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1. Introduction

In considering the arithmetical functions f : N → C as a ring under pointwise
addition and “convolution”:

f ∗ g(n) =
∑

d1d2=n

f(d1)g(d2),

we employed that old dirty trick of abstract algebra. Namely, we introduced an
algebraic structure without any motivation and patiently explored its consequences
until we got to a result that we found useful (Möbius Inversion), which gave a sort
of retroactive motivation for the definition of convolution.

This definition could have been given to an 18th or early 19th century mathe-
matical audience, but it would not have been very popular: probably they would
not have been comfortable with the Humpty Dumpty-esque redefinition of multipli-
cation.1 Mathematics at that time did have commutative rings: rings of numbers,
of matrices, of functions, but not rings with a “funny” multiplication operation
defined for no better reason than mathematical pragmatism.

So despite the fact that we have shown that the convolution product is a use-
ful operation on arithmetical functions, one can still ask what f ∗ g “really is.”
There are (at least) two possible kinds of answers to this question: one would be to
create a general theory of convolution products of which this product is an example
and there are other familiar examples. Another would be to show how f ∗ g is
somehow a more familiar multiplication operation, albeit in disguise.

To try to take the first approach, consider a more general setup: let (M, •) be a
commutative monoid. Recall from the first homework assignment that this means
that M is a set endowed with a binary operation • which is associative, commuta-
tive, and has an identity element, say e: e •m = m • e = m for all m ∈ M . Now
consider the set of all functions f : M → C. We can add functions in the obvious
“pointwise” way:

(f + g)(m) := f(m) + g(m).

We could also multiply them pointwise, but we choose to do something else, defining

(f ∗ g)(m) :=
∑

d1•d2=m

f(d1)g(d2).

With the assistance of Richard Francisco and Diana May.
1Recall that Lewis Carroll – or rather Charles L. Dodgson (1832-1898) – was a mathematician.
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But not so fast! For this definition to make sense, we either need some assurance
that for all m ∈ M the set of all pairs d1, d2 such that d1 · d2 = m is finite (so
the sum is a finite sum), or else some analytical means of making sense of the sum
when it is infinite. But let us just give three examples:

Example 1: (M, •) = (Z+, ·). This is the example we started with – and of course
the set of pairs of positive integers whose product is a given positive integer is finite.

Example 2: (M, •) = (N,+). This is the “additive” version of the previous ex-
ample:

(f ∗ g)(n) =
∑

i+j=n

f(i)g(j).

Of course this sum is finite: indeed, for n ∈ N it has exactly n+1 terms. As we shall
see shortly, this “additive convolution” is closely related to the Cauchy product of
infinite series.

Example 3: (M, •) = (R,+). Here we have seem to have a problem, because
for functions f, g : R → C, we are defining

(f ∗ g)(x) =
∑

d1+d2=x

f(d1)g(d2) =
∑
y∈R

f(x− y)g(y),

and although it is possible to define a sum over all real numbers, it turns out never
to converge unless f and g are zero for the vast majority of their values.2 However,
there is a well-known replacement for a “sum over all real numbers”: the integral.
So one should probably define

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y)dy.

Here still one needs some conditions on f and g to ensure convergence of this
“improper” integral. It is a basic result of analysis that if∫ ∞

−∞
|f | < ∞,

∫ ∞

−∞
|g| < ∞,

then the convolution product is well-defined. The convolution is an all-important
operation in harmonic analysis: roughly speaking, it provides a way of “mixing
together” two functions. Like any averaging process, it often happens that f ∗ g
has nicer properties than its component functions: for instance, when f and g are
absolutely integrable in the above sense, then f ∗g is not only absolutely integrable
but also continuous.

The most important property of this convolution is its behavior with respect to
the Fourier transform: for a function f : R → C and y ∈ R, one defines

f̂(x) =
∫ ∞

−∞
f(y)e−2πixdy.

2More precisely, if S is an arbitrary set of real numbers, it makes sense to define
P

xi∈S = x

if for all ε > 0, there exists a finite subset T ⊂ S such that for all finite subsets T ′ ⊃ T we have

|
P

xi∈T xi−x| < ε. (This is a special case of a Moore-Smith limit.) It can be shown that such

a sum can only converge if the set of indices i such that xi 6= 0 is finite or countably infinite.
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Then one has the following identity:

f̂ ∗ g = f̂ · ĝ.

In other words, there is a natural type of “transform” f 7→ f̂ under which the
convolution becomes the more usual pointwise product.

Now the question becomes: is there some similar type of “transform” f 7→ f̂ which
carries functions f : M → C to some other space of functions and under which the
convolution product becomes the pointwise product?

The answer is well-known to be “yes” if M is a locally compact abelian group
(e.g. Z, Z/NZ, Rn, . . .), and the construction is in fact rather similar to the above:
this is the setting of abstract Fourier analysis. But our Examples 1 and 2 involve
monoids that are not groups, so what we are looking for is not exactly a Fourier
transform. So let us come back to earth by looking again at Examples 1 and 2.

In the case of Example 2, the construction we are looking for is just:

f ⇐⇒ {f(n)}∞n=0 7→ F (x) =
∞∑

n=0

f(n)xn.

That is, to the sequence {f(n)} we associate the corresponding power series
F (x) =

∑
n f(n)xn. One can look at this construction both formally and analyti-

cally.

The formal construction is purely algebraic: the ring of formal power series C[[t]]
consists of all expressions of the form

∑∞
n=0 anxn where the an’s are complex num-

bers. We define addition and multiplication in the “obvious ways”:
∞∑

n=0

anxn +
∞∑

n=0

bnxn :=
∞∑

n=0

(an + bn)xn,

(
∞∑

n=0

anxn)(
∞∑

n=0

bnxn) :=
∞∑

n=0

(a0bn + a1bn−1 + . . . + anb0)xn.

The latter definition seems obvious because it is consistent with the way we multiply
polynomials, and indeed the polynomials C[t] sit inside C[[t]] as the subring of all
formal expressions

∑
n anxn with an = 0 for all sufficiently large n. Now note

that this definition of multiplication is just the convolution product in the additive
monoid (N,+):

a0bn + . . . + anb0 = (a ∗ b)(n).
It is not immediately clear that anything has been gained. For instance, it is,
technically, not for free that this multiplication law of formal power series is as-
sociative (although of course this is easy to check). Nevertheless, one should not
underestimate the value of this purely formal approach. Famously, there are many
nontrivial results about sequences fn which can be proved just by simple algebraic
manipulations of the “generating function” F (x) =

∑
n fnxn. For example:

Theorem 1. Let a1, . . . , ak be a coprime set of positive integers, and define r(N)
to be the number of solutions to the equation

x1a1 + . . . + xkak = N
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in non-negative integers x1, . . . , xk. Then as N →∞,

r(N) ∼ Nk−1

(k − 1)!(a1 · · · ak)
.

Nevertheless we also have and need an analytic theory of power series, i.e., of the
study of properties of F (x) =

∑
n anxn viewed as a function of the complex variable

x. This theory famously works out very nicely, and can be summarized as follows:

Theorem 2. (Theory of power series) Let
∑

n anxn be a power series with complex
coefficients. Let R = (lim supn |an|

1
n )−1. Then:

a) The series converges absolutely for all x ∈ C with |x| < R, and diverges – indeed,
the general term tends to infinity in modulus – for all x with |x| > R.
b) The convergence is uniform on compact subsets of the open disk of radius R
(about 0), from which it follows that F (x) is a complex analytic function on this
disk.
c) If two power series F (x) =

∑
n anxn, G(x) =

∑
n bnxn are defined and equal for

all x in some open disk of radius R > 0, then an = bn for all n.

In particular, it follows from Cauchy’s theory of products of absolutely convergent
series that if F (x) =

∑
n anxn and G(x) =

∑
n bnxn are two power series conver-

gent on some disk of radius R > 0, then on this disk the function FG – the product
of F and G in the usual sense – is given by the power series

∑
n(a∗b)(n)xn. In other

words, with suitable growth conditions on the sequences, we get that the product
of the transforms is the transform of the convolutions, as advertised.

Now we return to the case of interest: (M, •) = (Z+, ·). The transform that does
the trick is f 7→ D(f, s), where D(f, s) is the formal Dirichlet series

D(f, s) =
∞∑

n=1

f(n)
ns

.

To justify this, suppose we try to formally multiply out

D(f, s)D(g, s) =

( ∞∑
m=1

f(m)
ms

)( ∞∑
n=1

g(n)
ns

)
.

We will get one term for each pair (m,n) of non-negative integers, so the product
is (at least formally) equal to∑

(m,n)

f(m)g(n)
msns

=
∑

(m,n)

f(m)g(n)
(mn)s

,

where in both sums m and n range over over all positive integers. To make a Dirich-
let series out of this, we need to collect all the terms with a given denominator, say
Ns. The only way to get 1 in the denominator is to have m = n = 1, so the first
term is f(1)g(1)

1s . Now to get a 2 in the denominator we could have m = 1, n = 2 –
giving the term f(1)g(2)

2s – or also m = 2, n = 1 – giving the term f(2)g(1)
2s , so all in

all the numerator of the “2s-term” is f(1)g(2) + f(2)g(1).

Aha. In general, to collect all the terms with a given denominator Ns in the
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product involves summing over all expressions f(m)g(n) with mn = N . In other
words, we have the following formal identity:

D(f, s) ·D(g, s) = (
∞∑

n=1

f(n)
ns

)(
∞∑

n=1

g(n)
ns

) =
∞∑

n=1

∑
d|n f(d)g(n/d)

ns
= D(f ∗ g, s).

Thus we have attained our goal: under the “transformation” which associates to
an arithmetical function its Dirichlet series D(f, s), Dirichlet convolution of arith-
metical functions becomes the usual multiplication of functions!

There are now several stages in the theory of Dirichlet series:

Step 1: Explore the purely formal consequences: that is, that identities involving
convolution and inversion of arithmetical functions come out much more cleanly on
the Dirichlet series side.

Step 2: Develop the theory of D(f, s) as a function of a complex variable s. It
is rather easy to tell when the series D(f, s) is absolutely convergent. In particular,
with suitable growth conditions on f(n) and g(n), we can see that

D(f, s)D(g, s) = D(f ∗ g, s)

holds not just formally but also as an equality of functions of a complex variable.
In particular, this leads to an “analytic proof” of the Möbius Inversion Formula.

On the other hand, unlike power series there can be a region of the complex plane
with nonempty interior in which the Dirichlet series D(f, s) is only conditionally
convergent (that is, convergent but not absolutely convergent). We will present,
without proofs, the basic results on this more delicate convergence theory.

In basic analysis we learn to abjure conditionally convergent series, but they lie
at the heart of analytic number theory. In particular, in order to prove Dirichlet’s
theorem on arithmetic progressions one studies the Dirichlet series L(χ, s) attached
to a Dirichlet character χ (a special kind of arithmetical function we will define
later on), and it is extremely important that for all χ 6= 1, there is a “critical strip”
in the complex plane for which L(χ, s) is only conditionally convergent. We will
derive this using the assumed results about conditional convergence of Dirichlet
series and a convergence test, Dirichlet’s test, from advanced calculus.3 Finally,
as an example of how much more content and subtlety lies in conditionally conver-
gent series, we will use Dirichlet series to give an analytic continuation of the zeta
function to the right half-plane (complex numbers with positive real part), which
allows for a rigorous and concrete statement of the Riemann hypothesis.

2. Some Dirichlet series identities

Example 1: If f = 1 is the constant function 1, then by definition D(1, s) is what is
probably the most single important function in all of mathematics, the Riemann
zeta function:

ζ(s) = D(1, s) =
∞∑

n=1

1
ns

.

3P.G.L. Dirichlet propounded his convergence test with this application in mind.
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Example 2: Let f(n) = d(n), the divisor function, so D(d, s) =
∑

n
d(n)
ns . But we

also know that d = 1 ∗ 1. On Dirichlet series this means that we multiply: so that
D(d, s) = D(1, s)D(1, s), and we get that

D(d, s) = ζ(s) · ζ(s) = ζ2(s).

Example 3: Since δ(1) = 1 and δ(n) = 0 for all n > 1, we have D(δ, s) =
1
1s +

∑∞
n=2

0
ns = 1. Thus the Dirichlet series of the δ – the multiplicative iden-

tity for convolution – is just the constant function 1, the multiplicative identity in
the “usual” sense of multiplication functions.

Example 4: What is D(µ, s)? Since µ ∗ 1 = δ, we must have

1 = D(ι, s) = D(µ, s)D(1, s) = D(µ, s)ζ(s),

so

D(µ, s) =
1

ζ(s)
.

Probably this is the most important such identity: it relates combinatorial meth-
ods (the Möbius function is closely related to the inclusion-exclusion principle) to
analytical methods. More on this later.

We record without proof the following further identities, whose derivations are
similarly straightforward. Some notational reminders: we write ι for the function
n 7→ n; ιk for the function n 7→ nk; and λ for the function n 7→ (−1)Ω(n), where
Ω(n) is the number of prime divisors of n counted with multiplicity.

D(ι, s) = ζ(s− 1).

D(ιk, s) = ζ(s− k).

D(σ, s) = ζ(s)ζ(s− 1).

D(σk, s) = ζ(s)ζ(s− k).

D(ϕ, s) =
ζ(s− 1)

ζ(s)
.

D(λ, s) =
ζ(2s)
ζ(s)

.

3. Euler products

Our first task is to make formal sense of an infinite product of infinite series, which
is unfortunately somewhat technical. Suppose that we have an infinite indexing set
P and for each element of p of P an infinite series whose first term is 1:

∞∑
n=0

ap,n = 1 + ap,1 + ap,2 + . . . .

Then by the infinite product
∏

p∈P

∑
n ap,n we mean an infinite series whose terms

are indexed by the infinite direct sum T =
⊕

p∈P N. Otherwise put, an element
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t ∈ T is just a function t : P → N such that t(p) = 0 for all but finitely many p in
P .4 Then by

∏
p∈P

∑
n ap,n we mean the formal infinite series∑

t∈T

∏
p∈P

ap,t(p).

Note well that for each t, since t(p) = 0 except for finitely many p and since ap,0 = 1
for all p, the product

∏
p∈P ap,t(p) is really a finite product. Thus the series is well-

defined “formally” – that is, merely in order to write it down, no notion of limit of
an infinite process is involved.

Let us informally summarize the preceding: to make sense of a formal infinite
product of the form ∏

p

(1 + ap,1 + ap,2 + . . . + ap,n + . . .) ,

we give ourselves one term for each possible product of one term from the first
series, one term from the second series, and so forth, but we are only allowed to
choose a term which is different from the ap,0 = 1 term finitely many times.

With that out of the way, recall that when developing the theory of arithmeti-
cal functions, we found ourselves in much better shape under the hypothesis of
multiplicativity. It is natural to ask what purchase we gain on D(f, s) by assum-
ing the multiplicativity of f . The answer is that multiplicativity of f is equivalent
to the following formal identity:

(1) D(f, s) =
∞∑

n=1

f(n)
ns

=
∏
p

(
1 +

f(p)
ps

+
f(p2)
p2s

+ . . .

)
.

Here the product extends over all primes. The fact that this identity holds (as an
identity of formal series) follows from the uniqueness of the prime power factoriza-
tion of positive integers.

An expression as in (1) is called an Euler product expansion. If f is moreover
completely multiplicative, then f(pk)

pks = ( f(p)
ps )k, and each factor in the product is a

geometric series with ratio f(p)
ps , so we get

D(f, s) =
∏
p

(
1− f(p)

ps

)−1

.

In particular f = 1 is certainly completely multiplicative, so we get the identity

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

which we used in our study of the primes. We also get

(2)
∞∑

n=1

µ(n)
ns

=
1

ζ(s)
=
∏
p

(
1− 1

ps

)
,

4The property that t(p) = 0 except on a finite set is, by definition, what distinguishes the
infinite direct sum from the infinite direct product.
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and, plugging in s = 2,

6
π2

=
1

ζ(2)
=

∞∑
n=1

µ(n)
n2

=
∏
p

(
1− 1

p2

)
.

But not so fast! We changed the game here: so far (2) expresses a formal identity
of Dirichlet series. In order to be able to plug in a value of s, we need to discuss the
convergence properties of Dirichlet series and Euler products. In particular, since
we did not put any particular ordering on our formal infinite product, in order for
the sum to be meaningful we need the series involved to be absolutely convergent.
It is therefore to this topic that we now turn.

4. Absolute convergence of Dirichlet series

Let us first study the absolute convergence of Dirichlet series
∑

n
an

ns . That is, we
will look instead at the series

∑
n
|an|
nσ , where s = σ + it.5

Theorem 3. Suppose a Dirichlet series D(s) =
∑

n
an

ns is absolutely convergent at
some complex number s0 = σ0 + it0. Then it is also absolutely convergent at all
complex numbers s with σ = <(s) > s0.

Proof: If σ = <(s) > σ0 = <(s0), then n−σ > nσ0 for all n ∈ Z+, so
∞∑

n=1

|an

ns
| =

∞∑
n=1

|an|
nσ

≤
∞∑

n=1

|an|
nσ0

=
∞∑

n=1

| an

ns0
| < ∞.

It follows that the domain of absolute convergence of a Dirichlet series D(f, s)
is one of the following:

(i) The empty set. (I.e., for no s does the series absolutely converge.)
(ii) (−∞,∞).
(iii) A half-infinite interval of the form (S,∞).
(iv) A half-infinite interval of the form [S,∞).

Notice that in all cases, there is a unique σac ∈ [−∞,∞] such that:

(AAC1) For all s with <(s) > σac, D(s) is absolutely convergent.
(AAC2) For all s with <(s) < σac, D(s) is not absolutely convergent.

This unique σac is called the abscissa of absolute convergence of D(s).

Example 1 (Type i): D(s) =
∑

n
2n

ns .
This series does not converge (absolutely or otherwise) for any s ∈ C: no matter
what s is, |2n · n−s| → ∞: exponentials grow faster than power functions. So
σac = ∞.

Example 2 (Type ii): A trivial example is the zero series – an = 0 for all n, or

5In other words, for a complex number s we write σ for its real part and t for its imaginary

part. This seemingly unlikely notation was introduced in a fundamental paper of Riemann, and
remains standard to this day.
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for that matter, any series with an = 0 for all sufficiently large n: these give finite
sums. Or we could take an = 2−n and now the series converges absolutely inde-
pendent of s. So σac = −∞.

Example 3 (Type iii): ζ(s) = 1
ns is absolutely convergent for s ∈ (1,∞). So σac = 1.

Example 4 (Type iv): For an = 1
(log n)2 , the domain of absolute convergence is

[1,∞).

The following result gives a sufficient condition for σac = 1:

Proposition 4. Let D(s) =
∑∞

n=1
an

ns be a Dirichlet series.
a) Suppose that there exists M ∈ R such that |an| ≤ M for all n. Then σac ≤ 1.
b) suppose that the sequence an does not tend to 0. then σac ≥ 1.
c) In particular if the sequence an is bounded but not convergent to 0, then σac = 1.

Proof: a) Suppose |an| ≤ M for all n and also that σ = <(s) > 1. Then∑
n

|an

ns
| ≤ M

∑
n

1
nσ

= Mζ(σ) < ∞.

b) The Dirichlet series at 0 is
∑

n
an

n0 =
∑

n an. Of course this series can only be
convergent (absolutely or otherwise) if an → 0. Part c) follows immediately from
a) and b).

Definition: We say that an arithmetic function an : Z+ → C has polynomial
growth of order N if there exist positive real numbers C and N such that
|an| ≤ CnN for all n ∈ Z+. We say that a function has polynomial growth
if it has polynomial growth of order N for some N ∈ R+.

Proposition 5. Suppose {an} has polynomial growth of order N . Then the asso-
ciated Dirichlet series D(s) = an

ns has σac ≤ N + 1.

Proof: By hypothesis, there exists C such that |an| ≤ CnN for all n ∈ Z+. If
σ = <(s) > N + 1, then there exists ε > 0 such that σ > N + 1 + ε. Then∑

n

|an

nσ
| ≤

∑
n

|an|
nN+1+ε

≤ C
∑

n

nN

nN+1+ε
= C

∑
n

1
n1+ε

< ∞.

Corollary 6. Let f(n), g(n) be arithmetical functions with polynomial growth of
order N . Then

D(f, s)D(g, s) = D(f ∗ g, s)

is an equality of functions defined on (N + 1,∞).

This follows easily from the theory of absolute convergence and the Cauchy product.

Theorem 7. (Uniqueness Theorem) Let f(n), g(n) be arithmetical functions whose
Dirichlet series are both absolutely convergent in the halfplane σ = <(s) > σ0.
Suppose there exists an infinite sequence sk of complex numbers, with σk = <(sk) >
σ0 for all k and σk →∞ such that D(f, sk) = D(g, sk) for all k. Then f(n) = g(n)
for all n.
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Proof: First we put h(n) := f(n)− g(n), so that D(h, s) = D(f, s)−D(g, s). Then
our assumption is that D(h, sk) = 0 for all k, and we wish to show that h(n) = 0
for all n.

So suppose not, and let N be the least n for which h(n) 6= 0. Then

D(h, s) =
∞∑

n=N

h(n)
ns

=
h(N)
Ns

+
∞∑

n=N+1

h(n)
ns

,

so

h(N) = NsD(h, s)−Ns
∞∑

n=N+1

h(n)
ns

.

Taking now s = sk we have that for all k ∈ Z+,

h(N) = −Nsk

∞∑
n=N+1

h(n)
n−sk

.

Fix a σ > σ0, and choose a k such that σk > σ. Then

|h(N)| ≤ Nσk

∞∑
n=N+1

|h(n)|n−σk ≤ Nσk

(N + 1)σk−c

∞∑
n=N+1

|h(n)|n−c ≤ C

(
N

N + 1

)σk

,

for some constant C independent of n and k. Since N is a constant, letting σk →∞
the right hand side approaches 0, thus h(N) = 0, a contradiction.

Corollary 8. Let D(s) =
∑

n
an

ns be a Dirichlet series with abscissca of absolute
convergence σac. Suppose that for some s with <(s) > σac we have D(s) = 0. Then
there exists a halfplane in which D(s) is absolutely convergent and never zero.

Proof: If not, we have an infinite sequence {sk} of complex numbers, with real parts
tending to infinity, such that D(sk) = 0 for all k. By the Uniqueness Theorem this
implies that an = 0 for all n and thus D(s) is identically zero in its halfplane of
absolute convergence, contrary to our assumption.

Corollary 9. (MIF for polynomially growing functions) If f(n) is an arithmetical
function with polynomial growth and F (n) =

∑
d|n f(n), then f(n) =

∑
d|n F (d)µ(n/d).

Surely this was the first known version of the Möbius inversion formula. Of course
as Hardy and Wright remark in their classic text, the “real” proof of MIF is the
purely algebraic one we gave earlier, but viewing things in terms of “honest” func-
tions has a certain appeal.

Moreover, the theory of absolute convergence of infinite products (see e.g. [1,
§11.5]) allows us to justify our formal Euler product expansions:

Theorem 10. (Theorem 11.7 of [1]) Suppose that D(f, s) =
∑

n
f(n)
ns converges

absolutely for σ > σac. If f is multiplicative we have an equality of functions

D(f, s) =
∏
p

(
1 +

f(p)
ps

+
f(p2)
p2s

+ . . .

)
,

valid for all s with <(s) > σac. If f is completely multiplicative, this simplifies to

D(f, s) =
∏
p

(
1− f(p)

ps

)−1

.
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Euler products are ubiquitous in modern number theory: they play a prominent
role in (e.g.!) the proof of Fermat’s Last Theorem.

5. Conditional convergence of Dirichlet series

Let D(f, s) =
∑∞

n=1
an

ns be a Dirichlet series. We assume that the abscissa of
absolute convergence σac is finite.

Theorem 11. There exists a real number σc with the following properties:
(i) If <(s) > σc, then D(f, s) converges (not necessarily absolutely).
(ii) If <(s) < σc, then D(f, s) diverges.

Because the proof of this result is already somewhat technical, we defer it until
§X.X on general Dirichlet series, where we will state and prove a yet stronger re-
sult.

Definition: σc is called the abscissa of convergence.

Contrary to the case of absolute convergence we make no claims about the conver-
gence or divergence of D(f, s) along the line <(s) = σ: this is quite complicated.

Proposition 12. We have
0 ≤ σac − σc ≤ 1.

Proof: Since absolutely convergent series are convergent, we evidently must have
σac ≥ σ. On the other hand, let s = σ+it be a complex number such that

∑∞
n=1

an

ns

converges. Of course this implies that an

ns → 0 as n →∞, and that in turn implies
that there exists an N such that n ≥ N implies |an

ns | = |an|
nσ ≥ 1. Now let s′ be any

complex number with real part σ + 1 + ε for any ε > 0. Then for all n ≥ N ,

| an

ns′
| = |an|

nσ
· 1
n1+ε

≤ 1
n1+ε

,

so by comparison to a p-series with p = 1+ ε > 1, D(f, s′) is absolutely convergent.

It can be a delicate matter to show that a series is convergent but not absolutely
convergent: there are comparatively few results that give criteria for this. The
following one – sometimes encountered in an advanced calculus class – will serve us
well.

Proposition 13. (Dirichlet’s Test) Let {an} be a sequnece of complex numbers
and {bn} a sequence of real numbers. Suppose both of the following hold:
(i) There exists a fixed M such that for all N ∈ Z+, |

∑N
n=1 an| ≤ M (bounded

partial sums);
(ii) b1 ≥ b2 ≥ . . . ≥ bn ≥ . . . and limn bn = 0.
Then

∑∞
n=1 anbn is convergent.

Proof: Write SN for
∑N

n=1, so that by (i) we have |SN | ≤ M for all N . Fix ε > 0,
and choose N such that bN < 1

ε2M . Then, for all m,n ≥ N :

|
n∑

k=m

akbk| =
n∑

k=m

(Sk − Sk−1)bk|
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= |
n∑

k=m

Skbk −
n−1∑

k=m−1

Skbk+1|

= |
n−1∑
k=m

Sk(bk − bk+1) + Snbn − Sm−1bm|

≤
n−1∑
k=m

|Sk||bk − bk+1|+ |Sn||bn|+ |Sm−1||bm|

≤ M

(
n−1∑
k=m

|bk − bk+1|+ |bn|+ |bm|

)
= 2Mbm ≤ 2MbN < ε.

Therefore the series satisfies the Cauchy criterion and hence converges.6

Theorem 14. Let {an}∞n=1 be a complex sequence.
a) Suppose that the partial sums

∑N
n=1 an are bounded. Then the Dirichlet series∑∞

n=1
an

ns has σc ≤ 0.
b) Assume in addition that an does not converge to 0. Then σac = 1, σc = 0.

Proof: By Proposition 4, σac = 1. For any real number σ > 0, by taking bn = 1
nσ

the hypotheses of Proposition 13 are satisfied, so that D(σ) =
∑

n
an

nσ converges.
The smallest right open half-plane which contains all positive real numbers σ is of
course <(s) > 0, so σ ≤ 0. By Proposition 12 we have 1 = σac ≤ 1 + σ, so we
conclude that σ = 0.

Theorem 15. (Theorem 11.11 of [1]) A Dirichlet series D(f, s) converges uni-
formly on compact subsets of the half-plane of convergence <(s) > σ.

Suffice it to say that, in the theory of sequences of functions, “uniform conver-
gence on compact subsets” is the magic incantation. As a consequence, we may
differentiate and integrate Dirichlet series term-by-term. Also:

Corollary 16. The function D(f, s) =
∑∞

n=1
f(n)
ns defined by a Dirichlet series in

its half-plane <(s) > σ of convergence is complex analytic.

6. Dirichlet series with non-negative real coefficients

Suppose we are given a Dirichlet series D(s) =
∑

n
an

ns with the property that for
all n, an is real and non-negative. There is more to say about the analytic theory
of such series. First, the non-negativity hypothesis ensures that for any real s, D(s)
is a series with non-negative terms, so its absolute convergence is equivalent to its
convergence. Thus:

Lemma 17. For a Dirichlet series with non-negative real coefficients, the abscissae
of convergence and absolute convergence coincide.

Thus one of the major differences from the the theory of power series is eliminated
for Dirichlet series with non-negative real coefficients. Another critical property of
all complex power series is that the radius of convergence R is as large as conceiv-
ably possible, in that the function necessarily has a singularity somewhere on the

6This type of argument is known as summation by parts.
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boundary of the disk |z − z0| < R of convergence. This property need not be true
for an arbitrary Dirichlet series. Indeed the series

D(s) =
∞∑

n=1

(−1)n+1

(2n + 1)s
= 1− 1

3s
+

1
5s
− . . . ,

has σ = 0 but extends to an analytic function on the entire complex plane.7 How-
ever:

Theorem 18. (Landau) Let D(s) =
∑

n
an

ns be a Dirichlet series, with an real and
non-negative for all n. Suppose that for a real number σ, D(s) converges in the
half-plane <(s) > σ, and that D(s) extends to an analytic function in a neigborhood
of σ. Then σ strictly exceeds the abscissa of convergence σc.

Proof (Kedlaya): Suppose on the contrary that D(s) extends to an analytic function
on the disk |s − σ| < ε, for some ε > 0 but σ = σc. Choose c ∈ (σ, σ + ε/2), and
write

D(s) =
∑

n

ann−cnc−s =
∑

n

ann−ce(c−s) log n

=
∞∑

n=1

∞∑
k=0

ann−c(log n)k

k!
(c− s)k.

Here we have a double series with all coefficients non-negative, so it must converge
absolutely on the disk |s−c| < ε

2 . In particular, viewed as a Taylor series in (c−s),
this must be the Taylor series expansion of D(s) at s = c. Since D(s) is assumed
to be holomorphic in the disk |s − c| < ε

2 , this Taylor series is convergent there.
In particular, choosing any real number σ′ with σ − ε

2 < σ′ < σ, we have that
D(σ′) is absolutely convergent. But this implies that the original Dirichlet series is
convergent at σ′, contradiction!

For example, it follows from Landau’s theorem that the Riemann zeta function
ζ(s) =

∑
n

1
ns must have a singularity at s = 1, since otherwise there would exist

some σ < 1 such that the series converges in the entire half-plane <(s) > σ.
Of course this is a horrible illustration of the depth of Landau’s theorem, since

we used the fact that ζ(1) = ∞ in order to compute the abscissa of convergence
of the zeta function! We will see a much deeper application of Landau’s theorem
during the proof of Dirichlet’s theorem on primes in arithmetic progressions.

7. Characters and L-series

Let f : Z+ → C be an arithmetic function.

Recall that f is said to be completely mutliplicative if f(1) 6= 0 and for all
a, b ∈ Z, f(ab) = f(a)f(b). The conditions imply f(1) = 1.

For N ∈ Z+, we say a function f is N -periodic if it satisfies:

(PN ) For all n ∈ Z+, f(n + N) = f(n).

7We will see a proof of the former statement shortly, but not the latter. More generally, it is
true for the L-function associated to any primitive Dirichlet character.
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An arithmetic function is periodic if it is N -periodic for some N ∈ Z+.

Remark: A function f : Z → C is said to be N -periodic if for all n ∈ Z,
f(n + N) = f(n). It is easy to see that any N -periodic arithmetic function admits
a unique extension to an N -periodic function with domain Z.

Note that if f is N -periodic it is also kN -periodic for every k ∈ Z+. Conversely, we
define the period P of a periodic function to be the least positive integer N such
that f is N -periodic, then it is easy to see that f is N -periodic iff P | N .

Now we are ready to meet the object of our affections:

A Dirichlet character is a periodic completely multiplicative arithmetic func-
tion.8

Example: For an odd prime p, define Lp : Z+ → C by Lp(n) = (n
p ) (Legendre

symbol). The period of Lp is p. Notice that Lp(n) = ±1 if n is prime to p, whereas
Lp(n) = 0 if gcd(n, p) > 1. This generalizes as follows:

Theorem 19. Let f be a Dirichlet character of period N .
a) If gcd(n, N) = 1, then f(n) is a ϕ(N)th root of unity in C (hence f(n) 6= 0).
b) If gcd(n, N) > 1, then f(n) = 0.

Proof: Put d = gcd(n, N). Assume first that gcd(n, N) = 1, so by Lagrange’s
Theorem nϕ(N) ≡ 1 (mod N). Then:

f(n)ϕ(N) = f(nϕ(N)) = f(1) = 1.

Next assume d > 1, and write n = dn1, N = dN1. By assumption N1 properly
divides N , so is strictly less than N . Then f is not N1-periodic, so there exists
m ∈ Z+ such that

f(m + N1)− f(m) 6= 0.

On the other hand

f(d) (f(m + N1)− f(m)) = f(dm + N)− f(dm) = f(dm)− f(dm) = 0,

so
f(n) = f(dn1) = f(d)f(n1) = 0 · f(n1) = 0.

7.1. Period N Dirichlet characters and characters on U(N).

A fruitful perspective on the Legendre character L(p) is that it is obtained from a
certain homomorphism from the multiplicative group (Z/pZ)× into the multiplica-
tive group C× of complex numbers by extending to L(0 (mod p)) := 0. In fact all
Dirichlet characters of a given period can be constructed in this way.

We introduce some further notation: for N ∈ Z+, let U(N) = (Z/NZ)× be the
unit group, a finite commutative group of order ϕ(N). Let X(N) be the group of
characters of U(N), i.e., the group homomorphisms U(N) → C×. We recall from

8Recall that by definition a multiplicative function is not identically zero, whence f(1) = 1.
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[Algebra Handout 2.5, §4] that X(N) is a finite commutative group whose order is
is also ϕ(N).9

Proposition 20. Let N be a positive integer. There is a bijective correspondence
between Dirichlet characters with period N and elements of X(N) = Hom(U(N), C×).

Proof: If f : U(N) → C is a homomorphism, we extend it to a function from
f : Z/NZ → C by defining f(0) = 0 on all residue classes which are not prime to
N , and then define

f̃(n) := f(n mod N).

In other words, if qN : Z → Z/NZ is the quotient map, then f̃ := f ◦ qN .
Conversely, if f : Z+ → C is a Dirichlet character mod N , then its extension to

Z is N -periodic and therefore factors through f : Z/NZ → C.
It is easy to see that these two constructions are mutually inverse.

For example, the function 1 : n → 1 for all n is the unique Dirichlet character
of period 1. The character 1 is said to be trivial; all other Dirichlet characters are
said to be nontrivial. Under the correspondence of Proposition 20 it corresponds
to the unique homomorphism from the trivial group Z/1Z → C.

7.2. Examples.

Example (Principal character): For any N ∈ Z+, define ξN : Z+ → C by

ξN (n) = 1, gcd(n, N) = 1,

ξN (n) = 0, gcd(n, N) > 1.

This is evidently a Dirichlet character mod N , called the principal character. It
corresponds to the trivial homomorphism U(N) → C×, i.e., the one which maps
every element to 1 ∈ C.

Example: N = 1: Since ϕ(1) = 1, the principal character ξ1 coincides with the
trivial character 1: this is the unique Dirichlet character modulo 1.

Example: N = 2: Since ϕ(2) = 1, the principal character ξ2, which maps odd
numbers to 1 and even integers to 0, is the unique Dirichlet character modulo 2.

Example: N = 3: Since ϕ(3) = 2, there are two Dirichlet characters mod 3, the
principal one ξ3 and a nonprincipal character, say χ3. One checks that χ3(n) must
be 1 if n = 3k+1, −1 if n = 3k+2, and 0 if n is divisible by 3. Thus Û(3) = {ξ3, χ3}.

Example: N = 4: Since ϕ(4) = 2, there is exactly one nonprincipal Dirichlet
character mod 4, χ4. We must define χ4(n) to be 0 if n is even and (−1)

n−1
2 if n is

odd. Thus Û(4) = {ξ4, χ4}. Note that ξ4 = ξ2.

7.3. Conductors and primitive characters.

9In fact, X(N) and U(N) are isomorphic groups: Theorem 15, ibid., but this is actually not
needed here.
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7.4. Dirichlet L-series.

By definition, a Dirichlet L-series is the Dirchlet series associated to a Dirichlet
character:

L(χ, s) = D(χ, s) =
∞∑

n=1

χ(n)
ns

.

In particular, taking χ = χ1 = 1, we get L(χ1, s) = ζ(s), which has σac = σc = 1.
But this is the exception:

Theorem 21. Let χ be a nontrivial Dirichlet character. Then for the Dirichlet
L-series L(χ, s) = D(χ, s), we have σac = 1, σc = 0.

Proof: It follows from the orthogonality relations [Handout A2.5, Theorem 17]
that since χ is nonprincipal, the partial sums of L(χ, s) are bounded. Indeed since
|χ(n)| ≤ 1 for each n and the sum over any N consecutive values is zero, the partial
sums are bounded by N . Also we clearly have χ(n) = 1 for infinitely many n, e.g.
for all n ≡ 1 (mod N). So the result follows directly from Theorem 14.

We remark that most of the proof of the Dirichlet’s theorem – specifically, that
every congruence class n ∈ (Z/NZ)× contains infinitely many primes – involves
showing that for every nontrivial character χ, L(χ, 1 + it) is nonzero for all t ∈ R.
This turns out to be much harder if χ takes on only real values.

8. An explicit statement of the Riemann hypothesis

Let g be the arithmetical function g(n) = (−1)n+1. Then:

D(g, s) =
∞∑

n=1

(−1)n+1

ns
=

∞∑
n=1

1
ns

− 2
∞∑

n=1

1
(2k)s

= ζ(s)(1− 21−s).

This formal manipulation holds analytically on the region on which all series are
absolutely convergent, namely on <(s) > 1. On the other hand, by Example XX
above we know that D(g, s) is convergent for <(s) > 0. So consider the function

Z(s) =
D(g, s)
1− 21−s

.

By Corollary 16 the numerator is complex analytic for <(s) > 0. The denom-
inator is defined and analytic on the entire complex plane, and is zero when
21−s = e(1−s) log 2 = 1, or when 1− s = 2πni

log 2 for n ∈ Z, so when s = sn = 1− 2πn
log 2 i.

But by construction Z(s) = ζ(s) for <(s) > 1, so Z(s) is what is called an mero-
morphic continuation of the zeta function.

Remark: All of the zeroes of 21−s are simple (i.e., are not also zeroes for the
derivative). It follows that for n 6= 0, Z(s) is holomorphic at sn iff D(g, sn) = 0.
We will see in the course of the proof of Dirichlet’s theorem that this indeed the
case, and thus Z(s) = ζ(s) is analytic in <(s) > 0 with the single exception of a
simple pole at s = 1.

However, our above analysis already shows that 21−s is defined and nonzero in
the critical strip 0 < <(s) < 1, so that for such an s, Z(s) = 0 ⇐⇒ D(g, s) = 0.
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We can therefore give a precise statement of the Riemann hypothesis in the follow-
ing (misleadingly, of course) innocuous form:

Conjecture 22. (Riemann Hypothesis) Suppose s is a zero of the function

D(g, s) =
∞∑

n=1

(−1)n

ns

with 0 < <(s) < 1. Then <(s) = 1
2 .

This serves to show once again how the deepest facts (and conjectures!) in analytic
number theory turn on cancellation in infinite series.

9. General Dirichlet series

Let λ = {λn}∞n=1 be a sequence of real numbers which is strictly increasing and
with limn→∞ λn = ∞. Given a complex sequence (or “arithmetical function”)
a = {an}∞n=1, we may consider the series

Dλ(a, s) =
∞∑

n=1

ane−sλn ,

called the general Dirichlet series associated to the sequence of exponents λ.

The theory we have developed for Dirichlet series can equally well be expressed
in this more general context. Why one might want to do this is probably not yet
clear, but bear with us for a moment.

In particular, if we define as before σac (resp. σc) to be the infimum of all
real numbers σ such that

∑∞
n=1 |an|e−σλn converges (resp. such that Dλ(a, σ)

converges), one can prove that <(s) > σac (resp. <(s) > σ) is the largest open
half-plane in which Dλ(a, s) is absolutely convergent (resp. convergent). Moreover,
there are explicit formulas for these abscissae, at least when σc ≥ 0 (which holds
in all applications we know of). For instance if

∑
n an diverges then σc ≥ 0.

Theorem 23. ([2, §8.2]) Let Dλ(a, s) be a general Dirichlet series, and assume
that σc ≥ 0. Then:

(3) σac = lim sup
n

log
∑n

k=1 |ak|
λn

.

(4) σc = lim sup
n

log |
∑n

k=1 ak|
λn

.

Remark: If lim supn
log |

Pn
k=1 ak|

λn
= 0 and

∑
n an diverges, then σc = 0;

if lim supn
log |

Pn
k=1 ak|

λn
= 0 and

∑
n an converges, then

σc = lim sup
n

1
λn

ln |
∞∑

i=1

ai|.

These formulae are highly reminiscent of Hadamard’s formula (lim supn |an|
1
n )−1

for the radius of convergence of a power series
∑∞

n=0 anxn.
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But in fact it is no coincidence: just as general Dirichlet series generalize “ordi-
nary” Dirichlet series – which we recover by taking λn = log n, they also generalize
power series – which we essentially recover by taking λn = n. Indeed,

∞∑
n=1

ane−ns =
∞∑

n=1

anxn,

with x = e−s. This change of variables takes right half-planes to disks around the
origin: indeed the open disk |x| < R corresponds to

|x| = |e−s| = |e−σ−it| = e−σ < R,

or σ > − log R, a right half-plane. Under the change of variables x = e−s the origin
x = 0 corresponds to some ideal complex number with infinitely large real part.

At first the fact that we have a theory which simultaneously encompasses Dirichlet
series and power series seems hard to believe, since the open disks of convergence
and of absolute convergence for a power series are identical. However, the analogue
of Proposition 12 for general Dirichlet series is

Proposition 24. Let Dλ(a, s) be a general Dirichlet series. Then the abscissae of
absolute convergence and of convergence are related by:

0 ≤ σac − σc ≤ lim sup
n→∞

log n

λn
.

In the case λn = n we have log n
n → 0, and Proposition 24 confirms that σac = σc.

We leave it as an exercise for the interested reader to compare the formulae (3)
and (4) with Hadamard’s formula R−1 = lim supn |an|

1
n for the radius of conver-

gence of power series. (After making the change of variables x = e−s they are not
identical formulae, but it is not too hard to show that they are equivalent in the
sense that any of them can be derived from the others without too much trouble.)
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