapolated the concept of two-dimen-
sional Penrose tilings to three dimen-
gions. Dov Levine and Paul J. Steinhardt
of the University of Pennsylvania had
also been considering the possibility of
alternative forms of atomic order based
on Penrose tilings.

Building on this early work, Levine
and Steinhardt proposed the Penvose
model for quasicrystals only six weeks
after Shechtman and his colleagues
published their farnous paper. They put
forth a three-dimensional generaliza-
tion of the Penrose tling that described
the structure of the aluminum-manga-
nese alloy, and they showed that the
pattern of diffraction peaks calculat-
ed from their model agreed well with
Shechtman's results.

Penrose guasicrystals are construct-
ed from a set of unit cells and specific
matching rules that govern how they fit
together. These rules are more compli-
cated than the identical repetition of
identical unit cells that form a crystal
Three important features distinguish

periodic in the sense that the pattern can be assembled by
duplicating and positioning a unit cell (white area) in an or-
derly fashion. The blue pattern is also periodic and has a unit

a Penrose guasicrystal from a crystal

First, a Penrose quasicrystal contains
many regions that explicitly show for-
bidden rotational symmetries, that is,
fivefold . Second, a Penrose quasicrystal
is built from two or more unit cells
rather than a single unit cell as suffices
for periodic crystals. Third, a Penrose
quasicrystal does not exhibit equally
spaced rows of lattice points as the p&
riodic structures do, Nevertheless, the
diffraction pattern resulting from a Penr
rose quasicrystal has an array of sharp
spots, in agreement with the expen
mental observations.

One can elegantly describe the strut
ture of Penrose guasicrystals and theil
corresponding diffraction patteins !
one thinks of Penrose structures &
resulting from a slice through a h;gb-
er-dimensional periodic lattice
concept is easiest to visualize in ™0
dimensions. .

Imagine a two-dimensional 3am€£:
composed of points that sit at the cox
ners of sguares in a grid. A horlzoﬁf 2
line of these points is covered bY ;
strip If the covered points are projet
ed onto a line that is parallel 0 ¥
strip, the projected points will be ¢a" is
ly spaced along the line. Those 3303:05
define a periodic sequence becaus® ”
divide the line into equal-size segmef‘cé'
To produce a quasiperiodic SEQ””: 0
the strip must be tilted with respeC "
the lattice so that it has a slope €%,
to an irrational number [ see i!h{ffﬂ; i
on page 50} (A number i5 irTaU‘}r_’eT of
when expressed as a decimal, 10 ¥ dofi
consecutive digits repeats pself in
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tely, for example, the nurnber 1, or
1.1415....)If the points that are cov-
ed by the strip are then projected
to a line parallel to the strip, the pro-
" oints will divide the line into a
_weriodic seguence of long and
Ort Segments.
This sequence serves as a one-dimen-
nal model of a guasicrystal if one
gines that an atom is placed at each
pint that divides the line into long
d short segments. Like other qua-
Crystals, the quasiperiodic sequence
as unusual diffraction properties. One
ght guess that the one-dimensional
hodel would generate a blurry diffrac-
0 pattern becanse the atoms are not
iodically spaced. But careful calcula-
ion: proves otherwise. In fact, the qua-
Iperiodic sequence produces a sharp
action pattern as a consequence of
Periodiciry of the two-dimensional par-
Ent fattice,
The diffraction pattern derived from
4 Quasiperiodic sequence consists of
& dense ser of weak and strong peaks
$¢e illustration on page 50} In exper-
1ents, one detects only the strongest
these peaks. Even so, one can still
*l0w that the quasiperiodic sequence
Dot a erystal because of the aperiodic
ating between the chservable peaks.
. *0 make quasiperiodic structures in
ensions, one needs a lattice in
‘e of even higher dimension. For
" ole, a plane that cuts through a
& of cubes at an angle can form
SUasiperiodic two-dimensional struc-
€ if the slopes between the plane
¢ cube axes are irrational num-

o =t

. The red pattern, which canuot be constructed from a
e unit cell, is quasiperiodic. Whether a pattern is period-
or tuasiperiodic depends on the angle of the cut. Whereas

bers [see illustration above]. (Indeed, a
two-dimensional Penrose tiling that has
fivefold symmetry can be produced by
a projection from a five-dimensional
lattice.)

Using similar reasoning, theorists
have described icosahedral quasicrys-
tals as a three-dimensional cut through
an abstract six-dimensional lattice.
This kind of cut leads to the type of
quasiperiodic structures proposed in
the Penrose model. By describing qua-
sicrystals in this way, one can under-
stand how guasicrystals can have un-
usual symmetries and yet not contra-
dict the precepts of crystallography.
Whereas the possible symmetries of
the diffraction patterns of crystals are
limited by the possible symmetries of
the crystals themselves, the symme-
tries of quasicrystals derive from those
of a higher-dimensional parent lattice.

In general, a quasiperiodic structure
will give rise to a diffraction pattern
that has great order because of the pe-
riodic order in the higher-dimensional
parent attice.

Ithough the Penrose model is very
successiit in predicting the dif-
fraction patterns generated by

icosahedral alloys, it gives few clues
about how physical reality is relat-
ed to multidimensional spaces and
matching rules. In particular, although
the Penrose matching rules are local,
a great deal of planning ahead is re-
quired to construct a perfect Penrose
quasicrystal. Growing such a quasicrys-
tal requires that atoms in very distant

the slope of the green plane with respect to the stack of
cubes and the slope of the blue plane are equal to rational
numbers, the slope of the red plane is an irrational number.

unit cells would have to interact in
some manner to comimunicate their po-
sitions and relative orientations. This
idea is contrary 1o all generally accept-
ed notions about crystal-binding for-
ces, which are relatively short range.

Another objection io the Penrose
model is that it fails to account for
the considerable disorder evident in al-
most all quasicrystals. This disorder ap-
pears in their structural, electrical and
diffraction properties. For instance, one
consequence of the Penrose model is
that a perfect quasicrystal should con-
duct electricity as well as an ordinary
metallic crystal. In fact, all quasicrys-
tals produced in the laboratory have
conducted electricity rather poorly.

A more important sign of disorder is
revealed in the X-ray diffractdon pat-
terns from icosahedral alloys. In many
cases, these show broadened peaks in
contrasi to the perfectly sharp peaks
predicted by the Penirose model. Broad-
ened diffracdon peaks are a sign of dis-
order in many crystalline materials.
Common sources of disorder—such as
small grain size, defects or strain—pro-
duce well-known signatures in diffrac-
tion patterns. But none of these signa-
tures seem to match the peak broaden-
ing exhibited by quasicrystals.

The X-ray difiraction results, in fact,
point to a new f{orm of structural dis-
order called phason disorder, which
is unigue to guasicrystals. If one com-
pares a Penrose tiling or a quasiperiod-
ic sequence with a conventional crystal,
one sees that the quasiperiodic sttuc-
tures have the ability to generate a new
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QUASIPERIQDIC SEQUENCE of long and short segments (top left) is formed when a
strip covers a lattice at a slope equal to an irrational number. Specifically, the slope
is the inverse of the golden mean, or about 0.618. The sequence vields a sharp
diffracton pattern (fop right). A meandering path through the lattice produces a
random seguence (botiom left). Despite this disorder, the diffraction pattern of the
random sequence (bottom right) is similar to that of the quasiperiodic sequence.

form of disorder during growth: a de-
fect can arise when the wrong kind of
unit cell, or line segment, falls in a par-
ticular place. A few isclated mistakes
will not affect the diffraction propertes
of an entire sample, but if many such
mistakes plague a sample, they will dis-
turb the diffraction patterns.

As an extreme example, imagine
that the long and short segments in the
one-dimensional quasiperiodic sequence
are rearranged in a completely random
fashion. Surprisingly, this random se-
guence gives rise to a diffraction pat-
tern that is quite similar to the pattern
derived from the original quasiperiodic
sequence. The diffraction peaks of the
random sequence are found at the
same positions as those from the qua-
siperiodic sequence but are broader. In
fact, the widths of these peaks are in-
versely related to the strength of the
corresponding diffraction peak from
the quasiperiodic sequence, so that only
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the more intense peaks remain. Never-
theless, the existence of relatively sharp
diffraction peaks from the random se-
quence indicates that guasiperiodicity
can survive disorder.

Such ideas led the authors to sugpest
inn 1986 that the icosahedral alloys had
an inherently defect-ridden structure.
Qur proposal became known as the ico-
sahedral glass model. Randomness is
important to the glass model in two
ways. First, it removes the necessity of
arcane matching rules and gives a more
plausible explanation for guasicrystal-
line prowth. Second, the disorder in-
troduced through randomness close-
ly mimics that evidenced by the peak
broadening of the diffraction patterns.
Interestingly, soon after the discovery
of guasicrystals, Shechtman and lan
Blech of Israel Institute of Technology-
Technion in Haifa suggested that icosa-
hedral quasicrystals were composed ol
icosahedral clusters that were random-

Iy connected. This theory was refined
by the authors to the point where we
could reproduce the experimental ob-
servation of diffraction peak broaden-
ing [see illustration on page 53).

The attractiveness of the glass model
extends beyond its ability to incorpo-
rate disorder. Certain crystalline alloys
contain icosahedrally symmetric atom-
ic clusters, which are plausible build-
ing blocks for the glass model. The size
of those clusters is within 1 percent of
that required to match the experimen-
tal diffraction patterns.

s these theoretical ideas were be-
ing developed in the late 1980s,
materials scientists and chem-
ists were busy in their laboratories dis-
covering dozens of new icosahedral
alloys. Some of the materials were vari-
ations of the aluminum-manganese al-
foys, but investigators also synthesized
new families, such as aluminum-zine-
magnesium, uranium-palladium-silicon
and nickel-titanium.

One of the most important resulis to
come from these new materials was the
discovery that guasicrystailine phas-
es could be thermodynarmically stable
The quenching process initially used by
Shechtman and others produced very
small grained quasicrystalline phases
that, when heated, transformed irre-
versibly into common crystalline phas
es. Unfortunately, this metastability
prevented workers from improving the
quality of samples by heat treatment
and other metallurgical technigues
Hence, the first quasicrystals had gran
sizes of only a few thousandths of 8
millimeter, making many kinds of ex-
periments impossible.

Several materials discovered in the
past few years, however, retained thell
quasicrystalline structure up to they
melting point. Hence, workers coul
prepare much larger samples by O
ventional crystal growth techniques. 17
this way, they have recently made &
loys that have single grains as large as
10 millimeters in size

Astonishingly, when these first $&
ble guasicrystals of aluminum, fjthiure
and copper were grown slowly enouf
to form large, faceted surfaces, the}
still suffered from the same degfc‘-',og
phason disorder as did their cousit
formed by quenching The diScU"e‘?
of phason disorder in these maltﬁl
als seemed to support the icosaheds?
glass model. 3

Although the icosahedral glass m"h .
el is more successful at predicting B
diffraction patterns, it goes too far
its attempt to incorporate disor#erhc
leaves too many gaps or (ears “’_(erg
structure where iCOSahl;‘d53§ clus
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A Penrose tiling can be constructed from two kinds of
thombuses that have been decorated with colored bands.

To make a Penrose tiling, one fits these rhombic tiles
together according to the following “matching” rule: two
rhombic tiles can be placed side to side only if bands of the
same color join continuously across their interface. Some
examples are shown below.

In growing a Penrose tiling, one starts with a single tile and
adds each subsequent tile to the outer boundary. One
assumes that once the tile has been positioned, it cannot be
removed or shifted. (This growth process is somewhat simifar
ta the formation of crystals, in which groups of atoms firmly
attach themselves to the surface of a “seed” crystal)

Grawing a Penrose tiling is complicated by the fact that a
. given position on the boundary can often accommadate either
, Of the two kinds of tlles For example, a fat rhombus or two
thin ones could be fit in the space at the top of these five tiles.

When these situations arise, one could choose among the
possibilities at random. But such choices can lead to other
preblems. The rhornbic tiles can be assembled so that they
chey the matching rule but prevent other tiles from being
¢ added 1o the boundary For example, neither a fat rhombus
Ror & thin rhombus can fit into the space at the left in the
following configuration

In general, if a wrong choice is made, the tiling will stop
Stowing at some later point.

Can one develop a procedure that will allow Penrose tilings
10 grow indefinitely? Following the work of John H. Conway of
lhe University of Cambridge and Nicolaas G deBruijn of
tindhoven University of Technology, George Onoda of the IBM
T?%Dmas}. Watson Research Center and co-workers have taken
the first step toward a solution

To understand their method, one must first realize that each
venex in an infinite Penrose tiling is surrounded by one of

tight combinations of tites as shown below

How to Grow a Penrose Tiling

If a vertex on the boundary of a growing pattern will
accommodate one or more ties in only one way that is
consistent with one of the eight vertices, then it is said that the
vertex is forced. For example, the vertex indicated below bya
dot is forced ‘

The boundary of a growing pattern will always contain at
least one forced vertex if one starts with a panrticular seed in
which the matching rules have been violated in certain places
Such a seed is represented by the white region below. The
region contains two matching-rule violations that accur
between the tiles shaded in light blue and yellow As tiles were
added to forced vertices on the boundary of the white region,
the tiling began to grow, and new forced vertices were created
on the new boundary. {Fach forced vertex on the boundary in
the pattern below is labeled with an F) Because this growth
process can be continued indefinitely, the tiling can be
enlarged to any size. It will be a perfect Penrose tiling except
for the original defects In the seed

This procedure for growing Penrose tilings simulates only
some aspects of real atomnic growth One can sensibly assume
that forced vertices on the boundary represent sites where
atems attach easily to some surface On the other hand, it
seems unrgasonable that some vertices will wait for an
indefinite time before they becorne forced. It also seems odd
that although several violations of the matching rules must
occur in concert to produce an appropriate seed. additional
mistakes must be avoided Perhaps these issues will be
resoived by further research
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ture of quasicrystals and their diffraction patterns. The Pen-
rose model is represented by the guasiperiodic lattice at the
top left, The lattice is composed of pentagons, diamonds,
stars and “boats” that have heen assembiled according to spe
cific matching rules. The glass model yields the structure at
the middle left. This stucture is made of pentagons that
have been stuck together, side by side, in a random way. The
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random-tiling model depicted at the bottom left is suﬂﬂ“l';il
the Penrose model, but it contains mistakes that are fofh {
den by the matching rules of the Penrose model. Fof ‘33{:( i
these structures, one can calculate its diffraction pattel?
grams at right), which can then be compared with expef

tal results, The Penrose and random-tiling model both a
sharp diffraction peaks, but the diffraction peaks from U’;Ewg
dom-tiling model (bottom right) are surrounded by faint
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crrmot fit. These tears are, of course,
ut in the Penrose model. The net
_ iof the tears is that the glass mod-
# pverestimates the degree of broad-
ening in diffraction patterns.

- While the proponents of the Penrose
and glass models debated the impor-
ce of local growth and phason dis-
der, a third group of investigators de-
ed the random-tiling model, which
mbines some of the best concepts
m the Penrose and the icosahedral
ss models. The random-tiling mod-
suggests that the strict matching
es of the Penrose model do not have
be obeyed, as long as there are no
aps left in the structure. Surprising-
. the random-tiling model predicts
erfectly sharp diffraction peaks, just
e its more ordered cousin, the Pen-
se model.

‘The apparent advantage of the ran-
pm-tiling model is that it regquires
nly local growth rules. For instance,
chael Widom, Katherine } Strand-

g and Robert H. Swendsen of Car-
pgie-Mellon University demonstrated
hat they could simulate the growth
of these defect-filled tlings by apply-
ng the same computer algorithms used
simulate the growth of periodic crys-
" Furthermore, they found that un-

certain circumstances the defect-
ed tiling was more thermodynamical-
Iy stable than a normal crystal. These
Ivestigators and Christopher L. Hen-
ity of Boston University demonstrat-
#d that the disorder associated with
ors in a perfect quasiperiodic struc-
ire can actually stabilize quasicrystal-
Iine order, at least with respect to some
fompeting crystalline phase, The rel-
Alve importance of disorder increases
With temperature, so that the random-
Hing model predicts that gquasicrystals
‘Achieve the stable, equilibrium phase
‘only at elevated temperatures.

Over the past few years the three
Competing models for the icosahedral
‘dloys have been refined to produce
0ser agreernent with experiments and,
Particular, diffraction data. For in-
d0ce, theorists introduced mecha-
ms for producing disorder in ideal
Masiperiodic structures to mimic more
4 ,ngS@lV the broadened diffraction peaks.

EEY developed algorithms to grow
ﬁmﬂﬂy perfect Penrose tilings by rules
- ab[:umemed more plausibly local At

T&} tge same time, Veit Elser, then at
- ell Laboratories, modified the

5 model by incorporating more
uISme domic motions during the
: mm.al‘]ﬁd growth of a quasicrystalline
hﬁctib e found thg:t the calcutated dif-

ot Exgjgatfems in such a grain c}id
eyong til excessive peak broadening
e experimenial results. All
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DIFFRACTION PROPERTEES of a quasicrystal composed of aluminum, copper and
lithium were revealed by bombarding the quasicrystal with a beam of X rays and
by measuring the intensity of the scattered X rays at various angles relative to the
beam. The graph shows that the diffraction peaks sharpened with increasing angle.
This sharpening is the signature of phason disorder, a kind of structural defect
found only in guasicrystals. The measurements were taken by Paul Heiney, Paul

Horan, Frank Gavle and their co-workers

these models were converging toward
a middle ground incorporating some
degree of phason disorder. To some cb-
servers, it seemed as though the differ-
ences between the models were dis-
solving into semantics.

A series of experiments performed
in 1989, however, essentially narrowed
the field of plausible models to two:
the Penrose and random-tiling models.
Physicists at Tohoku University in Ja-
pan discovered a new family of icosa-
hedral alloys, including aluminum-cop-
per-iron and aluminum-copper-rutheni-
um. Remarkably, when we took X-ray
diffraction patterns of these materials,
we found that the peak broadening as-
sociated with phason disorder—an ef-
fect evident in all previously studied
icosahedral alloys—was absent. Peter
Bance] of the IBM Thomas J. Watson Re-
search Center independently confirmed
these results and showed that as the
iron alloy was heated and cooled, pha-
son peak broadening could be en-
hanced or diminished.

by the matching rules of the Pen-

rose model or by the freedom o
scramble local groups of atoms to al-
low limited phason disorder? In an at-
tempt to answer this guestion, sever-
al laboratories, including our own, are
continuing experiments to study the
conditions that control the perfection
of quasicrystals.

While some investigators have been
working to fathom the novel forms of
atomic order displayed by these ma-
terials, others have been developing ap-
plications. Yi He, S Joseph Poon and
Gary 1 Shiftet of the University of Vir-
ginia have used insights aboui quasi-
crystalline structure to synthesize me-

I s quasicrystalline order produced

at the National Synchrotron Light Source.

tallic glasses containing up to 90 per-
cent aluminum. They hope to exploit
the low density and unusually high
strength of these materials. Jean-Marie
Dubois and his colleagues at the Na-
tional Schoo! of Mining Engineering
in Nancy, France, have discovered that
certain quasicrystals produce excellent
low-friction coatings.

Quasicrystals continue to pose excit-
ing challenges for condensed matter
scientsts. Nearly all the ideas that have
been developed to understand the elec-
tronic, thermal and mechanical proper-
ties of crystalline solids are based on
the simplifying framework of periodici-
ty. Now faced with quasiperiodic struc-
tures, we must seek more sophisticat-
ed levels of understanding.
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