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Abstract. Many applications rely heavily on large amounts of data in
the distributed storages collected over time or produced by large scale
scientific experiments or simulations. The key constraints for building
a distributed data query infrastructure for such applications are: scal-
ability, consistency, heterogeneity and network and resource dynamics.
We designed and developed DObjects, a general-purpose query and data
operations infrastructure that can be integrated with metacomputing
middleware. This paper describes the architecture of our data services
and shows how those services were integrated with the metacomputing
framework offering users an open platform for building distributed appli-
cations that require access to data integrated from multiple distributed
data sources.

Keywords: Metacomputing,Distributed systems,Distributeddatabases,
Data integration.

1 Introduction

Many applications rely heavily on large amounts of data in the distributed stor-
ages collected over time or produced by large scale scientific experiments or
simulations. Consider a system that integrates the air and rail transportation
networks with demographic data in order to model the large scale spread of in-
fectious diseases (such as the SARS epidemic or pandemic influenza). Rail and
air transportation databases are distributed among hundreds of local servers
and demographic information is provided by a few global database servers. Such
class of high-performance applications can be enabled by the construction of
a networked virtual supercomputer, or metacomputer [1], in which high-speed
networks are used to connect computers and resources located at geographically
distributed sites. However, in order to integrate the distributed and heteroge-
neous data sources for such applications, the general metacomputing platform
needs to be extended to meet a number of requirements. First, the scale of the
applications can vary from a handful of nodes to several hundreds of nodes and
requires good scalability as well as data query and update functionalities with
data consistency. Second, the heterogenity of data sources requires a unified and
seamless data representation and query interface for the applications. Lastly,
the dynamics of resource and network conditions require applications to adapt
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dynamically in both query processing and transaction management in order to
achieve scalability and data consistency.

Contributions. In this paper we introduce DObjects, a general-purpose infras-
tructure that extends distributed metacomputing platforms and provides data
services for querying and operating data from heterogeneous data sources. Con-
tribution of our research can be summarized as follows. First, the system ex-
tends the metacomputing paradigm with data services where nodes can share
resources and form a virtual supercomputer and offers a scalable way for ac-
cessing and operating distributed and heterogeneous data sources. Second, it
includes a distributed query execution and optimization engine that deploys and
executes (sub)queries on system nodes in a dynamic (based on nodes’ on-going
knowledge of the data sources, network and node conditions) and iterative (right
before the execution of each query operator) manner to optimize response time
and throughput. Third, it includes an extension of three-phase commit protocol
(3PC) that is non-blocking (allowing resource unlocking when nodes become un-
available), resilient to failures (including dynamic network partitioning and node
failures even during state transitions), and flexible (with adjustable parameters
to guarantee consistency for systems with different characteristics).

Organization. Section 2 provides a review of related work. Section 3 presents
an overview of our framework, including its architecture, data operations, and
query language. Section 4 and 5 present some details of our query execution
engine and commit protocol respectively. Section 6 presents an initial evaluation
of the system and finally Sect. 7 provides a brief conclusion.

2 Related Work

Distributed systems. It is important to position DObjects among the ex-
isting distributed system frameworks. Distributed system technologies such as
DCOM1, RMI2, and CORBA3 support distributed objects paradigm and can be
used to build distributed applications. There are many distributed computing
architectures (e.g. client-server or P2P) and platforms (BOINC [2] or Globus
Toolkit [3] just to name few) built on top of these technologies. Some systems
run on a volunteer basis where participants donate their unused computational
power to work on interesting computational problems (such as BOINC). Others
are more strict about the participants of the computing network. For instance,
Grid systems and platforms, such as Globus Toolkit [3], provide general frame-
works for running software on Grid architecture. However, large administrative
effort is required to set up the Grid infrastructure. P2P systems are more suitable
for ad-hoc collaborations, characterized by more dynamic participation patterns
than those observed in Grid systems. H2O [4] is a metacomputing platform for
resource sharing designed to avoid the administrative burden related to using

1 http://msdn2.microsoft.com/en-us/library/ms809340.aspx
2 http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
3 http://www.corba.org/

http://msdn2.microsoft.com/en-us/library/ms809340.aspx
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://www.corba.org/
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Fig. 1. System architecture

Grid systems. It implements a model where the roles of resource providers, ser-
vice deployers and users can be separated. This makes resource sharing easier
for providers, in the spirit of the P2P model. Our system builds on top of these
technologies and extends the general metacomputing platform with support for
distributed data access and operation services. Current implementation of DOb-
jects builds on top of the H2O platform. The data services provided by DObjects
offer query processing and transaction management substrates fully integrated
with the metacomputing middleware and can be used easily and transparently
in distributed applications for scalable data operations with flexible consistency
guarantee. The most relevant to our work are OGSA-DAI and its extension
OGSA-DQP [5] which were introduced by Grid community as a middleware as-
sisting with access and integration of data from separate sources via the Grid.
While the two approaches share a similar set of goals with DObjects, they were
built on the grid/web service model and DObjects is built on the P2P metacom-
puting model and hence suits better middleware platforms providing resource
sharing on a peer-to-peer basis.

Distributed databases. Distributed database systems have been extensively
studied and many systems have been proposed over the years. Earlier distributed
database systems, such as R* and SDD-1, share modest targets for network scal-
ability (a handful of distributed sites) and assume homogeneous databases. The
focus is on encapsulating distribution with ACID guarantees. Later distributed
database or middleware systems, such as DISCO [6], target large-scale heteroge-
neous data sources and employ a centralized mediator-wrapper based architec-
ture to address the database heterogeneity in the sense that a single mediator
server integrates distributed data sources through wrappers. As the query load
increases, the centralized mediator may become a bottleneck. Most recently, In-
ternet scale query systems, such as PIER [7], target thousands or millions of
massively distributed data sources and focus on efficient query routing schemes
for network scalability. But they sacrifice on functionalities of complex queries
and data updates and typically relax the consistency guarantee. DObjects distin-
guishes itself from existing solutions by addressing an important problem space
that has been overlooked, namely, integrating large-scale heterogeneous data
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sources with network and query load scalability as well as maintaining transac-
tion semantics. In spirit, DObjects is a distributed mediator-based system where
a federation of mediators and wrappers form a virtual system. Instead of focus-
ing on traditional cost-based query optimization, the query processing engine
of DObjects focuses on dynamically placing (sub)queries on the mediators for
query-load balancing and scalability. In addition, it includes an extension of the
three-phase commit protocol (3PC) [8] to provide a non-blocking, resilient, and
flexible consistency guarantee for the dynamic environment.

3 DObjects Overview

Figure 1 presents our vision of deployed DObjects framework. The system has no
centralized services and thus allows system administrators to avoid the burden
in this area. It uses the metacomputing paradigm as a resource sharing substrate.
Each node in the system provides its computational power that can be used by
others during query execution. In addition, nodes can run data adapters which
pull data from external data sources and transform it to a uniform format that
is expected while building query responses. Front-end users can connect to any
system node; however, while the physical connection is established between a
client and one of the system nodes, the logical connection is established between
a client node and a virtual database system consisting of all the participating
nodes. Our current implementation builds on top of a Java metacomputing plat-
form, H2O, that provides light-weight, decentralized and peer-to-peer resource
sharing and communication.
Data model. When user starts a query, DObjects returns persistent entities
which are data represented as objects. From user’s perspective, query responses
are objects of desired type. Each data object has a set of attributes, divided into
two groups: simple and referential. Simple attributes represent simple types, such
as numbers or strings. Referential attributes follow an object-oriented idiom and
allow the definition of association, composition or collection relations between
data objects. Thus, when a referential attribute is accessed, another persistent
entity, or a collection of persistent entities, is obtained. A set of available data
types in the system along with their attributes is defined in the system configu-
ration. Each configuration entry has a full description of an object, i.e. its type
name and a list of simple attributes and referential attributes. When a referen-
tial attribute is defined, one has to specify the foreign key information that is
required to join the referencing object and referenced object. It also specifies a
list of nodes (sources) where given objects can be found. Each source is speci-
fied with: 1) name of the node, 2) remote data object name, and 3) attribute
mappings that define the semantic mappings between the remote data object
and the current object. There is no centralized copy of the global configuration.
For systems with a handful DObjects nodes (the number of data sources can be
still large), the configuration can be replicated and synchronized at every node
as the cost of synchronization will be relatively small. For larger scale systems
with more DObjects nodes, the global schema can be replicated at a subset of
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<persistent-entity name="CityInformation">
<definition><attribute name="name" type="String"/>
<list name="lRails" type="RailroadConnection" local-key="id" remote-key="c_id"/>
<list name="lFlights" type="Flight" local-key="id" remote-key="c_id"/></definition>

<sources> <source name="place_a" remote-object="X">
<attribute-mapping name="name" remote-attr="city_name"/>

</source> </sources> </persistent-entity>

Fig. 2. Persistent entity configuration

the DObjects nodes such as landmark nodes. An example configuration corre-
sponding to the example mentioned in Sect. 1 is provided in Fig. 2. It defines
a persistent entity of CityInformation that has 2 referential attributes: a list of
RailroadConnections, and a list of Flights.
Data operations and query language. DObjects supports all standard data
operations including queries and updates. Both synchronous and asynchronous
queries are supported. In case of the latter user can get results

select c.name, r.destination, 

f.flightNumber, p.lastName

from CityInformation c, c.lRails r, c.lFlights f,

f.lPassengers p

where c.name like `San%` and p.lastName=`Adams` 

Fig. 3. Query example

incrementally and operate on partial results.
The query language for our system could be
implemented using any language that allows
one to specify attributes or conditions for a
given attribute in objects hierarchy. XPath
or XQuery as well as OQL-like language are
all valid approaches. An example of query
for Dobjects using OQL-like language is pre-
sented in Fig. 3.

4 Query Processing

In this section, we introduce the query processing and optimization engine in
DObjects. It is important to highlight that our approach does not attempt to
optimize physical query execution performed on local databases. Responsibility
for this is pushed to data adapters and data sources. Our optimization goal is
at a higher level focusing on building effective sub-queries and optimal place-
ment of those sub-queries on the system nodes to minimize the query response
time and maximize system throughput. While adapting ”textbook” distributed
query processing techniques such as distributed join algorithms and the learning
curve approach for keeping statistics about data adapters, our query processing
framework presents a number of innovative aspects. First, instead of generating
a set of candidate plans, mapping them physically and choosing the best ones
as in conventional cost based query optimization, we create one initial abstract
plan for a given query (Fig. 5 presents plan for query presented in Fig. 3). It
consists of such operators as joins, data merges and select operators executed on
data sources. Second, when the query plan is being executed, the node chooses
active elements from the query plan in a top-down manner for execution. How-
ever, placement decisions and physical plan calculation are performed dynami-
cally and iteratively to guarantee the best reaction to changing load or latency
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1: generate high-level query plan tree
2: active element ← root of query plan tree
3: choose execution location for active element
4: if chosen location �= local node then
5: delegate active element and its subtree to

chosen location
6: return
7: end if
8: execute active element;
9: for all child nodes of active element do

10: go to step 2
11: end for
12: return result to parent element

Fig. 4. Local algorithm for query process-
ing
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Fig. 5. Example of high-level query
plan

conditions in the system. If a node finds that the best candidate for executing
current element is a remote node, a migration of workload occurs. In order to
choose the best node for migration, we deploy a network and resource-aware cost
model that dynamically adapts to network conditions (such as delays in inter-
connection network) and resource conditions (such as load of nodes). Figure 4
presents a sketch of the local query execution process. Below we briefly describe
the two cost features of our cost model. More details can be found in [9].
Latency between nodes. To compute the network latency between each pair of
nodes efficiently, each DObjects node maintains a virtual coordinate [10], such
that the Euclidean distance between two coordinates is an estimate for com-
munication latency. The overhead of maintaining a virtual coordinate is small
because a node can calculate its coordinate after probing a small subset of nodes
such as well-known landmark nodes or randomly chosen nodes.
Load of nodes. The second feature of our cost metric is load of the nodes. Given
our desired feature to support cross-platform applications, instead of depending
on any OS specific functionalities for the load information, we incorporated a
solution that assures good results in heterogeneous environment. The main idea
is based on time measurement of execution of predefined test program that
considers computing and multithreading capabilities of machines.

5 Transaction Management

In this section we introduce the distributed commit protocol in DObjects. To
support a wide range of dynamic and large-scale distributed networks, the de-
sired features for our protocol include: (1) efficiency and scalability, (2) re-
sistance to dynamic environment, and (3) flexibility of consistency level. The
basic version of 3PC does not support network partitioning or multiple node
failures. Moreover, it assumes atomicity of transitions (e.g. messages can ei-
ther be sent to all the cohorts or to none of them). Such an assumption is
hard to implement in distributed computing paradigms. Extensions of 3PC,
such as Q3PC [11], while addressing some of the issues through the idea of
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Table 1. Consistency levels for commit protocol (TT is transaction timeout)

No logging Optimistic logging Full logging
Finite
TT

Consistency if protocol finishes before
timeout (node failures cause inconsis-
tency). Possibly no information about
transaction outcome.

Consistency if protocol
finishes before TT (node
failures can cause incon-
sistency).

Consistency
if protocol
finishes
before TT.

Infinite
TT

Resistant to network failures, node fail-
ures cause inconsistency. Possibly no in-
formation about transaction outcome.

Resistant to network
failures, node failures
can cause inconsistency.

Full consis-
tency, block-
ing protocol.

quorum, suffer cost of blocking. The commit protocol we designed and im-
plemented in DObjects is presented in Fig. 6. The protocol proceeds simi-
larly to classical 3PC. First, coordinator sends commit request to all cohorts.
If any cohort does not agree, the transaction is aborted. Next, after all co-
horts agreed to the transaction, coordinator sends prepare to commit message.
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Fig. 6. Commit protocol. T is timeout waiting for next
message, F is failure transition, TT is transaction timeout.

After all cohorts ac-
knowledge receiving of
the prepare message,
coordinator sends com-
mit messages and com-
mits. The key idea in
our protocol is to intro-
duce an additional co-
ordinator’s state u and
use quorum to handle
the node failures and
non-atomic state tran-
sitions and to use two
adjustable transaction
parameters to offer a
non-blocking alterna-
tive and the flexibil-
ity. The first parameter,
log level, allows users
to switch between the
amount of logged information by each node (no log, optimistic log or full log).
The second, transaction timeout TT, defines maximum time that an unresolved
transaction can persist in the system (in addition to the node failure timeout
between state transitions). When the timeout is reached, decision is made even if
some participants of the commit protocol are not available. The communication
among cohorts is similar to quorum-based protocols, namely when failures occur
nodes contact others to find out the outcome of the transaction. The addition of
the parameters, however, allows the protocol to offer a non-blocking alternative
when maximum transaction timeout is reached. The different logging level also
allows the system to have the flexibility of being able to conduct full recovery
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with a higher overhead or sacrifice consistency for efficiency. Table 1 summarizes
the different consistency levels achieved by different parameter configurations.
We believe that the new-generation distributed data systems need to offer this
flexibility and leave decisions to users who can choose between full consistency
or some risk of inconsistent state in case of failures for a trade-off of efficiency.
For detailed description and analysis of the protocol we refer readers to [12].

6 Initial Deployment and Experimental Evaluation
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Fig. 7. Average query response time

The framework is fully implemented
with current version available for down-
load 4. In this section we present an ini-
tial deployment and evaluation of our
system in terms of its feasibility. For rig-
orous performance evaluations and sim-
ulations under different parameter set-
tings of the query processing engine and
commit protocol, we refer to [9] [12].

We deployed DObjects framework
on four nodes started on general-
purpose PCs (Intel Core 2 Duo, 1 GB
RAM, Fast Ethernet network connec-
tion). The configuration involved the following three objects: 10,000 CityInfor-
mation objects (provided by node 1), 50,000 Flight objects (20,000 provided by
nodes 2 and 30,000 provided by node 3) and 70,000 RailroadConnection objects
(provided by node 3). Node 4 was used only for computational purposes. The
database engine nodes used was PostgreSQL 8.2.

Query processing. We measured response time for different query workloads
including small queries (returning CityInformations only) and medium queries
(returning CityInformations along with list of Flights and list of RalilroadCon-
nections). Figure 7 presents results for small and medium queries for various
number of parallel clients. Clearly the response time is significantly reduced
when query optimization is used. The response time may seem a bit high at the
first glance. To give an idea of the overhead introduced by our system, we inte-
grated all the databases used in the experiment above into one single database
and tested a medium query from Java API using Hibernate framework (using
one client). The query along with results retrieval took an average of 16 s. For the
same query, our system took 20 s that is in fact comparable to the case of a sin-
gle database. While the overhead introduced by DObjects cannot be neglected,
it does not exceed reasonable boundary and does not disqualify our system as
every middleware is expected to add some overhead. In this deployment, the
overhead is mainly an effect of network communication. In addition, the cost
of distributed computing middleware adds to the overhead which is the price a

4 http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects

http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects


144 P. Jurczyk, L. Xiong, and V. Sunderam

0

100

200

300

400

500

600

700

800

2 3 4 8

Number of involved cohorts

T
ra

n
s

a
c

ti
o

n
 t

im
e

o
u

t 
(m

s
)

Full log

Optimistic log

No log

Fig. 8. Transaction response time

0

1

2

3

4

5

6

7

1 2 4 8 16

Number of clients

T
h

ro
u

g
h

p
u

t 
(t

/s
)

Full log

Optimistic log

No log

Fig. 9. Throughput of transactions

user needs to pay for convenient access to distributed data. However, for larger
setup with larger number of clients, we expect our system to perform better than
centralized approach as the benefit from distributed computing paradigm and
load distribution will outweigh the overhead.
Transaction management. We also evaluated the performance of the commit
protocol and the impact of different logging levels through the deployment as
described earlier. The experiment was conducted by submitting data update re-
quests (create and delete operations one by one) involving data objects hosted
by a desired number of nodes (which corresponds to number of cohorts involved
in transactions). Figure 8 presents average response time for varying number of
cohorts. As expected, the reduction from full logging to optimistic logging in log
level yields better performance for the transactions and the difference between
optimistic logging and no logging is very small. Figure 9 presents average transac-
tion throughput for different number of independent clients for three cohorts. As
expected, limiting amount of logged information led to better throughput. More-
over, the difference between optimistic logging and no logging can be observed.
Especially for larger number of clients, when the system becomes overloaded, no
logging shows better performance. Such a phenomenon is not surprising, as writ-
ing even a small amount of information to persistent storage (e.g. hard drive) is
considerably expensive in case of high system resources utilization.

7 Conclusion and Future Work

We have introduced DObjects, a distributed data objects framework that fa-
cilitates integration of data from large scale heterogeneous sources and can be
used easily and transparently in distributed applications. We have discussed its
architecture built on top of a metacomputing platform for addressing both ge-
ographic and load scalability, its dynamic query processing engine with local
query migrations that dynamically adjusts to the network and resource condi-
tions, and its commit protocol that is scalable and resistant to dynamic network
and node failures and, most importantly, provides a configurable level of consis-
tency depending on specific application and system deployment characteristics.
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Our approach was validated through real implementation and deployment. The
ongoing and future efforts include further enhancement for query optimization
with a broader set of cost features (for instance dynamic migration of active
operators in real-time from one node to another if load situation changes) and
support for continuous queries. We are also considering fault tolerance proper-
ties of the commit protocol. In particular, we are planning to introduce data
replications and extend the system with tolerance of Byzantine node failures.
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