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1. Introduction

Shortly after The Royal Society’s founding in 1660, Christiaan Huygens, in partner-
ship with the Society, set out to solve the outstanding technological challenge of the
day: the longitude problem, i.e.  nding a robust, accurate method of determining lon-
gitude for maritime navigation (Yoder 1990). Huygens had invented the pendulum
clock in 1657 (Burke 1978) and, subsequently, had demonstrated mathematically
that a pendulum would follow an isochronous path, independent of amplitude, if
cycloidal-shaped plates were used to con ne the pendulum suspension (Yoder 1990).
Huygens believed that cycloidal pendulum clocks, suitably modi ed to withstand
the rigours of sea travel, could provide timing of su¯ cient accuracy to determine
longitude reliably. Maritime pendulum clocks were constructed by Huygens in col-
laboration with one of the original fellows of The Royal Society, Alexander Bruce,
2nd Earl of Kincardine. Over the course of three years (1662{1665) Bruce and the
Society supervised sea trials of the clocks. Meanwhile, Huygens, remaining in The
Hague, continually corresponded with the Society through Sir Robert Moray, both
to inquire about the outcome of the sea trials and to describe the ongoing e¬orts
Huygens was making to perfect the design of maritime clocks. On 1 March 1665,
Moray read to the Society a letter from Huygens, dated 27 February 1665, reporting
of (Birch 1756)

an odd kind of sympathy perceived by him in these watches [two maritime
clocks] suspended by the side of each other.

Huygens’s study of two clocks operating simultaneously arose from the practical
requirement of redundancy for maritime clocks: if one clock stopped (or had to be
cleaned), then the other could be used to provide timekeeping (Huygens 1669). In
a contemporaneous letter to his father, Huygens further described his observations,
made while con ned to his rooms by a brief illness. Huygens found that the pendulum
clocks swung in exactly the same frequency and 180¯ out of phase (Huygens 1950a; b).
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When he disturbed one pendulum, the anti-phase state was restored within half an
hour and remained inde nitely.

Motivated by the belief that synchronization could be used to keep sea clocks in
precise agreement (Yoder 1990), Huygens carried out a series of experiments in an
e¬ort to understand the phenomenon. He found that synchronization did not occur
when the clocks were removed at a distance or oscillated in mutually perpendicular
planes. Huygens deduced that the crucial interaction came from very small move-
ments of the common frame supporting the two clocks. He also provided a physical
explanation for how the frame motion set up the anti-phase motion, but though his
prowess was great his tools were limited: his discovery of synchronization occurred
in the same year when young Isaac Newton removed to his country home to escape
the Black Plague, and begin the work that eventually led to his Principia, published
some 20 years later.

The Royal Society viewed Huygens’s explanation of synchronization as a setback
for using pendulum clocks to determine longitude at sea (Birch 1756).

Occasion was taken here by some of the members to doubt the exactness
of the motion of these watches at sea, since so slight and almost insensible
motion was able to cause an alteration in their going.

Ultimately, the innovation of the pendulum clock did not solve the longitude prob-
lem (Britten 1973). However, Huygens’s synchronization observations have served
to inspire study of sympathetic rhythms of interacting nonlinear oscillators in many
areas of science. The onset of synchronization and the selection of particular phase
relations is a fundamental problem of nonlinear dynamics and one which has been
avidly pursued in recent years in problems ranging from neurobiology and brain func-
tion (Rodriguez et al . 1999) to animal locomotion (Strogatz & Stewart 1993; Gol-
ubitsky et al . 1999), superconducting electronics, laser physics, and smart antenna
arrays (Liao & York 1993).

In this paper we reconsider Huygens’s observations. To our knowledge, previous
attempts to understand Huygens’s observations are few and ultimately unsatisfac-
tory. We have built an updated version of the two-clock system, with pendulums
attached to a common frame free to move in one dimension. In our experiments, we
vary the coupling strength by changing the ratio of pendulum mass to system mass · ,
and, thereby, explore in greater depth the situation facing Huygens. At small · (weak
coupling) corresponding to Huygens’s situation, we  nd that whenever the pendu-
lums frequency lock, they fall into anti-phase oscillations. However, as the coupling is
increased by increasing · , we observe another state in which one or both clocks cease
to run: a state we call `beating death’. This behaviour is increasingly dominant as ·
becomes large. Thus, our results suggest Huygens’s observations depended somewhat
serendipitously on the extra heavy weighting of his clocks intended to make them
more stable at sea.

We study the problem theoretically by deriving a Poincaŕe map for the nonlinear
dynamics. Our map is in agreement with the experimental observations; moreover, in
one useful limit, the map reduces to a single degree of freedom, and captures many
essential results of our experiments. We are also able to explain the behaviour in
very direct physical terms based on a normal mode description, a picture originally
put forward by Korteweg (1906).
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2. Background

(a) Details of Huygens’s clock experiments

The operation of a pendulum clock is described in great detail by Huygens (Huygens
1986). In brief, the pendulum is attached to an escapement, which alternately blocks
and releases a scape wheel as the pendulum oscillates. This action provides the timing
that is transmitted from the scape wheel to the clocks’ hands via a gearing system
(the motion work ). The scape wheel is also connected through a separate gearing
system (the going train) to an energy source, typically a wound spring or elevated
weights. The unwinding spring or falling weights drive the motion of the scape wheel,
which, in turn, provides small `kicks’ to the pendulum via the escapement. This
transmission of energy to the pendulum compensates for losses due to friction; thus,
the pendulum continues to oscillate inde nitely as long as the spring is periodically
rewound or the fallen weights are periodically raised back up.

Many experimental details of Huygens’s observations are recorded in his writings
(Huygens 1950a; b; Huygens 1986). The pendulum in each clock measured ca. 9 iny in
length, corresponding to an oscillation period of ca. 1 s. Each pendulum weighed 1

2
lbz

and regulated the clock through a verge escapement, which required each pendulum
to execute large angular displacement amplitudes of ca. 20¯ or more from vertical
for the clock to function (see Rawlings (1944) and also Landes (1983, appendix A)
for a detailed description of the verge escapement). The amplitude dependence of
the period in these clocks was typically corrected by use of cycloidal-shaped bound-
aries to con ne the suspension (Huygens 1986). Each pendulum clock was enclosed
in a 4 ft{ long case; a weight of ca. 100 lb was placed at the bottom of each case
(to keep the clock oriented aboard a ship.) From this information, we estimate that
the important experimental parameter · , the ratio of the single pendulum mass to
the total system mass, is ca. 0.005. Though the two clocks di¬ered in certain phys-
ical aspects, (for example, Huygens notes that the size of the clocks was somewhat
di¬erent (Huygens 1950a; b)) the clocks were closely matched in those characteris-
tics we expect are essential for the dynamics. In particular, well-adjusted pendulum
clocks of the 1660s would typically run at rates which di¬ered by only 15 s per day
(so their natural frequencies di¬ered by approximately two parts in 10 000) (Landes
1983). Pendulum clocks represented a tremendous advance in horology, the science of
timekeeping. Before Huygens’s invention of the pendulum clock, typical clocks (e.g.
verge escapement with balance wheel regulator) varied by ca. 15 min (1%) per day
(Landes 1983).

Huygens’s laboratory notebook contains a detailed description of tests and observa-
tions on synchronization (Huygens 1950a; b). In some experiments, Huygens studied
two clocks that were suspended side by side, each hanging from a hook embedded
in the same wooden beam. In other experiments, Huygens studied a con guration
with each clock hanging from its own wooden beam and the two beams lying on
top of back to back chairs. At  rst, Huygens suspected the `sympathy’ was due
to induced air currents, but eventually concluded the cause was the `imperceptible
movements’ of the common supporting structure. The associated coupling was weak:
when Huygens disturbed the pendulums, he found the clocks required ca. 30 min

y 1 in equals 2.54 cm.
z 1 lb equals 0.4536 kg.
{ 1 ft equals 12 in equals 30.5 cm.
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(a)

(b)

(1) (2)

Figure 1. Multiple-exposure images illustrate the anti-phase attractor of a large mass ratio
( · = 0:0063) system of two pendulums mounted on a common translating beam. (a) The system
is started with equal amplitude, in-phase oscillation of the left (1) and the right (2) pendulums.
In the presence of weak coupling through lateral motion of the mounting cart, the in-phase state
is unstable and, after a su± cient time, the system oscillates stably in anti-phase ¯nal state (b).

before synchronization was restored. At one second per cycle, a transient time of
30 min amounts to 1800 cycles. (Interestingly, Huygens considers this restoration
time as fast, perhaps a re®ection of the pace of life then and now.) The dissipation
was also weak, as can be seen from the following estimate: the total energy avail-
able to run each clock is ca. 100 J, obtained from weights of ca. 10 kg mass falling
a distance of 1 m. Assuming this energy is su¯ cient to keep a clock running for
ca. 250 000 oscillations (ca. 3 days), the energy input per oscillation is ca. 4 £ 10¡4 J.
The total energy in a 9 in long, 1

2
lb pendulum swinging through a semiarc of 25¯

is ca. 0.05 J. Thus, energy loss per oscillation relative to the pendulum energy is
ca. 0.8%.

(b) Recapping Korteweg and Blekhman studies

We know of two studies which were directly motivated by Huygens’s observations.
The  rst was Korteweg’s (1906) paper in which he analysed a three-degree-of-freedom
model consisting of two plane pendulums connected to a rigid frame free to oscillate
in one dimension. (Korteweg was also strongly motivated by the 18th century obser-
vations of Ellicott regarding the slow beating between weakly coupled pendulums.)
Korteweg made a linear normal mode analysis for small oscillations in the absence
of damping and driving e¬ects. To explain why only certain of these modes might be
observed, and others not, Korteweg introduced the idea that friction is responsible
for certain motions being unsustainable. If a mode involved large-amplitude motion
of the supporting frame, he argued, the internal clock mechanisms would be unable
to provide enough energy to sustain this motion. Conversely, for a mode in which
the frame moved only a little, the energy input could overcome the e¬ects of friction.
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Figure 2. (a), (b) Time-series from pendulum experiments and (c), (d) simulations illustrating
the evolution from unstable in-phase to stable anti-phase oscillations. Damped beating is found
in both the pendulums’ (a), (c) phase di® erence ¬ and (b), (d) amplitudes A1 , A2 . Time is
scaled by the pendulum period and amplitudes are scaled by the initial amplitude at t = 0. The
experimental conditions correspond to those listed in ¯gure 1.

Though these aspects of energy damping and energy input were not included in his
quantitative analysis, Korteweg concluded that Huygens’s observations were entirely
captured by the three-degree-of-freedom model, and that the anti-phase mode, if not
the only sustainable motion, enjoyed a distinct advantage over in-phase motion. This
advantage was cleverly used in a di¬erent context for precise measurements of the
acceleration of gravity by Vening Meinesz and others, who used pairs of pendulums
set into free (no driving) anti-phase oscillation (Heiskanen & Vening Meinesz 1958).

Blekhman (1988) also discusses Huygens’s observations in his book, and he re-
counts the results of a laboratory reproduction of the coupled clocks as well as pre-
senting a theoretical analysis of oscillators coupled through a common supporting
frame. His model is similar to the one studied by Korteweg, except that Blekhman
uses van der Pol oscillators rather than pendulums, so that his quantitative analysis
includes both (weak) driving and damping e¬ects. Blekhman was primarily moti-
vated by the general aspects of synchronization phenomena found in a wide vari-
ety of physical systems, and it is probably for this reason that he chose to use
van der Pol oscillators. He predicted that both in-phase and anti-phase motions
are stable under the same circumstances (that is, the two are coexisting attrac-
tors). Somewhat puzzling is that he reports observing both states in the exper-
imental reproduction: while this agrees with his predictions for the van der Pol
system, Huygens (so far as we know) never mentioned stable in-phase synchroniza-
tion.

Proc. R. Soc. Lond. A (2002)



568 M. Bennett and others

3. Experimental realization and results

We re-examine Huygens’s synchronization observations in an experiment with two
pendulum clocks mounted side by side on a single wooden beam ( gure 1). The
pendulum clocks are commercially available spring-wound time pieces (Model 771-
000, Uhrenfabrik Franz Hermle & Sohn, Gosheim, Germany). Each clock contains a
14.0 cm pendulum (with a nominal frequency of 1.33 Hz) of mass m = 0:082 kg; the
pendulum is coupled to an anchor escapement, which enables the clock movement
to function with small angular displacements of ca. 8¯ from vertical. The beam is
mounted on a low-friction wheeled cart (Model ME-9454, Pasco Scienti c, Roseville,
CA). The combined system of clocks, beam and cart is placed atop a slotted track
(ME-9429A, Pasco Scienti c), which permits the system to translate freely in a
direction parallel to the beam. The total mass of the cart and clocks without the
pendulums is M . Weights are added to and removed from the cart to change M
and, thereby, to change the system mass ratio · ² m=(2m + M ). The motion of
each pendulum is monitored by tracking a laser beam re®ected from the pendu-
lum suspension using a position-sensing detector (Model 1L30, On-Trak Photonics,
Lake Forest, CA). The lasers and detectors (not shown in  gure 1) are mounted
on the system, permitting measurement of each pendulum’s angular position in the
system reference frame. The voltage signal from each detector is recorded using a
computer-based data-acquisition system; complex demodulation of the signals yields
measurement of each pendulum’s oscillation amplitude, frequency and phase as a
function of time.

The clocks synchronize in anti-phase when the system mass ratio · is compara-
ble with that reported by Huygens ( gures 1 and 2). In this case, the anti-phase
state is the attractor when the system begins from any `good’ initial condition,
which ensures that each clock is initially functioning. (Starting one pendulum at
rest with zero angular displacement is an example of a `bad’ initial condition; the
energy exchange between the coupled pendulums is not su¯ cient to jump-start a
pendulum whose initial amplitude is too small to engage the escapement.) Con-
sider, for example, the case where the system starts at rest with both pendulums
having equal amplitude, in-phase angular displacements ( gure 1). The approach to
the anti-phase state is slow, occurring over the course of several hundred pendulum
oscillations ( gure 2a). The phase di¬erence ¬ = ¬ 1 ¬ 2 exhibits some overshoot,
and small, slow variations in ¬ about º persist inde nitely. The complex demod-
ulated pendulum amplitudes A1 and A2 initially exhibit slow, approximately out-
of-phase oscillations in a manner characteristic of beating between weakly coupled
linear oscillators ( gure 2b). These beating oscillations are damped and, eventually,
the amplitudes become nearly steady and approximately equal as ¬ gets close to
º . During this evolution, the amplitude of the cart’s motion is typically very small
(ca. 0.1 mm).

Stable anti-phase synchronization requires the pendulum clocks to be very closely
matched in frequency. For example, anti-phase synchronization is observed with · =
0:0063 when the di¬erence between the natural frequencies of the clocks is 0.0009 Hz.
By simply exchanging the pendulum bobs between these two (very similar but not
identical) clocks, this frequency di¬erence is increased to 0.0045 Hz and anti-phase
synchronization no longer occurs. Instead, the two clocks run `uncoupled’ at their
individual frequencies.
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Figure 3. Probability of observing stable anti-phase oscillations as a function of mass ratio · for
the clock system that begins at rest with both pendulums having in-phase angular displacements
of equal amplitude. In this range of · only two asymptotic states are observed: anti-phase
oscillation and beating death.

When · is su¯ ciently increased, we  nd that some initial conditions can lead
to a state, which we call `beating death’, where one or both of the clocks cease to
function ( gure 3). If the angular displacement of either pendulum clock falls below a
minimum threshold, the escapement mechanism can no longer engage, the pendulum
seizes, and the clock stops. When the pendulums start from rest with in-phase angular
displacements of equal amplitude, anti-phase oscillations are always observed for
· < 0:0083, while the clocks typically stop for · > 0:0125. At intermediate values of
· , either state may be the attractor of the system, depending on slight di¬erences in
the initial conditions. Additionally, as a function of · , the system exhibits hysteresis,
which may be due in part to the dependence of the track friction on the mass loading
of the system.

We believe that our clock system contains the same essential ingredients as Huy-
gens’s clock system. In both cases, the clocks are mounted on a common support
whose motion provides weak coupling. Dissipation is also weak both in Huygens’s
clocks and ours; in our case, we estimate the relative energy loss per oscillation is
ca. 3%. Both systems of clocks are kept out of equilibrium by the inherently nonlinear
driving from small impulsive kicks applied by the escapement mechanisms when the
pendulums’ displacement amplitudes exceed a threshold value. Of course, Huygens’s
clocks di¬er in certain details that are qualitatively unimportant as follows.

(a) Huygens’s clocks were driven by falling weights; ours are spring driven.

(b) Huygens’s clocks used a verge escapement, which required large displacements
amplitudes of ca. 25¯ to function; our clocks use a newer (invented in the 1670s)
anchor design, which enables clocks to function with smaller amplitudes.
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(c) The length of Huygens’s oscillating pendulums was continually varied by con-
 ning the suspension of each pendulum between cycloidal-shaped boundaries;
our pendulums oscillated with a  xed suspension length.

4. Theory: model and analysis

We consider the three-degree-of-freedom model depicted in  gure 4. Two plane pen-
dulums hang from a common rigid frame which is constrained to move in one dimen-
sion. The pendulums are identical, each consisting of a point mass hanging from a
massless rigid rod. In the absence of damping and driving, the Lagrangian is

L = 1
2
(M + 2m) _X2 + m _X`(cos ¿ 1

_¿ 1 + cos ¿ 2
_¿ 2) + 1

2
m`2( _¿ 2

1 + _¿ 2
2)

+ mg`(cos ¿ 1 + cos ¿ 2) 1
2
KX2; (4.1)

where ¿ k is the angular displacement of the kth pendulum about its pivot point,
X is the linear displacement of the platform, m is the pendulum mass, M is the
platform mass, g is the acceleration due to gravity, ` is the pendulum length, and
the overdot denotes di¬erentiation with respect to time. We take the platform motion
to be weakly bound by a harmonic restoring force, since in Huygens’s experiments
the common supporting beam was con ned. In our experiments the platform is free
to slide, so that K = 0. (In earlier experiments we included a con ning force by
mounting magnets on the platform base. The results were similar and for practical
simplicity we  nally settled on the K = 0 design.) In the analysis to follow, we keep
the harmonic restoring force to handle both cases, and to check that this di¬erence
is indeed a minor detail.

We also add viscous damping to the pendulums and the platform, and a driving
mechanism to model the clocks escapements. The governing equations of motion
become

�¿ k + b _¿ k +
g

`
sin ¿ k =

1

`
�X cos ¿ k + ~fk ; (4.2)

(M + 2m) �X + B _X + KX =
X

j

m`(sin ¿ k)� ; (4.3)

where b and B are friction coē cients. The clock mechanism, represented by ~fk,
provides the energy needed to keep the clock running (see below).

It is convenient to write the di¬erential equations in dimensionless form, introduc-
ing a scaled position Y = X=` and time ½ = t

p
g=`, so that

¿ 00
k + 2 ® ¿ 0

k + sin ¿ k = Y 00 cos ¿ k + fk; (4.4)

Y 00 + 2¡ Y 0 + « 2Y = · (sin ¿ 1 + sin ¿ 2)00; (4.5)

where ® = b
p

`=4g, ¡ = B
p

`=4g=(M + 2m), « 2 = K=(M + 2m), · = m=(M + 2m),
and the prime denotes di¬erentiation with respect to ½ . The system mass ratio · =
m=(M + 2m) controls the coupling strength and is a key parameter in our analysis.

Rather than develop a detailed model of the escapement mechanism (Lepschy et
al . 1992), we use a simple impulse rule: when the pendulum reaches a threshold angle
§ © , the angular velocity reverses direction and its magnitude changes according to

j ¿ 0
k j ! (1 c)j ¿ 0

k j + ° ; (4.6)
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X
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Figure 4. Sketch of model coupled-pendulum system.

where c and ° are small positive constants. Our choice of impulse rule is loosely based
on the two-part action of the escapement, which  rst engages at a  xed angle and
then delivers a kick on the downswing as the anchor hits. Since we are interested in
the heavy platform limit M ¾ m, we ignore the reaction force on the platform.

In what follows, we consider small-angle swings only. Even so, the problem is
nonlinear due to the impulsive kicks. Between kicks the dynamics is linear, however,
and the motion can be decomposed into a superposition of independent normal mode
oscillations. We exploit this below in deriving a Poincaŕe map, alternately applying
the normal mode evolution and the instantaneous e¬ect of the kicks.

Before turning to a derivation of the iterative map, we pause to present a simple
explanation of Huygens’s observation. Introducing sum and di¬erence variables, ¼ =
¿ 1 + ¿ 2 and ¯ = ¿ 1 ¿ 2, equations (4.4) and (4.5) become, for small oscillations and
between kicks,

¯ 00 + 2 ® ¯ 0 + ¯ = 0; (4.7)

¼ 00 + 2 ® ¼ 0 + ¼ = 2Y 00; (4.8)

Y 00 + 2 ¡ Y 0 + « 2Y = · ¼ 00: (4.9)

Only the sum coordinate couples to the platform motion. Thus, the damping in the
platform a¬ects ¼ but not ¯ . To take the most extreme situation, if the pendulums
were free of friction (i.e. ® = 0), the coordinate ¼ would still damp out; only ¯
survives, and this corresponds to pure anti-phase motion, just as Huygens observed.

This argument is instructive, and has the essential ingredients, but is incomplete
since it ignores the energy input altogether. Without the kicks, the amplitude of the
surviving (anti-phase) oscillations would depend on the initial conditions (contrary
to observations) and for nearly in-phase initial conditions the anti-phase amplitude
would be so small that the clock escapement would not engage, so that the anti-phase
state would be unsustainable even in principle.

Nevertheless, the normal modes play a central role in the analysis that follows.
Using the (complex) notation ¯ (t) = ¯ jei!j t, ¼ (t) = ¼ jei!j t and Y (t) = Yjei!j t to
de ne the jth mode, we can determine the three mode frequencies !j and the corre-
sponding mode coordinates ªj . One mode follows from the decoupling of the di¬er-
ence coordinate:

!1 = 1 + i ® ; ª1 = ( ¯ ; ¼ ; Y ) = (1; 0; 0): (4.10)

This describes pure anti-phase motion with decay rate Im(!1) = ® . Here and in
what follows, we will assume for convenience that the damping is weak ( ® ½ 1)
and so neglect terms of order ® 2. The exact expressions for the other two modes are
cumbersome, but for our purposes it is enough to develop them as a power series in
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the mass ratio · . We  nd

!2 = 1 + i ® + · (1 + 2i( ® + ¡ )); ª2 = (0; 1; · d[1 2id( ¡ « 2 ® )]) (4.11)

and

!3 = « + i ¡ + O( · ); ª3 = (0; 2 « 2; 1) + O( · ); (4.12)

where d¡1 = « 2 1, and we have written these in a form suitable for the case where
the platform is underdamped ( « > ¡ ). In fact, this is not a necessary assumption.
We only want to avoid the resonant case « = 1 when the platform frequency matches
the pendulum frequency, so we assume either the frequencies do not match or the
platform motion is overdamped.

Consideration of the mode structure allows us to simplify our analysis. First, since
we want to consider the situation where the platform has `imperceptible movements’,
Y is small. But the only linear combinations of the three modes

P
j cjªj which yield

a small value for Y have an equally small amount of the third mode, c3=c2 ¹ O( · ).
This means that the third mode is barely excited. Second, the remaining modes ª 1

and ª 2 are only O( · ) di¬erent from ¯ and ¼ , respectively. Thus, if a kick from the
escapement mechanism boosts the value of ¿ 1, say, then to leading order in · it
a¬ects modes ª 1 and ª 2 and not ª 3.

Together, these observations allow us to ignore the third mode, thereby reducing
the problem to two degrees of freedom. We now proceed to construct a Poincar´e map
in the reduced, four-dimensional phase space, which is spanned by the coordinates
( ¿ 1; ¿ 0

1; ¿ 2; ¿ 0
2). Our strategy is to exploit the weakness of the damping and coupling.

During one oscillation, we imagine that each pendulum executes a nearly free har-
monic orbit, and then compute the small changes due to the damping and driving.
Thus, we de ne

¿ j = Aj sin( ½ + ¬ j); j = 1; 2; (4.13)

where the iterative map describes updates in the amplitudes Aj and phases ¬ j . In
the phase plane for each pendulum, one can picture the free orbit as uniform motion
around the circle of radius Aj , except that when it reaches the positions ¿ j = ©
when ¿ 0

j > 0 and ¿ j = © when ¿ 0
j < 0, the pendulum suddenly changes sign due

to the kick from the clock mechanism (see  gure 5). During the remaining motion
there is energy loss due to friction.

The map we will derive considers the moment when the  rst pendulum passes
through its lowest point moving to the right, so the Poincaŕe section is ¿ 1 = 0,
¿ 0

1 > 0. We consider in turn the e¬ect due to (1) the damping and (2) the four
impacts with the clock mechanisms (two impacts per pendulum per cycle).

(a) Damping

The e¬ect of damping is most easily expressed by using the normal mode co-
ordinates, which are to leading order just the sum and di¬erence combinations ¼
and ¯ . Introducing the `polar’ representation corresponding to equation (4.13), we
can write

¼ = A+ sin( ½ + ¬ + ); (4.14)

¯ = A¡ sin( ½ + ¬ ¡); (4.15)
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where

A2
§ = A2

1 + A2
2 § 2A1A2 cos( ¬ 1 ¬ 2); (4.16)

tan ¬ § =
A1 sin ¬ 1 § A2 sin ¬ 2

A1 cos ¬ 1 § A2 cos ¬ 2
; (4.17)

and so

4A2
j = A2

+ + A2
¡ § 2A+ A¡ cos( ¬ + ¬ ¡); (4.18)

tan ¬ j =
A+ sin ¬ + § A¡ sin ¬ ¡

A+ cos ¬ + § A¡ cos ¬ ¡
; (4.19)

where the upper signs correspond to j = 1 and the lower signs to j = 2.
The normal modes evolve independently, with the real and imaginary parts of

each mode frequency determining the time variation of the mode amplitude and
phase, respectively. If we denote the mode frequencies by ! + and !¡ for in-phase
and anti-phase, respectively, over one oscillation we have A + ! ¹ A + , A¡ ! ¸ A¡ ,
and (¬ + ¬ ¡ ) ! ( ¬ + ¬ ¡ ) +  , where the constants ¹ , ¸ and  are

¹ = e¡2º Im !+ ; (4.20)

¸ = e¡2º Im !1 ; (4.21)

 = 2 º Re(! + !¡ ): (4.22)

One can work out what this corresponds to in terms of the variables (A1; A2; ¬ 1; ¬ 2)
using equations (4.18) and (4.19). Denoting the new values by a tilde, the result is

4 ~A2
1 = ( ¹ + ¸ )2A2

1 + ( ¹ ¸ )2A2
2 + 2( ¹ 2 ¸ 2)A1A2 cos ¬ +  4 ¹ ¸ A1A2 sin ¬ ; (4.23)

4 ~A2
2 = ( ¹ ¸ )2A2

1 + ( ¹ + ¸ )2A2
2 + 2( ¹ 2 ¸ 2)A1A2 cos ¬  4 ¹ ¸ A1A2 sin ¬ ; (4.24)

tan ~¬ =
2 ¹ ¸ [2A1A2 sin ¬ +  (A2

1 A2
2)]

( ¹ 2 ¸ 2)(A2
1 + A2

2) + 2( ¹ 2 + ¸ 2)A1A2 cos ¬
; (4.25)

where
¬ = ¬ 1 ¬ 2 (4.26)

and we have kept terms to  rst order in  . Physically,  is the coupling-induced
frequency shift between the otherwise degenerate normal modes, which of course is
small for small coupling. Subtracting the old values from the new ones, we get

¢ dAj = ~Aj Aj ; (4.27)

¢ d ¬ = ~¬ ¬ ; (4.28)

where the notation ¢ d indicates the changes due to damping in the amplitudes and
the phase di¬erences.

(b) Impacts

Since the impacts `truncate’ the free orbit near the turning points, the pendulum
periods are less than 2 º ( gure 5). This amounts to advancing the phases ¬ j . The
situation is particularly simple if considered in terms of the single-oscillator phase
space: the time taken to traverse the truncated orbit is directly proportional to the
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f

f ’

a j Aj

Figure 5. Phase portrait of single f̀ree’ orbit truncated at ¿ j = § © .

perimeter of the truncated circle, so that it takes a time T = 4 arcsin( © =Aj) for the
jth pendulum to return to the section. With ¢ i indicating the changes due to the
impacts, the change in ¬ j is

¢ i ¬ j = 2º 4 arcsin( © =Aj); j = 1; 2; (4.29)

so that
¢ i ¬ = ¢ i ¬ 1 ¢ i ¬ 2: (4.30)

The e¬ect on the amplitudes can be calculated by energy considerations. Noting
that ¿ 2

j + ¿ 02
j = A2

j is constant over the unperturbed orbit, the angular speed at
¿ j = § © is

j ¿ 0
j j =

q
A2

j © 2: (4.31)

Applying the impulse rule equation (4.6) twice,

j ¿ 0
j j ! (1 c)[(1 c)j ¿ 0

j j + ° ] + ° ; (4.32)

which gives the angular speed the instant after the second kick. Using equation (4.31)
again gives the new amplitude, and thus the change due to the impacts:

¢ iAj =
n

© 2 + [(1 c)2
q

A2
j © 2 + (2 c) ° ]2

o1=2

Aj : (4.33)

These changes in phase and amplitude apply only if the amplitude is big enough
to trigger the escapement, i.e. only if Aj > © .

(c) Analysis of the map

Together, the contributions from the impacts and the damping give a three-
dimensional return map for the coordinates (A1; A2; ¬ ):

A1 ! A1 + ¢ iA1 + ¢ dA1; (4.34)

A2 ! A2 + ¢ iA2 + ¢ dA2; (4.35)

¬ ! ¬ + ¢ i ¬ + ¢ d ¬ : (4.36)
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We can identify three  xed points, all of which have equal amplitudes (A1 = A2).
One is the trivial solution A1 = A2 = 0. To  nd the other two, note  rst that if A1 =
A2 then ¢ i ¬ 1 = ¢ i ¬ 2 from equation (4.29) and ¢ iA1 = ¢ iA2 from equation (4.33).
Meanwhile, in equations (4.23) and (4.24), setting ¬ = 0 or º and A1 = A2 implies
~A1 = ~A2, while taking A1 = A2 and the limit ¬ ! 0 or º in equation (4.25) yields
~¬ ! 0 or º , respectively. Thus, we have two non-trivial  xed points, one with ¬ = 0
and the other with ¬ = º . These are the in-phase and anti-phase states, respectively.

Before we discuss the behaviour of the full three-dimensional map, it is useful to
consider the special case A1 = A2 > © and  = 0. We can get a fairly complete
picture in this case. The subspace A1 = A2 is invariant and contains the  xed
points identi ed above. Moreover, the phase di¬erence ¬ obeys its own map. From
equation (4.29) we see that ¬ is unchanged due to the impulsive kicks, and from
equation (4.25) that the amplitudes cancel out, leading us to the one-dimensional
map

~¬ = arctan

½
2 ¹ ¸ sin ¬

( ¹ 2 ¸ 2) + ( ¹ 2 + ¸ 2) cos ¬

¾
: (4.37)

For any ¹ , ¸ , there are exactly two  xed points, ¬ = 0 and º . These are just the
non-trivial  xed points already identi ed. By looking at the slope of this map one
readily shows that ¬ = 0 is locally unstable and ¬ = º is locally stable, for all allowed
¹ , ¸ .

There is an alternative way to analyse the equal-amplitude case which allows us to
make a stronger statement about the stability of the anti-phase state. The argument
focuses directly on the mode energies, which gives it a certain conceptual advan-
tage. The mode energies are proportional to the squared amplitudes A2

§ . Setting
A1 = A2 = A in equation (4.16) yields

A2
§ = 2A2(1 § cos( ¬ 1 ¬ 2)): (4.38)

Now, we have established (cf. equation (4.29)) that if A1 = A2, the impulses do not
a¬ect ¬ . Thus, if the impulse causes an amplitude change A ! A + ¢ A, we have
from equation (4.38)

A§ !
A + ¢ A

A
A§ ;

which says that A+ and A¡ are scaled by the same factor. Meanwhile, frictional
damping also acts to scale A + and A¡ :

A + ! ¹ A + ; A¡ ! ¸ A¡ ;

where 0 6 ¹ < ¸ 61. Taken together, the two contributions yield the map

~A + = ¹

µ
1 +

¢ A

A

¶
A + ; (4.39)

~A¡ = ¸

µ
1 +

¢ A

A

¶
A¡ : (4.40)

Note that this does not give an explicit description of the system’s evolution, since A
itself is a dynamical variable. Nevertheless, it is enough to draw the strong conclusion
that the anti-phase state is globally attracting (within the equal amplitude subspace).
This follows because, since ¹ < ¸ , proportionately more energy is drained out of the
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in-phase mode than is put into it, in all cases except if the system is perfectly in-phase
(and so A¡ = 0).

Let us return now to consider the full three-dimensional map. Numerical simula-
tions of the three-dimensional map reveal that the anti-phase state and the trivial
state are asymptotically stable, while the in-phase state is unstable, consistent with
Huygens’s observations (and ours). As already noted,  is the frequency di¬erence
between the two normal modes; when  6= 0, the main e¬ect is the introduction of
beats, which eventually damp out (see  gure 2). Because of these, even if the pendu-
lums initially have the same amplitude, this property does not persist. Nevertheless,
the beating merely introduces a transient which serves to decorate the main trends
in the system’s evolution, i.e. those trends which we previously deduced by setting
 = 0, without a¬ecting the long-term behaviour.

The map behaves very similarly to our experiments and Huygens’s observations.
Figure 2 shows a typical situation: even when started close to the in-phase state, the
system evolves into the anti-phase state, with damped beating behaviour in both
the amplitudes and the phase di¬erence. More generally, the model qualitatively
reproduces the important features of the experimental data, though there are some
di¬erences. The chief discrepancy is that the model shows a much smaller modulation
of the amplitudes, a property that can be traced to the sharp impulse mechanism
(see equation (4.6)).

This is not the end of the story, however. Simulations reveal another type of
attracting state, where one pendulum oscillates but the other does not; we call this
behaviour `beating death’ because beating plays an important role in determining
the  nal dynamical state. Beating death happens when the pendulum amplitudes
get very close to the escapement threshold © . If both pendulums have sub-threshold
amplitudes, there is no energy input and the system is attracted to the trivial state
A1 = A2 = 0. However, if the two amplitudes are slightly larger than © , the beating
can introduce a large enough di¬erence between the two so that the motion of one
pendulum dies out while the other does not. This type of  nal state is also observed
in our experiments when the coupling is sū ciently strong.

Drawing everything so far together, we  nd that depending on initial conditions the
system ends up either in the anti-phase state or in beating death. The latter occurs
more often the greater the coupling, all other parameters held  xed. We can estimate
when we expect to observe beating death with signi cant probability by considering
the in-phase solution (for which damping e¬ects are greatest) with A1 = A2 and
computing the value of the common value A: when this falls below © the motion
cannot be sustained. This leads to the following condition for beating death:

1

2 ©
(2 c)2 ° 2 2 º ® 4 º · ( ® + ¡ ) < 0: (4.41)

The  rst term is the amplitude boost due to the clock mechanism (when A = © ),
the rest is the amplitude loss due to friction in pendulum and platform. It is the · -
dependent term that is interesting from the point of view of Huygens’s observations,
since presumably his clocks were run under the condition that, in isolation, each
clock maintains its oscillations. We see plainly that for large enough · the condition
for quiescence is satis ed.

Finally, we consider the e¬ect of non-identical clocks. With identical pendulums,
the anti-phase state is attracting for arbitrarily small values of · . However, in general
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Figure 6. Phase diagrams summarizing theoretical analysis:
(a) ¢ {· parameter plane; (b) ¡ {· parameter plane.

one expects that two oscillators with di¬erent natural frequencies will not frequency
lock unless the coupling exceeds some minimum threshold value. We can get an esti-
mate of this threshold by the following argument. Assuming that the amplitudes
are very nearly equal, and that the beating parameter  is su¯ ciently small that
they stay nearly equal, the relative phase evolves according to the map (see equa-
tion (4.37))

~¬ = ¢ + arctan

½
2¹ ¸ sin ¬

( ¹ 2 ¸ 2) + ( ¹ 2 + ¸ 2) cos ¬

¾
; (4.42)

where a constant ¢ has been added to account for the di¬erence in pendulum fre-
quencies. (More speci cally, if these frequencies di¬er by an amount » , then in the
uncoupled case ¬ advances by an amount » T , where T is the mean period.) As the
detuning is increased, the ¬ = 0  xed point shifts up and the ¬ = º  xed point shifts
down, until they coincide at the critical detuning ¢ c, beyond which the pendulums
are not frequency locked. Since both ¹ and ¸ di¬er only a little from unity, we can
 nd ¢ c by setting ¬ = º =2 in equation (4.42), with the result

¢ c º
¹ ¸

¸
: (4.43)

For example, taking « 2 ½ 1, this becomes

¢ c = 4 º · ( ¡ + ® ): (4.44)

5. Discussion and serendipity

Figure 6 summarizes our theoretical results. The  gure depicts which of the three
types of attracting states predominate as a function of system parameters. The state
labelled `quasiperiodic’ refers to the case where the pendulums run at di¬erent fre-
quencies. Near each boundary the system can end up in one or other state depending
on initial conditions. We have made two plots in order to piece together the full pic-
ture as a function of the three key parameters. In  gure 6a, we hold the platform
damping ¡  xed, and vary the detuning ¢ and coupling strength · . The anti-phase
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regime exists only if the detuning is small enough, consistent with our experimental
observations. Figure 6b shows the situation for  xed ¢ , as a function of ¡ and · .
The anti-phase state sits in between the quasiperiodic and `death’ states. It is worth
noting that as we vary the platform weight M , the path followed by our experi-
ments is not strictly parallel to the · -axis because varying M also mildly a¬ects the
dimensionless damping ¡ ( gure 6b).

Our results suggest that Huygens’s observation of `sympathy’ depended on both
talent and luck. The clock boxes were weighted by some 100 lb of lead in order
to keep them upright in stormy seas. If they had not been, the mass ratio would
have been too large, making the coupling too strong, and eventually stopping the
clocks. Neither would his observation have been possible if the coupling was too
weak, since the small but inevitable di¬erence in the clock frequencies would prevent
frequency locking. Only clocks with su¯ ciently close frequencies could fall into anti-
phase lock-step. As it happened, Huygens’s own inventions|and the clockmaker S.
Oosterwijck’s craftsmanship|made such exquisite matching possible.

We thank Don Aronson, Chris Lobb, Raj Roy and Steve Strogatz for their help over the course
of this work.
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