
DObjects: Enabling Distributed Data Services for
Metacomputing Platforms

Pawel Jurczyk
Department of Math&CS

Emory University
pjurczy@emory.edu

Li Xiong
Department of Math&CS

Emory University
lxiong@emory.edu

ABSTRACT
Many contemporary applications rely heavily on large scale
distributed and heterogeneous data sources. The key con-
straints for building a distributed data query infrastructure
for such applications are: scalability, consistency, hetero-
geneity, and network and resource dynamics. We designed
and developed DObjects, a general-purpose query and data
operations infrastructure that can be integrated with meta-
computing middleware. This demo proposal describes the
architecture and the dynamic query processing functionali-
ties of our data services and shows how they are integrated
with a metacomputing framework offering users an open
platform for building distributed applications that require
access to data integrated from multiple data sources.

1. INTRODUCTION
Many distributed data intensive applications rely on large

scale distributed and heterogeneous data sources; examples
are enterprise end-system management and large-scale sci-
entific data management. Consider a national IT network
provider who owns hundreds of thousands of network devices
across the country and utilizes hundreds of small servers
with potentially heterogeneous database systems to connect
to these local devices and store their information. In order to
develop applications such as an enterprise-scale device man-
agement system or a report generation tool, data from dis-
tributed and heterogeneous sources must be operated. Such
applications are characterized by a number of features and
requirements. First, the scale of the applications can vary
from a handful to several hundreds of nodes and requires
good scalability as well as data query and update function-
alities with data consistency. Second, the heterogenity of
data sources requires a unified and seamless data represen-
tation and query interface for the applications. Lastly, the
dynamics of resource and network conditions requires appli-
cations to adapt dynamically in both query processing and
transaction management in order to achieve scalability and
data consistency.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

In this demonstration we present DObjects [9], a general-
purpose infrastructure for querying and operating data from
distributed and heterogeneous data sources. DObjects illus-
trates a number of research contributions. First, the sys-
tem extends the metacomputing paradigm with a distributed
mediator-wrapper based architecture. Metacomputing [13]
is a paradigm in which distributed nodes share resources
and form a networked virtual supercomputer, or metacom-
puter. Our data services extend this metacomputer to offer
a scalable way for accessing and operating distributed and
heterogeneous data sources. Second, the system includes a
distributed query processing engine that deploys and exe-
cutes (sub)queries on system nodes in a dynamic (based on
nodes’ on-going knowledge of the data sources, network and
node conditions) and iterative (right before the execution
of each query operator) manner to optimize both response
time and throughput.
Related work. It is important to distinguish DObjects
from the many existing distributed database systems. At
the first glance, distributed database systems have been ex-
tensively studied and many systems have been proposed over
the years. Earlier distributed database systems [10], such as
R* and SDD-1, share modest targets for network scalabil-
ity (a handful of distributed sites) and assume homogeneous
databases. The focus is on encapsulating distribution with
ACID guarantees. Later distributed database or middle-
ware systems, such as Garlic [3], DISCO [14], HERMES[2],
TSIMMIS [4], Pegasus[1], target large-scale heterogeneous
data sources. Many of them employ a centralized mediator-
wrapper based architecture (see Figure 1) to address the
database heterogeneity in the sense that a single media-
tor server integrates distributed data sources through wrap-
pers. The query optimization focuses on integrating wrap-
per statistics with traditional cost-based query optimization
for single queries spanning multiple data sources. As the
query load increases, the centralized mediator may become
a bottleneck. Most recently, Internet scale query systems,
such as Astrolabe [15] and PIER [8], target thousands or
millions of massively distributed homogeneous data sources
with a peer-to-peer (P2P) or hierarchical network architec-
ture and focus on efficient query routing schemes for network
scalability. However they sacrifice on functionalities of com-
plex queries and data updates and typically relax the con-
sistency guarantee. While it is not the aim of DObjects to
be superior to any of these works, our system distinguishes
itself by addressing an important problem space that has
been overlooked, namely, integrating large-scale heteroge-
neous data sources with both network and query load scala-



Mediator

Wrapper . . .

Client

DB

Client Client

. . .

Wrapper

DB

Wrapper

DB

Figure 1: Typical Mediator-Based Architecture

bility as well as transaction semantics1. In spirit, DObjects
is a distributed mediator-based system in which a federa-
tion of mediators and wrappers forms a virtual system in a
P2P fashion. In addition to cost-based query optimization,
the query processing engine of DObjects focuses on dynam-
ically placing (sub)queries on the mediators for query-load
balancing and scalability.

It is also important to position DObjects among the ex-
isting distributed system frameworks. Distributed systems
technologies such as DCOM2, CORBA3, and RMI4 support
distributed objects paradigm and can be used to build dis-
tributed applications across heterogeneous networks. Our
system builds on top of these technologies and offers a gen-
eral platform for metacomputing with support for distributed
data access and operation services. In particular, current
implementation of DObjects builds on top of a resource shar-
ing platform H2O [11] that builds on top of RMIX (an ex-
tension of RMI). The data services provided by DObjects of-
fer query processing and transaction management substrates
fully integrated with the metacomputing middleware and
can be used easily and transparently in distributed applica-
tions for scalable data operations.

2. DOBJECTS DATA SERVICES
In this section we will give an overview of DObjects frame-

work and describe its main features and functionalities.
System architecture. Figure 2 presents our vision of de-
ployed DObjects framework. The system has no centralized
services and uses the metacomputing paradigm as a resource
sharing substrate. Each node in the system serves as a medi-
ator and provides its computational power that can be used
by others during query execution. Nodes can also serve as a
data adapter or data wrapper that can pull data from exter-
nal data sources and transform it to a uniform format that is
expected while building query responses. Users can connect
to any system node; however, while the physical connection
is established between a client and one of the system nodes,
the logical connection is established between a client node
and a virtual system consisting of all available nodes.

Our current implementation builds on top of a Java meta-
computing platform, H2O[11], that provides lightweight, de-
centralized and peer-to-peer resource sharing and communi-
cation. Data adapters are implemented using a Java ob-
ject/relational mapping API, Hibernate5, to pull data from
relational data sources such as MySQL, PostgreSQL, etc.
Adapter interface can be also implemented for any abstract
data sources such as data file, network device or any system
device driver.

1
While we focus on system and structural heterogeneity as the

mediator-based systems, an important and related challenge we do
not address is the semantic heterogeneity of data sources. We refer
readers to a survey of the issues [12] and a few recent proposals [7, 5]
focusing on schema mediation in distributed systems.
2
http://msdn2.microsoft.com/en-us/library/ms809340.aspx

3
http://www.corba.org

4
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

5
http://www.hibernate.org

DObjects node

(Mediator)

Client Client

Oracle

PostgreSQL
Data stream

Data 

adapters

(Wrappers)

Physical
resource

Physical
resource

Physical
resource

DCOM, CORBA, RMI etc.

Resource sharing platform 
(H2O)

System architecture System structure

Users’
Applications

. . .

DObjects

Query 
processing

Transaction 
management

DObjects 

node

(Mediator)

DObjects 

node

(Mediator)

DObjects node

(Mediator)

Figure 2: DObjects System Architecture

Data model. DObjects uses persistent entities as its data
model which are data represented as objects. From user’s
perspective, query responses are objects of desired type.
Each data object has a set of attributes, divided into two
groups: simple and referential. Simple attributes represent
simple types, such as numbers or strings. Referential at-
tributes follow an object-oriented idiom and allow the defi-
nition of association, composition or collection relations be-
tween data objects. Thus, when a referential attribute is
accessed, another persistent entity, or a collection of persis-
tent entities, is obtained.

A set of available data types in the system along with
their attributes is defined in the system configuration. Each
configuration entry has a full description of an object, i.e.
its type name and a list of simple and referential attributes.
When a referential attribute is defined, one has to specify
the foreign key information that is required to join the ref-
erencing object and referenced object. It also specifies a list
of nodes (sources) where given objects can be found. Each
source is specified with: 1) name of the node, 2) remote data
object name, and 3) attribute mappings that define the se-
mantic mappings between the remote data object and the
current object. There is no centralized copy of the global
configuration. For systems with a handful DObjects nodes
(the number of data sources can be still large), the config-
uration can be replicated and synchronized at every node
as the cost of synchronization will be relatively small. For
larger scale systems with more DObjects nodes, the global
schema can be replicated at a subset of the DObjects nodes
such as landmark nodes.
Data operations and query languages. DObjects sup-
ports all standard data operations. Users can query, cre-
ate, delete and update persistent entities. Both synchronous
and asynchronous queries are supported. For synchronous
queries, the system provides response immediately after its
completion and execution of user’s code is blocked during
the query execution. For asynchronous queries, user can get
results incrementally and operate on partial results while
the query is being executed. In order to support the various
data operations with transaction semantics, a variation of
three-phase commit protocol is implemented.

The query language for our system could be implemented
using any language that allows one to specify attributes or
conditions for a given attribute in objects hierarchy. XPath
or XQuery as well as OQL-like language are all valid ap-
proaches. DObjects also provides its internal query lan-
guage API which strictly follows the object-oriented fashion
of the data representation of persistent entities. A user cre-
ates queries by building a hierarchy of objects. Each query is
created for a given persistent entity type and specifies which
simple or referential attributes should be populated.



Join Network Devices with 

referential attributes

Merge Network 

Devices from 

different 

locations

Select Network Devices 

from different locations

Prepare 

referential 

attributes

Prepare Alarms 

(join it with 

Actions)

Select Maintenance 

Events

Merge 

Maintenance 

Events from 

different 

loctions

Figure 3: Example of high-level query plan.

3. QUERY PROCESSING
In this section, we present our query processing engine

and highlight a few contributions. While adapting tradi-
tional distributed query processing techniques such as dis-
tributed join algorithms and the learning curve approach
for keeping statistics about data wrappers, our query pro-
cessing framework presents a number of innovative aspects.
First, instead of generating a set of candidate plans, map-
ping them physically and choosing the best ones as in con-
ventional cost based query optimization, we create one ini-
tial abstract plan for a given query. The plan is a high-
level description of relations between steps and operations
that need to be performed in order to complete the query.
Second, when the query plan is being executed, placement
decisions and physical plan calculation are performed dy-
namically and iteratively. Such an approach guarantees best
reaction to changing load or latency conditions in the sys-
tem. It is important to highlight that our approach does not
attempt to optimize physical query execution performed on
local databases. Responsibility for this is pushed to data
adapters and data sources. Our optimization goal is at a
higher level focusing on building effective sub-queries and
optimal placement of those sub-queries on the system nodes
(mediators) to minimize the query response time and max-
imize system throughput.

Our query execution and optimization consists of a few
main steps. First, when a user submits a query, a high-level
query description is generated by the node that receives it.
An example of such a query plan is presented in Figure 3.
The query plan contains such elements as joins, horizon-
tal and vertical data merges, and select operations that are
performed on data adapters. Each type of elements in the
query plan has different algorithms for optimization. Next,
the node chooses active elements from the query plan one by
one in a top-down manner for execution. Execution of an el-
ement, however, can be delegated to any node in the system
in order to achieve load scalability. If the system finds that
the best candidate for executing current element is a remote
node, the migration of workload occurs. In order to choose
the best node for the execution, we deploy a network and
resource-aware cost model that dynamically adapts to net-
work conditions (such as delays in interconnection network)
and resource conditions (such as load of nodes). If the active
element is delegated to a remote node, the remote node has
full control over the execution of any child steps that are re-
quired. The process works recursively and iteratively, thus
a remote node could decide to move child nodes of submit-
ted query plan element to other nodes or execute it locally
in order to use the resources in the most efficient way to
achieve good scalability. Algorithm 1 presents a sketch of
the local query execution process.
Query migration. The key of our query processing is
a local query migration component for nodes to delegate
(sub)queries to a remote node in a dynamic (based on cur-

Algorithm 1 Local Algorithm for Query Processing

1: generate high-level query plan tree
2: active element ← root of query plan tree
3: choose execution location for active element
4: if chosen location 6= local node then
5: move active element and its subtree to chosen location
6: return
7: end if
8: execute active element;
9: for all child nodes of active element do

10: go to step 2
11: end for
12: return result to parent element

rent network and resource conditions) and iterative (just
before the execution of each element in the query plan) man-
ner. In order to determine the best (remote) node for possi-
ble query migration and execution for a query element, we
first need a cost metric for the query execution at differ-
ent nodes. Suppose a node migrates a query element and
associated data to another node, the cost includes: 1) trans-
mission delay or communication cost between nodes, and 2)
query processing or computation cost at the remote node.
Intuitively, we want to delegate the query element to a node
that is ”closest” to the current node and has the most com-
putational resources or least load in order to minimize the
query response time and maximize system throughput. We
introduce a cost metric that incorporates such two costs tak-
ing into account current network and resource conditions.
Equation 1 defines the cost, denoted as ci,j , associated with
migrating a query element from node i to a remote node j:

ci,j = α∗(DS/bandwidthi,j+latencyi,j)+(1−α)∗loadj (1)

where DS is the size of the necessary data to be migrated
for query execution (estimated using statistics from data
sources), bandwidthi,j and latencyi,j are the network band-
width and latency between nodes i and j, loadj is the current
(or most recent) load value of node j, and α is a weighting
factor between the communication cost and the computa-
tion cost. Both cost terms give normalized values between
0 and 1 considering the potential variances between them.

To perform query migration, each node maintains a list of
candidate nodes that can be used for migrating queries. For
each of the nodes in the list, it calculates the cost of migra-
tion and compares the minimum (best candidate) with the
cost of local execution. If the minimum cost of migration is
smaller than the cost of local execution, the query element
and its subtree is moved to the best candidate. Otherwise,
the execution will be performed at the current node. To pre-
vent a (sub)query being migrated back and forth between
nodes, we require each node to execute at least one operator
from migrated query plan before further migration. Alter-
natively, a Time-To-Live (TTL) strategy can be also im-
plemented to limit the number of migrations for the same
(sub)query. Formally, the decision of a migration is made if
the following equation is true:

minj{ci,j} < β ∗ (1− α) ∗ loadi (2)

where minj{ci,j} is the minimum cost of migration for all
nodes in the node’s candidate list, β is a tolerance parameter
typically set to be a value close to 1 (e.g. we set it to 0.98 in
our implementations). Note that the cost of local execution
only considers the load of the current node.



The above cost metric consists of two cost features, namely,
the network communication latency and the load of each
node. We could also use other system features (e.g. mem-
ory availability), however, we believe the load information
gives a good estimate of resource availability at the current
stage of the system implementation. Below we present tech-
niques for computing the two cost features we are using.

Communication between nodes. To compute the network
latency between each pair of nodes efficiently, each DOb-
jects node maintains a virtual coordinate [6], such that the
Euclidean distance between two coordinates is an estimate
for communication latency. The overhead of maintaining
a virtual coordinate is small because a node can calculate
its coordinate after probing a small subset of nodes such as
well-known landmark nodes or randomly chosen nodes.

Load of nodes. The second feature of our cost metric is load
of the nodes. Given our desired feature to support cross-
platform applications, instead of depending on any OS spe-
cific functionalities for the load information, we incorporated
a solution that assures good results in heterogeneous envi-
ronment. The main idea is based on time measurement of
execution of predefined test program that considers comput-
ing and multi-threading capabilities of machines.

4. DEMONSTRATION
In the demonstration, we will show the functionalities of

our implemented system (a current implementation is avail-
able for download6), highlight a few key features, and show
some of the under-the-hood details for interested audience.

The demonstration setup will use a client machine in the
demonstration room and will connect to a set of physical ma-
chines (5-10) located at Emory University. All the remote
nodes will have the H2O platform deployed and will act as
DObjects nodes (data mediators). A subset of the nodes will
have data stored in their local databases and will act as data
wrappers. Through a user interface installed on the client
machine, we will issue queries and update requests. The
data setup will follow the example scenario of the IT network
device management system and will include the following ob-
ject types: NetworkDevice, Alarm, MaintenanceEvent and
Action. NetworkDevice will have two referential attributes:
list of Alarms, and list of MaintenanceEvents; Alarm objects
will have one referential attribute: list of Action objects.
Alarm objects will be horizontally split among few nodes.

The demonstration will focus on the following aspects:
1) DObjects configuration and setup showing how the sys-
tem is configured and started, 2) basic data operations of
the system including query building, results retrieval and
various data updates, and 3) performance of the system in
terms of query response time and throughput in different set-
tings. During the runtime, some of the physical nodes will
be dynamically enabled or disabled to illustrate the impact
of node availability on system performance. Importantly,
DObjects provides a logging option during data operations.
The demonstration interface will offer a look at the logging
information so the audience will be able to see under-the-
hood how the query migration and optimization proceed.

In case the demonstration room does not provide connec-
tivity with our system deployed at Emory University, we also
have a backup plan and will follow alternative path for the
demonstration. In order to present how DObjects works, we

6
http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects

will start a few system nodes on the local machine and our
demonstration application will connect to these local nodes.
Such a setting will be sufficient to present how DObjects is
configured, deployed and used. To better present the impact
of query execution optimization, we will run simulations of
various settings to demonstrate the results of our dynamic
query processing and placement.

5. REFERENCES
[1] R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. A.

Ketabchi, W. A. Litwin, A. Rafii, and M.-C. Shan.
The Pegasus Heterogeneous Multidatabase System.
Computer, 24(12), 1991.

[2] A. Brink, S. Marcus, and V. s. Subrahmanian.
Heterogeneous Multimedia Reasoning. Computer,
28(9), 1995.

[3] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya,
W. F. Cody, R. Fagin, M. Flickner, A. W. Luniewski,
W. Niblack, D. Petkovic, J. Thomas, J. H. Williams,
and E. L. Wimmers. Towards heterogeneous
multimedia information systems: the Garlic approach.
In Proc. of the RIDE-DOM’95, Washington, USA.

[4] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. D. Ullman, and
J. Widom. The TSIMMIS project: Integration of
heterogeneous information sources. In 16th Meeting of
the Information Processing Society of Japan, Japan,
1994.

[5] P. Cudré-Mauroux, K. Aberer, and A. Feher.
Probabilistic message passing in peer data
management systems. In Proc. of the ICDE, 2006.

[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris.
Vivaldi: A decentralized network coordinate system.
In Proc. of the ACM SIGCOMM ’04 Conference, 2004.

[7] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
In Proc. of the ICDE, 2003.

[8] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo,
P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and
A. R. Yumerefendi. The architecture of pier: an
internet-scale query processor. In CIDR, 2005.

[9] P. Jurczyk, L. Xiong, and V. Sunderam. DObjects:
Enabling distributed data services for metacomputing
platforms. In Proc. of the ICCS, 2008.

[10] D. Kossmann. The state of the art in distributed
query processing. ACM Comput. Surv., 2000.

[11] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and
V. Sunderam. Towards self-organizing distributed
computing frameworks: The H2O approach. Parallel
Processing Letters, 13(2), 2003.

[12] A. P. Sheth and J. A. Larson. Federated database
systems for managing distributed, heterogeneous, and
autonomous databases. ACM Comput. Surv., 1990.

[13] L. Smarr and C. E. Catlett. Metacomputing.
Commun. ACM, 35(6), 1992.

[14] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
heterogeneous databases and the design of disco. In
Proc. of the ICDCS, 1996.

[15] R. van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining. ACM Trans. Comput. Syst., 21(2), 2003.


