
Geochemistry and the understanding of ground-water systems
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Abstract Geochemistry has contributed significantly to
the understanding of ground-water systems over the last
50 years. Historic advances include development of the
hydrochemical facies concept, application of equilibrium
theory, investigation of redox processes, and radiocarbon
dating. Other hydrochemical concepts, tools, and tech-
niques have helped elucidate mechanisms of flow and
transport in ground-water systems, and have helped un-
lock an archive of paleoenvironmental information. Hy-
drochemical and isotopic information can be used to in-
terpret the origin and mode of ground-water recharge,
refine estimates of time scales of recharge and ground-
water flow, decipher reactive processes, provide paleo-
hydrological information, and calibrate ground-water
flow models. Progress needs to be made in obtaining
representative samples. Improvements are needed in the
interpretation of the information obtained, and in the
construction and interpretation of numerical models uti-
lizing hydrochemical data. The best approach will ensure
an optimized iterative process between field data collec-
tion and analysis, interpretation, and the application of
forward, inverse, and statistical modeling tools. Advances
are anticipated from microbiological investigations, the
characterization of natural organics, isotopic fingerprint-
ing, applications of dissolved gas measurements, and the
fields of reaction kinetics and coupled processes. A
thermodynamic perspective is offered that could facilitate
the comparison and understanding of the multiple physi-

cal, chemical, and biological processes affecting ground-
water systems.

R�sum� La g�ochimie a contribu� de fa�on importante �
la compr�hension des syst�mes d’eaux souterraines pen-
dant les 50 derni�res ann�es. Les avanc�es ont port�es sur
le d�veloppement du concept des faci�s hydrochimiques,
sur l’application de la th�orie des �quilibres, l’�tude des
processus d’oxydor�duction, et sur la datation au radio-
carbone. D’autres concepts, outils et techniques, ont aid�
� l’ �lucidation des �lucider les m�canismes d’�coulement
et de transport dans les syst�mes d’eaux souterraines, et �
la compr�hension des archives informations pal�o-envi-
ronnementales. Les informations hydrochimiques et iso-
topiques peuvent Þtre utilis�es pour interpr�ter l’origine et
le mode de recharge des eaux souterraines, affiner l’es-
timation des temps de recharge et d’ �coulements, d�-
chiffrer les processus de r�action, apporter une meilleure
information pal�ohydrog�ologique et calibrer les mod�les
d’�coulement des eaux souterraines. Beaucoup de progr�s
ont besoin d’Þtre r�alis�s pour obtenir des �chantillons
repr�sentatifs. Des am�liorations sont n�cessaires dans
l’interpr�tation des informations obtenues, et dans la
construction et l’interpr�tation de mod�les num�riques
utilisant des donn�es hydrochimiques. La meilleure ap-
proches arsur�ment un processus it�ratif optimis� entre la
collection de donn�es de terrain et l’analyse, l’interpr�-
tation, et l’application d’outils de mod�lisation statistique,
inverse et direct. Des avanc�es sont anticip�es par les
dans le demeine des �tudes microbiologiques, dans la
caract�risation des mati�res organiques naturelles, le
marquage isotopique, les mesures de gaz dissous, les r�-
actions cin�tiques la compr�hension des couplages. Une
perspectives thermodynamique pourraient faciliter la
comparaison et la compr�hension des multiples processus
physiques, chimiques et biologiques qui affectent les
syst�mes hydrog�ologiques.

Resumen La geoqu�mica ha contribuido significativa-
mente al entendimiento de los sistemas de aguas sub-
terr�neas durante los fflltimos 50 a�os. Entre los avances
hist	ricos puede incluirse el desarrollo del concento de
facies hidroqu�micas, la aplicaci	n de la teor�a de equi-
librio, investigaci	n de los procesos oxidaci	n-reducci	n,
y dataci	n con radiocarbono. Otros conceptos, herra-
mientas y t�cnicas hidroqu�micas han ayudado a escla-
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recer los mecanismos de flujo y transporte en sistemas de
agua subterr�nea, y han ayudado a descifrar un archivo de
informaci	n paleoambiental. Informaci	n hidroqu�mica e
isot	pica puede utilizarse para interpretar el origen y
modo de recarga de agua subterr�nea, descifrar procesos
reactivos, aportar informaci	n paleohidrol	gica, y cali-
brar modelos de flujo de agua subterr�nea. Necesita
avanzarse en la obtenci	n de muestras representativas. Se
necesitan mejoras en la interpretaci	n de la informaci	n
obtenida y en la construcci	n e interpretaci	n de modelos
num�ricos que utilizan datos hidroqu�micos. El mejor
enfoque asegurar� un proceso iterativo optimizado entre
toma y an�lisis de datos de campo, interpretaci	n, y la
aplicaci	n de herramientas de modelizado estad�sticas,
directas, e inversas. Se anticipan avances a partir de in-
vestigaciones microbiol	gicas, la caracterizaci	n de or-
g�nicos naturales, caracterizaci	n isot	pica, aplicaciones
de mediciones de gas disuelto, y los campos de cin�tica de
reacci	n y procesos acoplados. Se ofrece una perspectiva
termodin�mica que podr�a facilitar la comparaci	n y en-
tendimiento de los mfflltiples procesos f�sicos, qu�micos, y
biol	gicos que afectan sistemas de aguas subterr�neas.

Keywords Isotopes · Geochemistry · Hydrochemical
modeling · Paleohydrology · Groundwater age

Introduction

Over the past 50 years, advances in geochemical methods
and approaches have aided our ability to interpret hy-
drochemical processes in ground-water systems, and im-
proved understanding of how structural, geological,
mineralogical, and hydrological features affect flow and
chemistry in these systems. Significant advances have
been made through laboratory experiments, and kinetic
and thermodynamic data evaluation, providing essential
reaction-process information. Improvements in analytical
techniques for an increasing number of chemical/isotopic
substances that can be measured in smaller samples and at
lower concentrations have led to significant advances.
Finally, increasing computational power has enhanced use
of numerical modeling techniques and has provided in-
creasingly sophisticated interpretations of ground-water
flow/reaction systems.

There is considerable literature on the interpretation of
geochemical processes in ground waters based on hy-
drochemical data and model simulations of hypothetical
reactions. Geochemists have evaluated redox reactions
and the partial equilibrium concept in aquifers in which
chemical evolution is driven by one or more concurrent
irreversible reactions. Carbonates, primary silicates, clays
and sulfide minerals, ion exchange, and organic carbon
reactions play important roles in driving chemical evo-
lution in these systems. Ground-water geochemists have
also addressed important environmental issues, such as
arsenic contamination, nutrient and trace element trans-
formations, the origins of acid-mine drainage water, and
geomicrobiological reactions in the subsurface that affect

reaction rates, redox processes, and freshwater aquifer
storage and recovery.

Back and Herman (1997) trace the origins of hydro-
geology and hydrochemistry in the United States back to
the early 1900s. Narasimhan (Hydrogeology Journal, this
issue) also offers a historical perspective and refers to the
pioneering works of Palissy (1580), Palmer (1911), Re-
nick (1924), Piper (1944), and Hem (1959, 1992). This
paper examines some major developments in hydrogeo-
chemistry from the early 1950s until the present (2004).
Significant historical advances include development of
the hydrochemical facies concept, applications of ther-
modynamic equilibrium principles (and recognition of
their limitations), increased understanding of redox reac-
tions, and ground-water dating with cosmogenic14C. The
paper also discusses progress and problems in more recent
areas of research in hydrochemistry, such as (1) obtaining
representative information from ground-water systems;
(2) using ground-water tracers to understand ground-wa-
ter flow and reactive processes; (3) obtaining ground-
water system ages for various time scales; and (4) nu-
merical modeling of geochemical processes and the ap-
plication of geochemical transport codes. Philosophical
considerations regarding geochemical investigations and
numerical modeling also are discussed. The paper closes
with some comments and opinions on the future of geo-
chemistry as it relates to the further understanding of
ground-water systems.

The field of ground-water geochemistry is too large to
fully review here, and the authors apologize for the
omissions that have been made. For example, some areas
of active hydrogeochemical research that could not be
addressed here include: contaminant hydrology, thermo-
dynamic data evaluation, experimental and theoretical
reaction kinetics, characterization of mineral-phases and
their surfaces, sorption processes, natural organic geo-
chemistry, and microbial processes. Further information
on the geochemistry of ground waters can be found in
Appelo and Postma (1993), Chapelle (1993), Drever
(1997), Hem (1959, 1992), Hitchon et al. (1999), Lang-
muir (1997), Nordstrom and Munoz (1994), and Stumm
and Morgan (1996).

The hydrochemical facies concept

Geochemical reactions along ground-water flow paths can
lead to regional variations in water composition that
evolve in the direction of flow. Isoconcentration contours
of reacting dissolved constituents drawn on maps of water
composition tend to align normal to the direction of
ground-water flow. Recognition of geochemical patterns
in aquifers can be traced to Cederstrom (1946), Foster
(1950), Chebotarev (1955), Garmonov (1958), Kamensky
(1958), White et al. (1963) and earlier papers, but it was
Back (1960, 1966) who defined the hydrochemical facies
concept, placing the geochemical observations in the
context of ground-water flow in aquifers of relatively
homogeneous hydrologic and mineralogic properties.
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Sources of water entering ground-water systems also
have been distinguished based on the presence of, or the
concentration of, inert constituents or tracers. In cases
where inert tracer concentrations vary spatially along the
ground-water recharge area, the path followed by the
tracer through the aquifer delineates the flow direction
(e.g. Olmsted 1962; Robertson et al. 1974; Vogel and van
Urk 1975; Siegel 1991). In this case, hydrochemical fa-
cies (sometimes referred to as “hydrochemical zones”)
will align parallel to the flow direction. In more complex
cases, the concentration of reactive constituents may vary
spatially and temporally along the recharge area, and may
also evolve along the direction of flow. Extracting flow
and hydrological information from geochemical obser-
vations requires understanding the aqueous reactivity of
aquifer materials and the spatial and temporal distribution
of recharge compositions. Many of the geochemical pat-
terns observed in ground-water systems can also be re-
lated to heterogeneities in either reactive mineral abun-
dances or in hydrologic properties, and may be difficult to
resolve given the limited information typically available.

Flow patterns in regional aquifers, deduced from
mapping hydrochemical facies and zones, can indicate
flow directions that occurred over time scales consider-
ably greater than the time scale over which present-day,
or even predevelopment water levels were established.
Differences between regional flow directions deduced
from hydrochemical patterns and those indicated by a
modern (predevelopment) potentiometric surface can in-
dicate changes in hydraulic conditions (e.g. recharge rate)
on a shorter, more recent time scale than those responsible
for hydrochemical observations (Plummer et al. 2004a,
2004b, 2004c; Sanford et al. 2004a, 2004b).

Thermodynamic equilibrium and beyond

Thermodynamic equilibrium principles and models
In the early 1960s, geochemists applied to the speciation
of natural waters the fundamental principles of thermo-
dynamic equilibrium first established by Gibbs (1876,
1878). The primary question was: To what extent does
mineral-water equilibrium control the chemical compo-
sition of natural waters? Following development of the
first ion-association model applicable to natural waters
(Garrels and Thompson 1962), efforts were made to ex-
tend those models to complex multicomponent systems,
including ground-water systems. Several numerical
models were developed (cf. review in Nordstrom et al.
1979)—including the PATHI speciation and reaction path
model (Helgeson 1968; Helgeson et al. 1969, 1970) and
the WATEQ speciation code (Truesdell and Jones 1974).
Additionally, theoretical development and parameteriza-
tion of the Specific Interaction Model for electrolyte so-
lutions and their mixtures by K.S. Pitzer and colleagues,
and the extensions made to natural waters by C.E. Harvie,
N. Moller, J.H. Weare and others (e.g. Harvie et al. 1984),
allowed the speciation of many highly saline natural
waters (Pitzer 1991, 1994, and references therein). Nu-

merical simulations of aqueous solutions and their reac-
tions with other solid, gas, and fluid phases continues to
be refined and extended through the measurement of
additional thermodynamic data and improved theoretical
descriptions of reactive processes (sorption, solid-solu-
tions, kinetics of heterogeneous reactions, organic reac-
tions, extensions to high temperature, pressure, and ionic
strength).

Application of speciation models to low-temperature
ground-water environments has led to several important
principles/observations. Reactions among aqueous spe-
cies that occur within the same oxidation state of the
elements involved (e.g. CO2/HCO3

�/CO3
2�; SO4

2�/
HSO4

�) are rapid and equilibrium can be assumed; in
contrast, equilibrium is usually not attained between
aqueous species with differing oxidation states (e.g.
SO4

2�/HS�; HCO3
�/CH4; Fe(II)/Fe(III)). A small number

of minerals, usually of relatively high solubility, appear to
behave reversibly in natural systems (e.g. calcite, gypsum,
halite, fluorite); most other minerals do not react to
equilibrium but can still have an important effect on
natural-water chemistry (plagioclase, biotite, and other
primary silicates). Metastable minerals tend to approach
equilibrium more easily than their more stable poly-
morphs (Steefel and Van Cappellen 1990; amorphous
ferric hydroxide instead of hematite). Some weathering
products of primary silicates (e.g. kaolinite and gibbsite)
tend to react to equilibrium, but kinetic processes are
important in the formation of complex siliceous clay
minerals such as smectites (Jones and Bowser 1978; Eberl
et al. 1990; White and Brantley 1995; Drever 1997;
Bowser and Jones 2002; Kim et al. 2004). Thermody-
namic equilibrium can be defined as a reactive steady-
state (microscopic reversibility) between an aqueous
phase and a bulk solid phase. As the ability to observe
mineral surfaces improved, it was recognized that on
laboratory time scales, interfacial reactions that occurred
only involved a few atomic layers of the bulk solid
(Walton 1967; Buddemeier et al. 1972; Mozeto et al.
1984; Garnier 1985; Plummer et al. 1992).

Ground-water systems were recognized early on as
partial equilibrium systems (Korzhinskii 1936; Helgeson
1968); that is, where some reactions respond reversibly
while driven by one or more irreversible reactions (e.g.
oxidation of organic carbon driving sulfate reduction,
and/or carbonate mineral reactions; dissolution of any-
hydrite driving dedolomitization; dissolution of primary
silicates driving the formation of clays and cementation
with calcite and silica). These reactions are important in
understanding geochemical evolution of ground-water
systems, and can affect the hydrologic properties of
aquifer systems. Some natural waters that appear to be at
or near equilibrium with a given mineral phase, according
to speciation calculations, may in fact be undergoing
significant dissolution/precipitation of the mineral as a
result of other irreversible reactions.

265

Hydrogeol J (2005) 13:263–287 DOI 10.1007/s10040-004-0429-y



Reaction kinetics and reactive surface area
Much work remains in the area of mineral kinetics.
Laboratory results have not translated well to natural
environments, especially in the case of mineral-water
reactions near equilibrium, where even trace concentra-
tions of dissolved organic species, minor elements, or
microbes can greatly alter reaction rates. The determina-
tion of rates of water–rock reactions from in-situ field
observations offer the possibility of combining measure-
ments of ground-water age/residence-time with estimates
of mineral mass transfer determined from geochemical
mass balances (Paces 1983; Aeschbach-Hertig et al. 1998;
Burton et al. 2002; Burns et al. 2003). However, diffi-
culties in determining reactive surface areas in aquifers
limit the transfer value of the rates determined (White and
Peterson 1990; Hochella and White 1990; White and
Brantley 1995; Brantley and Chen 1995; White et al.
2001). Reaction rates also have been estimated in-situ by
placing well-characterized mineral samples or aquifer
materials in wells (Brown and Glynn 2003), in submerged
limestone fracture zones (Plummer et al. 2000), or in
streams (Herman and Lorah 1988; Dreybrodt et al. 1992;
Liu et al. 1995), and measuring reactive gains/losses over
time. This approach merits further investigation, although
problems remain in relating in-situ experimental results to
observed larger-scale field rates.

The determination of effective surface areas in undis-
turbed aquifers remains difficult. In fractured rock sys-
tems, geochemical techniques have provided reasonable
estimates of the surface area of rock exposed per unit
volume of slowly flowing water, a property important in
assessing the potential for contaminant sorption and ma-
trix diffusion. One promising technique involves the
measurement of a short-lived, inert, radioisotope
(e.g.222Rn) produced through decay of a longer-lived
parent nuclide (e.g.238U) in the contacting rock (Andrews
et al. 1986, 1989; Glynn and Voss 1999).

Solid solution and sorption processes
Although significant success was achieved in modeling
reactions in which minerals were treated as pure phases of
fixed composition, most minerals have variable compo-
sitions that can affect their solubility and behavior.
Sometimes these “impure” phases (solid-solutions) react
as if fixed in composition (as a metastable state). Alter-
natively, especially for more soluble phases, “impure”
solids can quickly recrystallize and adjust their compo-
sition in relation to the changing composition of the
contacting water. Thorstenson and Plummer (1977),
Lippmann (1977, 1980), Busenberg and Plummer (1989),
Glynn and Reardon (1990, 1992), Glynn et al. (1990,
1992), Glynn (1991, 2000), Gamsj�ger et al. (2000), and
Prieto et al. (2000) provide further information on this
area of research. Solid-solution theory is currently applied
to nuclear-waste disposal issues (relating mainly to the
stability of metastable complex radionuclide phases and
to the behavior of cement), and is sometimes important in
understanding the chemistry of natural waters (e.g. fluo-

ride control in the Black Creek aquifer in South Carolina,
Konikow and Glynn 2005, in press). As overall under-
standing of the controls and behavior of trace elements in
natural waters improves, relatively complex theories of
heterogeneous reactions (solid-solutions, ion exchange
and surface complexation) will find greater application
and require further development. Reviews of some of the
most popular sorption and ion-exchange theories can be
found in Davis and Kent (1990) and Appelo and Postma
(1993).

Oxidation/reduction processes
The recognition that large irreversible nonequilibrium
changes often accompanied changes in the oxidation
states of elements in ground-water systems was an im-
portant development. Early aqueous-speciation models
did not account for different redox states. Electrochemical
theory and data originally developed by metallurgists
(Pourbaix 1949) was applied to ground-water geochem-
istry. Krumbein and Garrels (1952), Baas-Becking et al.
(1960), Garrels and Christ (1965), and Sill�n (1967)
recognized that pH and redox conditions could be used to
characterize predominant aqueous speciation, mineral
reactions and stabilities in a wide range of natural envi-
ronments. Thorstenson (1984) and Hostettler (1984)
provided a historical perspective on the concept of redox
states and their application in geochemistry. A series of
investigations of various redox couples in natural waters
demonstrated that most redox reactions in natural systems
are not at equilibrium, and indicated the difficulties in-
volved in assessing the redox state(s) of natural waters
(Morris and Stumm 1967; Thorstenson et al. 1979;
Thorstenson 1984; Runnells and Lindberg 1990; Stumm
and Morgan 1996). Others described the natural sequence
in which various redox reactions occur in natural envi-
ronments (Baedecker and Back 1979; Champ et al. 1979;
Berner 1981; Stumm and Morgan 1996).

The PATHI code (Helgeson 1968; Helgeson et al.
1970) was the first code that attempted to model redox
reactions (initially on the basis of the SO4

2�/S2� activity
ratio). The method required tracking of extremely small
numbers, such as the activity of S2� in oxic environments,
and led to inefficient methods and numerical dispersion.
A simple electron conservation convention devised by
D.C. Thorstenson (described in Parkhurst et al. 1980,
1982; Plummer et al. 1983) permitted extension of geo-
chemical reaction modeling from relatively simple inor-
ganic water–rock reactions to complex redox systems.
This convention was adopted in PHREEQE (Parkhurst et
al. 1980), BALANCE (Parkhurst et al. 1982) and NET-
PATH (Plummer et al. 1994). The convention is still used
in NETPATH, but with increased computing capacity,
was replaced by O and H mass-balance relations in EQ3/6
(Wolery 1979; Wolery et al. 1990) and PHREEQC,
PHREEQCI (Parkhurst 1995; Parkhurst and Appelo 1999;
Charlton et al. 1997; Charlton and Parkhurst 2002).

Thermodynamic equilibrium theory, applied to redox
systems or to other reactions, provides reference states
that are useful in assessing departures from equilibrium,

266

Hydrogeol J (2005) 13:263–287 DOI 10.1007/s10040-004-0429-y



in calculating redox-reaction sequences, and in deter-
mining the potential for chemical and isotopic change in
both biotic and abiotic systems.

Geochemical tracers of ground-water flow
and reactive processes

Hydrochemical and isotopic data are useful in identifying
sources of recharge to ground-water systems and in
tracing ground-water flow. Differences in chemical and
isotopic composition have been used to trace the infil-
tration of surface water, recognize leakage between
aquifers, define areas of seawater intrusion, and investi-
gate recharge rates through deep unsaturated zones. Cat-
ion-anion association (calculated according to relative salt
solubility—SNORM) has been used to identify solute
origin and trace movement through ground-water systems
(Bodine and Jones 1986, 1990; Jones and Llamas 1989;
Jones et al. 1994; Kauffman et al. 1998). Environmental
tracers, such as temperature,2H,18O,14C,3H,3H/3He and
dissolved gases, have helped refine estimates of recharge
and flow time scales, interpret the origin and mode of
aquifer recharge, provide temporal and spatial informa-
tion to aid in calibration of ground-water flow models,
and recognize paleowater that is, for all practical pur-
poses, a nonrenewable resource. Isotopic and trace-ele-
ment information on representative solid phases and
mineral forms also has aided in understanding paleohy-
drological conditions (e.g. Winograd et al. 1992, 1997;
Coplen et al. 1994; Plummer et al. 1990; Wallin and
Peterman 1999; Glynn and Voss 1999). Environmental
tracers have enormous potential in assessing the sustain-
ability and the vulnerability of ground-water resources.

A large number of tracer measurements can be made,
yet it is not always obvious a priori which of the mea-
surements will aid in interpreting flow and reaction pro-
cesses that are or have occurred in the aquifer, and which
will be redundant with others. Multiple measurements of
multiple tracers are usually desired, but this is ultimately
limited by available resources. “Intuition” and an under-
standing of the geologic, mineralogic, and hydrologic
framework are key to making appropriate decisions.

Many of the innovative measurements that are in the
vanguard today are not routinely available, except in
limited numbers at a limited number of laboratories. Forty
years ago, measurements of 2H and 18O or of 3H and 14C,
now standard measurements, were also uncommon and
available from a limited number of laboratories. Today,
geochemists increasingly are including measurements of
dissolved gases, trace elements, and the stable isotopes of
elements such as Sr, Ca, S, B, N, C, Li, Cl, Fe, U, Th, and
noble gases in ground-water. Isotope measurements on
specific molecular species also are being conducted to
provide information on reactive processes and on solute
origins (Schmidt et al. 2004; Hunkeler et al. 1999).

Each added measurement adds complexity to the hy-
drogeochemical elucidation of water–rock interactions,
mixed chemical and isotopic sources, and other physical

or chemical processes. Inert tracers can provide direct
information on ground-water origins, flow directions, and
residence times (e.g. temperature, stable isotopes of wa-
ter, noble gases, and initial 3H [3H + tritiogenic 3He]).
Reactive tracers (e.g. isotope compositions such as 13C,
34S, 87Sr/ 86Sr, 15N; dissolved constituents such as N2,aq,
CH4 and other major/trace species) can provide infor-
mation on geochemical processes, ground-water envi-
ronments, recharge sources, and water ages. Kendall and
McDonnell (1998), Clark and Fritz (1997), Cook and
Herczeg (2000) and references therein provide excellent
overviews of the use of isotope tracers in hydrology.

Process time scales in ground-water systems

The detection and measurement of an increasing number
of chemical and isotopic tracers at ever-lower concen-
trations has led to an increase in estimates of ground-
water ages over a wide range of time scales. Ground-
water dating has proven useful in estimating recharge
rates, calibrating flow models, and assessing the sustain-
ability of ground-water extraction rates. Ground-water
dating also has been used to extract information on rates
of geochemical and microbiological processes in aquifers,
to classify hydrogeologic environments on the basis of
contamination potential (Nelms et al. 2003), to retrieve
historical records of contaminant loading to aquifers
(Bhlke and Denver 1995; Lindsey et al. 2003; Shapiro et
al. 2004) and to estimate remediation times for contami-
nated ground-water systems.

“Ground-water age” refers to the travel time between
the point of recharge and the point of sampling. Dating
the water itself, through analysis of water isotopes, is an
ideal way to obtain ground-water ages, but conservative
tracers are commonly used instead. Typically, multiple
tracers are used in estimating ground-water ages because
of uncertainties in the available techniques, flow and
transport complexities, and difficulties in obtaining rep-
resentative data. A number of papers review the advan-
tages and limitations of geochemical dating techniques in
more detail than can be afforded here (Davis and Bentley
1982; Fontes 1983; Moser and Rauert 1983; Evans 1983;
Florkowski and Rozanski 1986; Frhlich 1990; Plummer
et al. 1993; Lehmann et al. 1993; Małoszewski and Zuber
1996; Cook and Solomon 1997; Kipfer et al. 2002). The
subject of dating of “young” ground water is covered in
Cook and Herczeg (2000), Plummer (2005), and in the
“IAEA Guidebook on the Use of Chlorofluorocarbons in
Hydrology” (IAEA 2005).

Two conceptually different approaches are available to
date ground water. The first approach involves the mea-
surement of a “clock;” that is, the measurement of the
concentration of an element or isotope having known (or
assumed) initial concentration inputs, and a known rate of
growth or decay in the ground-water environment. The
second approach makes use of the known history of a
time-dependent environmental “signal” in the water and/
or in the solutes that recharge a ground-water system.
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Clocks
Examples of dating with clocks include applications of
cosmogenic isotopes such as 14C, 32Si, 39Ar, 81Kr, 36Cl,
and 35S, or applications involving radionuclides of an-
thropogenic origin with a highly variable but relatively
well-known recharge history, such as 3H, 3H/ 3He, and
85Kr. In the cases of dating with cosmogenic isotopes, the
initial concentration is known from atmospheric mea-
surements (32Si, 39Ar, 81Kr, and 35S) or reconstructed
from environmental records (14C, 36Cl). A range of time
scales is possible with cosmogenic isotopes, depending on
the half-life and analytical precision. The need to know
the history of initial conditions can be eliminated if both
the parent and daughter isotopes can be measured, such as
in the 3H/3He dating technique, where age is calculated
from measurement of 3H and its decay product, tritiogenic
helium-3, 3Hetri (Schlosser et al. 1988, 1989, 1998; Bayer
et al. 1989; Poreda et al. 1988; Solomon and Sudicky
1991; Solomon et al. 1993; Solomon and Cook 1999).

Dating techniques using other radionuclide pairs, or
perhaps even chemical pairs (e.g. complex organic
chemical/metabolite pairs such as those in pesticide
degradation chains) may find some use in the future;
development of such techniques will, however, require
substantially more knowledge than is currently available
on processes and conditions controlling growth/decay
rates.

The most successful and extensively investigated
“clock” in ground-water hydrology is that of carbon 14.
The development of radiocarbon dating of dissolved in-
organic carbon (DIC) in ground water provided an im-
portant link between ground-water chemistry and hy-
drology of large regional aquifers where flow can be on
time scales of thousands to tens of thousands of years.
Dating cosmogenic 14C in ground water started in the late
1950s (M�nnich 1957; Brinkmann et al. 1959, 1960).
Studies in the 1960s and 1970s improved geochemical
corrections in the technique, demonstrated 14C-based es-
timates of travel times in aquifers, and showed the use of
radiocarbon dating in estimating hydraulic conductivity
(Ingerson and Pearson 1964; Hanshaw et al. 1965a,
1965b; Pearson and White 1967; Tamers 1967, 1975;
Pearson and Hanshaw 1970; Mook 1972; Hanshaw and
Back 1974; Fontes and Garnier 1979). With time, cor-
rections/adjustments to the 14C technique have become
more sophisticated, accounting for a greater diversity of
geochemical reactions and hydrologic effects such as
matrix diffusion, isotopic exchange, carbonate–mineral
recrystallization, and microbial degradation of multiple
organic carbon sources (Wigley et al. 1978; Mook 1980;
Sudicky and Frind 1981; Murphy et al. 1989; Fontes
1992; Wassenaar et al. 1991; Małoszewski and Zuber
1991; Plummer et al. 1994; Aravena et al. 1995; Sanford
1997; Kalin 2000; Plummer and Sprinkle 2001; Gonfi-
antini and Zuppi 2003). Radiocarbon dating can lead to
adjusted 14C ages of a few thousand to approximately
30,000 years. Ages younger than a few thousand years are
affected by uncertainty in the initial 14C activity; ages

greater than 30,000 years have large uncertainties because
of the extent of geochemical/hydrogeologic corrections
required and because of the analytical uncertainty of low
14C activities. Because multiple geochemical adjustment
models can usually be constructed for a given water
sample, multiple age estimates are possible. Pearson
(1992) presented a calculation that determined the age
distribution and uncertainty in adjusted 14C ages based on
reaction model uncertainty.

Following improvements in collection/processing/
procedures (Murphy et al. 1989; Wassenaar et al. 1991;
Burr et al. 2001), it is now possible to determine the 14C
age of dissolved organic carbon (DOC) in some ground
waters with less than 0.5 mg/l of DOC (Thomas et al.
2001; Morse 2002). Dating of DOC with 14C can be
useful in aquifers where geochemical corrections for
water–rock interaction lead to large uncertainties in ad-
justed 14C ages of DIC and can help eliminate some in-
organic reaction models in nonunique situations.

Techniques continue to be developed to date waters
younger than the several thousand year limit of radio-
carbon dating, but older than the 0–50 years time scale for
which anthropogenic signals and nuclear tracers/clocks
are available (e.g. 3H and 3H/3He dating). The cosmo-
genic radioisotopes 39Ar (half-life 269 years) and 32Si
(half-life 140 years) have favorable half-lives for ground-
water dating in the 50–1,000 years range, and continue to
be investigated in ground-water systems (Loosli et al.
2000; Morgenstern 2000), but serious obstacles to their
collection, measurement, and interpretation remain.

Research also progresses in efforts to date ground
waters beyond the 30,000 years range of the 14C tech-
nique. The need for dating old waters is often related to
investigations into the potential suitability of ground-
water environments for the isolation of nuclear waste.
Chlorine-36 (36Cl) (half-life: 301,000 years) has been
considered a potential dating tool for old ground waters
with some promising results (Bentley et al. 1986; Fab-
ryka-Martin et al. 1987; Nolte et al. 1990; Torgersen et al.
1991; Phillips 1999; Lehmann et al. 2003), but multiple
36Cl sources make dating attempts difficult in some en-
vironments (Balderer and Synal 1996; Fontes 1994).
Application of the 36Cl dating technique requires knowl-
edge of the initial (pre-anthropogenic)36Cl concentration
(Davis et al. 2000, 2003) and of processes controlling the
transport and build-up of stable Cl in ground water
(evapotranspiration, evaporite dissolution, fluid-inclusion
sources, diffusion). 81Kr offers another potential dating
tool on the 100,000 years time scale (Lehmann et al.
1985, 2003; Collon et al. 2000). Measurements of 81Kr
recently showed a ground water in the Sahara to be at
least one million years old (Sturchio et al. 2004).

4He (a stable isotope) offers a potential dating tech-
nique for a wide range of fluid ages. 4He accumulates in
ground water through the decay of U and Th and all their
alpha-emitting daughter products in the natural U and Th
isotope series. The 4He technique offers promise because
(1)4He accumulates with time, (2) it does not depend on a
variable cosmogenic source, and (3)4He sources are
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widely distributed in aquifer materials. The ability to
obtain accurate age estimates depends on two primary
criteria (Torgersen 1992): (1) a known source function for
the production and rock-to-water transfer of the 4He iso-
tope; and (2) a closed system evolution. In practice, 4He
offers at best a semiquantitative technique for waters that
are more than tens of thousands of years old (e.g. An-
drews and Lee 1979; Torgersen 1980, Andrews et al.
1982, 1985; Torgersen and Ivey 1985; Andrews 1991,
1992; Stute et al. 1992a, 1992b; Mazor and Bosch 1992;
Marty et al. 1993; Castro et al. 1998a, 1998b, 2000).
Dilute fresh water, apparently older than 280,000 years as
determined by 4He dating, was reported from the Aquia
aquifer on the Atlantic Coastal Plain of the USA
(Aeschbach-Hertig et al. 2002). For younger waters (10–
10,000-year range), the 4He technique has proven quite
successful with adequate calibration of the 4He release
rate, either through laboratory experiments on the aquifer
materials (Solomon et al. 1996), or through other age
determinations, such as the chlorofluorocarbon (CFC) and
SF6 (Busenberg and Plummer 2000) dating techniques.

Another potentially promising ground-water dating
technique involves calibrating the rate of geochemical
weathering reactions, specifically for reactions that do not
reach either equilibrium or partial-equilibrium states in an
aquifer. The idea is to calibrate the rates of these irre-
versible reactions in parts of the aquifer where other
dating methods apply. For example, Aeschbach-Hertig et
al. (1998) showed that 3H/3He ages correlated with
changes in solute concentration. Other studies have
combined geochemical mass-balance models with 3H/3He
and CFC dating to determine chemical weathering rates in
crystalline-rock aquifers and watersheds (Rademacher et
al. 2001; Burns et al. 2003). Burton et al. (2002) cali-
brated the release rate of Na and HCO3 to ground water in
siliciclastic rocks in the eastern USA using CFC dating on
the 0–30 years time scale to estimate ages of more than
100 years for waters with elevated Na and HCO3. For the
same waters, 4He accumulation indicated ages of 100–200
years. The geochemical method also has been used to
extend dating beyond the 14C time scale in the East
Midlands aquifer in England (Edmunds and Smedley
2000).

Signals
In the “signal” approach, the ground-water system serves
as an archive of prior, surficial, environmental conditions.
Ideally, geochemical or isotopic processes do not con-
tribute to the growth or decay of the signal constituents.
Only hydrologic processes affect their distribution and
concentrations and measurement/recognition of this in-
formation allows estimation of ground-water ages and
flow velocities.

Examples of the signal approach in ground-water
dating include using recognized variations in 2H and 18O
(Małoszewski et al. 1983; Burgman et al. 1987; Vitvar
and Balderer 1997; Rozanski et al. 1993), and in inert
dissolved gas concentrations such as N2, Ne, Ar, Kr and
Xe (Mazor 1972; Andrews and Lee 1979; Bath et al.

1979; Stute et al. 1992a, 1992b; Stute and Schlosser
1999). Inert dissolved gases (e.g. Kipfer et al. 2002) can
provide valuable information on recharge temperature,
recharge altitude, and quantities of excess air trapped
during recharge (Aeschbach-Hertig et al. 2000; Manning
and Solomon 2003). Variations in 2H, 18O, and inert
dissolved gases can be related to changes occurring on
long time scales (e.g. the Little Ice Age, the 20,000 year
glacial maximum) or on short ones (seasonal temperature
changes or decadal changes in climate patterns). The in-
vestigation of discrete cyclic signals, such as seasonal
variations in 18O, 2H, or dissolved inert gas concentra-
tions, is an area for future development as improvements
are achieved in sampling techniques and in analytical
techniques. In the range of 2,000–35,000 years, Stute and
Schlosser (1993) and Stute and Talma (1998) successfully
identified synchronous variations in recharge tempera-
tures in several aquifers around the world, through the
measurement of a suite of noble gases and through 14C
dating.

For more recent ground waters, typically those re-
charged in the last 50 years, a number of datable an-
thropogenic signals are available: (1) chemical signals
related to the history of use of surfactants (ABS or LAS),
pesticides, and herbicides (Plummer et al. 1993); (2) ra-
dionuclide signals from atmospheric nuclear testing in the
early 1960s (e.g. initial 3H, 36Cl; Rozanski et al. 1991;
Phillips et al. 1988; Scanlon et al. 2002), from the re-
processing of fuel rods for nuclear power plants (85Kr), or
from the Chernobyl accident in the Ukraine (e.g. 106Ru,
60Co and 137Cs; Ittner et al. 1991); (3) tracers released to
the atmosphere by the advent of refrigeration (chloroflu-
orocarbons; Plummer and Busenberg 2000) or by the
application of inert cover gases in electrical switches (e.g.
SF6, Maiss and Brenninkmeijer 1998; Busenberg and
Plummer 2000).

In addition to an expanding list of anthropogenic
compounds detected in ground waters (e.g. pharmaceuti-
cals, personal care products), the future may also bring
about the capability to measure signals in natural organic
compounds, characterized chemically, isotopically, or
genetically, and related to biological cycles (such as the
13-year and 17-year cycles of the various Cicada insect
species). This possibility assumes that the biologically
derived organic compounds have unique distinguishing
characteristics, and are sufficiently resistant to degrada-
tion.

Different types of signal input functions, varying in
time or spatial scale, as well as in form (cyclic, linearly/
exponentially increasing/decreasing, step functions), are
affected to different extents by dispersion and diffusion
processes. Exponentially increasing signals, such as the
increase in CFC-11, CFC-12 and CFC-113 until the early
1990s, or the increase in atmospheric 85Kr, are minimally
affected by dispersion when compared to peak input
signals such as the 1964 3H bomb peak (Plummer et al.
1993). Different dating techniques and signals also can
often only be applied to very specific and different time
scales. The corollary to these statements is that the
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measurement and use of multiple signals, or of decay/
growth clocks, can help decipher the extent to which a
flow system is affected by hydrodynamic dispersion
(Plummer et al. 1993; Johnson and DePaolo 1996), or by
transience in flow directions and velocities. Geochemical
information also may provide a measure of the degree of
heterogeneity in an aquifer (Winograd and Pearson 1976).

It is often assumed that the effects of dispersion and
diffusion are small enough to allow recognition of the
essential characteristics of a datable “signal.” However, in
systems of multi-layered aquifers and confining units, this
assumption needs to be evaluated carefully in terms of the
hydrogeologic properties of the system (Davidson and
Airey 1982; Goode 1996; Sanford 1997; Weissmann et al.
2002) when interpreting tracer ages and signals. Fur-
thermore, use of a signal to obtain a measure of ground-
water velocities, in addition to ground-water ages, re-
quires an implicit assumption that major flow directions
have not significantly changed during the transmission of
the signal through the ground-water system, or alterna-
tively requires knowledge of the history of flow-field
changes. Such knowledge is difficult to obtain, particu-
larly over long time scales, but also for recent time scales,
because of increasing use of ground-water resources (and
consequent modification of piezometric surfaces from
predevelopment times). The importance of this effect
depends on the relative difference between the time scale
of the hydrologic perturbation and the time scale of the
predevelopment flow system.

Age models
Except in the case of pure piston flow (pipe flow), a
ground-water age determination typically requires some
type of model interpretation to relate the measured tracer
concentration to an age-distribution in ground-water dis-
charge and the mean age (residence time) of water in the
aquifer. For example, if there were not a distribution of
ages in discharge from some springs, it would be difficult
to explain the arrival of a dye, days to weeks after release
in the recharge area, in spring discharge that has an ap-
parent age of years to tens of years determined from
measurements of environmental tracers such as CFCs or
3H/3He. For many systems, not enough is known about
the hydrogeology to be able to construct a ground-water
flow model, and thus, for years, hydrologists have re-
sorted to lumped-parameter models to interpret tracer data
in ground-water discharge. Lumped-parameter “box”
models (e.g. exponential, linear, linear-exponential) relate
a tracer concentration measured in discharge from a well
or spring to an average ground-water residence time, as-
suming different mixing or dispersion scenarios for the
“box” or reservoir, different input functions, and various
age-distribution models for the system. This approach,
using lumped-parameter “box” models, is well docu-
mented in the literature (Eriksson 1958; Vogel 1967;
Pearson and Truesdell 1978; Małoszewski and Zuber
1982, 1996; Grabczak et al. 1982; Małoszewski et al.
1983; Yurtsever 1983; Zuber 1986, 1994; Burgman et al.
1987; Cook and Bhlke 2000), and several software

packages are available (Małoszewski and Zuber 1996;
Zoellmann et al. 2001b; Bayari 2002; IAEA 2005). In
considering multiple lumped-parameter models, it is
usually not possible to determine on the basis of a single
tracer measurement which, if any, model describes the
system under investigation. In cases of limited environ-
mental tracer data, model selection is usually based on
available geological and other technical information
(Małoszewski and Zuber 1996), and a mean residence
time is estimated on the basis of the selected model.
When reporting estimates of ground-water age, it is nec-
essary to qualify the age with the model on which it is
based.

Recently, a number of investigations utilizing multiple
environmental tracer data have demonstrated cases of
piston flow and binary mixing of young and old water
(Pearson and Truesdell 1978; Loosli et al. 2000; Talma et
al. 2000; Katz et al. 2001; Plummer et al. 2001; Burton et
al. 2002). Although mixtures of young and pretracer water
are often recognized in water samples from fractured-rock
environments, it is likely that many previously recognized
mixtures were created in the process of extracting water
from boreholes (Burton et al. 2002; Shapiro 2002). Yet,
by using multiple tracers, it is sometimes possible to in-
terpret age information on the young fractions in mix-
tures.

If sufficient hydrogeologic data are available, a
preferable alternative to the use of box models is to de-
velop a flow model for an entire ground-water system,
calibrated through the use of geochemical tracer mea-
surements and observed heads (e.g. Reilly et al. 1994;
Sheets et al. 1998; Zoellmann et al. 2001a; Mattle et al.
2001; Sanford et al. 2004b). Ground-water age informa-
tion (travel time) is then estimated from the flow model at
specific points in the system (Szabo et al. 1996). The
advantage of such a simulation is that it can take into
account the effects of hydrodynamic dispersion on age,
and in conjunction with measured environmental tracer
data, the model and age simulation can be refined (Goode
1996; Engesgaard and Molson 1998; Varni and Carrera
1998; Bethke and Johnson 2002; Weissmann et al. 2002).

Obtaining representative information

Ground-water systems are difficult to observe, except in
their surface expression (e.g. springs, sinkholes, marshes).
Extracting ground-water samples is expensive, disruptive,
and invariably affects the information obtained. Drilling
generally introduces fluid and air into the aquifer, disturbs
the natural spatial distribution of ground-water chemistry,
and often mobilizes or re-suspends colloidal or fine par-
ticulate material. Hydraulic testing and tracer test mea-
surements can further affect ground-water geochemistry.
Consequently, geochemical sampling should generally
precede hydrological testing.

Ground-water samples invariably are mixtures; the
extent of mixing depends on well construction and on the
hydrogeologic environment. Mixing may not be evident
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in the major-element composition of samples taken from
a generally homogeneous aquifer, but can have a major
impact on environmental tracers with strong concentra-
tion gradients.

In the future, improvements in micro-sampling meth-
ods and instrumentation will aid in the characterization of
ground-water geochemical environments, and in the de-
ciphering of details of flow and transport processes.
Diffusion sampling techniques and techniques that mini-
mally disturb the flow environment (Sanford et al. 1996;
Manning et al. 2003; Ronen et al. 1987; Magaritz et al.
1989) offer significant potential in measurement of fine-
scale chemical variations in aquifers.

Colloids in ground-water environments affect the
transport of radionuclides, microbes, organic compounds,
and metals (Buffle and van Leeuwen 1993; McCarthy and
Degueldre 1993, Harvey and Harms 2002). The presence
and concentration of colloids can be affected by pumping
rates, by geochemical changes caused by exposure to the
atmosphere (or to light), or by mixing of different water
compositions.

Detailed information on the spatial distribution and
composition of reactive minerals is usually needed in
interpreting geochemical processes in aquifers, but often
difficult to obtain. Drilling is usually expensive, espe-
cially when part of the objective is to obtain representa-
tive core or aquifer material samples. The process also
may involve a number of disturbances/problems, such as
the introduction of drilling mud, changes in the redox
environment caused by the introduction of oxygen, and
loss of fine materials.

The problems that apply to describing reactive aquifer
mineralogy and to obtaining representative colloid infor-
mation also apply to the characterization of microbial
communities in ground-water systems (Chapelle 1993).
Typically, information is obtained either by bacterial
cultures, by DNA, RNA, or species-specific lipid or
protein extractions on water and/or aquifer materials,
which have much greater bacterial concentrations. Bac-
terial cultures are easily contaminated and DNA or RNA
extractions usually require large sample volumes.

Regional ground-water systems contain a wealth of
historical and paleo-environmental information, but cur-
rently (2004), the ability to extract that information is
limited. Part of the problem is caused by the dispersive or
diffusive loss of environmental signals in aquifers; part is
due to the difficulty in obtaining representative aqueous
and solid samples from well-defined, narrow intervals in
aquifers.

Numerical modeling of geochemical processes

Steady progress has been made over the past 35 years in
the development of software for interpretation of geo-
chemical processes. Concurrent with the development of
ion association models, geochemists began quantitatively
interpreting chemical evolution in ground-water systems.
The development of numerical codes capable of quanti-

tatively evaluating chemical evolution has proceeded in
two directions, “inverse” and “forward” geochemical
modeling.

The “inverse geochemical modeling” approach applies
geochemical mass balances to the observed chemical and
isotopic composition of evolutionary ground waters (as
originally demonstrated by Garrels and Mackenzie 1967)
to estimate masses of mineral and gas transfer in water–
rock systems. Inverse geochemical modeling software
includes BALANCE (Parkhurst et al. 1982), NETPATH
(Plummer et al. 1994), PHREEQC (Parkhurst 1995; Par-
khurst and Appelo 1999), PHREEQCI (Charlton et al.
1997; Charlton and Parkhurst 2002) and SPREADBAL
(Bowser and Jones 2002). In contrast, in the “forward
modeling approach,” numerical models are used to sim-
ulate the outcome of hypothetical reactions (e.g. PATHI;
EQ3/6; PHREEQE; PHREEQCI) based on a definition of
initial conditions, on a postulated set of reactions, and on
the use of a comprehensive thermodynamic database.
Forward modeling calculates reaction extents, not only
for homogeneous aqueous speciation reactions, but also
for mass-transfer reactions between phases.

Inverse modeling
Inverse modeling is used to explain the observed chemical
and isotopic evolution of natural (or contaminated) wa-
ters, rather than to predict future compositions (Plummer
et al. 1983; Plummer 1985). Data required in inverse
geochemical modeling include the compositions of an
“initial” water and of a “final” water that are assumed
chemically evolutionary, without the need to know the
precise location of the flowpath the water followed
through the aquifer. The water compositions chosen do
not need to be on the same hydrologic flowpath provided
they are representative of compositions attained through
geochemical evolution of the initial water. The system
considered does not need to be in chemical or hydrologic
steady-state. An established hydrologic steady-state and
the selection of initial and final waters from a specific
flowpath are important though if the modeling is used to
determine reaction rates or ground-water velocities
(through combined geochemical dating, such as 14C).

Inverse geochemical modeling can require appreciable
knowledge and expertise. A complete list of the reactions
that may be responsible for the observed evolution is
needed. Therefore, mineralogical knowledge is needed to
make reasonable guesses as to which minerals and gases
might be dissolving, precipitating, or exsolving. Aqueous
speciation results are used to eliminate mineral-water
reactions that are thermodynamically impossible.
Knowledge of the relative kinetics of reaction processes is
needed to judge whether a process is likely to occur to the
extent calculated given estimated travel and evolution
times. Establishing a plausible hydrologic relation be-
tween the initial and the final waters, and estimating
travel time between sampling points requires hydrological
knowledge of the system and may involve application of a
flow model. Conversely, inverse geochemical modeling
may result in improved, or sometimes radically altered,
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hydrologic understanding. For example, a situation where
a final water is more dilute in an inert component than any
of the initial waters it presumably evolved from is un-
reasonable and would require revising the conceptual
model of flow (e.g. reversal of flow directions, non-
steady-state input, nonevolutionary waters, additional
source of dilution).

Inverse geochemical modeling can account for the
possibility that multiple initial waters may have combined
in the evolution to a final water composition. However,
the actual processes that may be responsible for the
“mixing” of the various initial waters are not simulated in
detail. These include hydrodynamic dispersion, solute
diffusion, mixing of various waters as a result of the
sampling process (long screens, temporal variations in
water chemistry), and other possibilities. The likelihood
of these processes must be assessed.

Inverse geochemical modeling codes are already quite
sophisticated, but offer the possibility of further re-
finements. The inverse-modeling capabilities of the
PHREEQC and PHREEQCI codes consider the uncer-
tainties associated with the definition of initial and final
solution compositions (chemical and isotopic) and with
the isotopic composition of reacting phases. The NET-
PATH code offers a complete suite of adjustment models
for 14C dating. These models (such as Fontes and Garnier
1979) are well known from the geochemical literature,
and account for a few relatively simple geochemical re-
actions. NETPATH goes a step beyond these simple ad-
justment models; it uses inverse geochemical modeling to
correct 14C ground-water ages. For example, corrections
considered relate to the oxidation of organic carbon, the
precipitation/dissolution of carbonate minerals, and a full
suite of other reactions that directly or indirectly affect
14C activities in ground water. NETPATH also includes a
mathematical description of isotopic evolution in systems
with multiple reactants and multiple isotopically frac-
tionating product phases (Wigley et al. 1978). NET-
PATH’s solutions to the differential equations describing
isotopic evolution permit reaction models to be tested for
consistency with observed isotopic data, and allow the
development of 14C models that are specific for each
water analysis and its modeled geochemical evolution
(Plummer et al. 1991, 1994).

Inverse modeling can help the user determine what
additional data may be needed to adequately understand
ground-water evolution in a particular system. For ex-
ample, sometimes no models are found. This can indicate
that the selected waters are not evolutionary, that appro-
priate reactions have not been included, or that too many
constraints have been imposed. In inverse geochemical
modeling, inability to find an acceptable reaction model
indicates inadequate data or an invalid conceptualization
of the geochemical and hydrologic system.

Forward modeling
In recent years, the “forward modeling” approach has
been extended to geochemical transport codes capable of
simulating ground-water flow and the advection and

dispersion of solutes, coupled with a complex array of
geochemical processes. Most recently, completely speci-
fied isotopic reactions have been incorporated into geo-
chemical mass-transfer and mass-transport codes
(specifically into PHREEQCI and PHAST; Thorstenson
and Parkhurst 2002, 2004), allowing a forward modeling
description of the isotopic evolution of a ground-water
system, along with its concurrent chemical evolution.

Increased sophistication in forward geochemical codes
has outpaced improvements in the thermodynamic (and
kinetic) databases needed to quantify and predict reaction
extents. Further research is needed to better describe the
thermodynamic properties and behavior of trace/minor
elements (and even of major elements). Recent advances
in development of thermodynamic databases are dis-
cussed by Nordstrom (2004). The ability of forward
geochemical modeling to actually describe real systems
depends in part on the quality of the input data and of the
thermodynamic data used, and the extent to which the
selected reversible and irreversible reactions are appro-
priate for the system.

Additional research remains in the development of
forward geochemical modeling codes. Thermodynamic
databases should be internally consistent, should consider
all major aqueous species, and should be based on accu-
rate measurements. Thermodynamic consistency (Nord-
strom and Munoz 1994) means: (1) the data are consistent
with basic thermodynamic relations; (2) common scales
are used for temperature, energy, atomic mass, and fun-
damental physical constants; (3) appropriate choices of
standard states were made and used for all similar sub-
stances; (4) the same mathematical and chemical models
were used to fit different data sets; and (5) conflicts
among measurements were resolved. Thermodynamic
databases typically consider few organic species, even
though these are important constituents in natural and in
contaminated waters. Most codes and associated ther-
modynamic databases also are limited to modeling the
speciation of relatively dilute waters with ionic strengths
(or salinity) lower than seawater. The few codes that are
available to model the speciation of saline waters and
brines usually have little or no data available to model the
speciation of minor elements, metals, radionuclides, or
redox states. Finally, most speciation codes assume that
the aqueous species present are at equilibrium with each
other. Although most “homogeneous” aqueous-speciation
reactions are fast, this is not always the case for reactions
involving redox-active species and elements, and/or
strong aqueous complexes and polymerized species. The
kinetics of formation/dissociation of those species can be
slow and the kinetics of redox reactions often depend on
microbial catalysis.

In the past decade, significant efforts have been made
to numerically simulate the coupling of ground-water
flow, solute transport, and geochemical processes. Geo-
chemical processes can affect the transport of solutes and
the flow of ground water through their effect on aquifer
porosity and permeability; in turn, ground-water flow can
influence the rates of geochemical processes. Geochemi-
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cal mass-transport codes (e.g. MST1D: Engesgaard and
Kipp 1992; PHREEQC/PHREEQCI; PHAST: D.L. Par-
khurst and K.L. Kipp, in preparation) incorporate all the
limitations and uncertainties associated with the use of (1)
geochemical reaction codes and (2) nonreactive solute-
transport codes. Geochemical transport codes commonly
have convergence and other numerical problems (e.g.
numerical oscillations, numerical dispersion) associated
with the solution of partial differential equations. In ad-
dition, physical transport processes are described at a
much larger scale than the molecular scale of chemical
reactions. This dichotomy of scale generates conceptual
and numerical errors and uncertainties in the application
and use of geochemical transport codes. Moreover, run-
ning geochemical transport codes can require large
computer time and memory. Increases in computing
power have been matched by the increasing sophistication
and simulation capabilities of geochemical transport
codes. Possible increases in the “realism” offered by more
sophisticated and complex codes, however, are counter-
balanced by increased data requirements and associated
increases in the uncertainties relating both to the data
entered and to the mathematical representation of the
simulated processes (Oreskes 2000). Sensitivity analyses,
where simulations are run multiple times to test the ef-
fects of the data and process uncertainties, are crucial to
intelligent use of geochemical transport codes, but com-
monly are hampered by computer time requirements.
Geochemical transport codes can be used to examine
“best-case” and “worst-case” scenarios of contaminant
transport, but in most cases are not exact predictive tools.
Like other geochemical codes, geochemical transport
codes are tools that can be used to improve conceptual
understanding and to gain an appreciation of the relative
importance of processes controlling the chemical evolu-
tion (and transport) of natural or contaminated waters.

Further information on the geochemical modeling of
ground-water systems, its historical development, its
purpose, and the current state of the art, can be found in
Plummer et al. (1983), Plummer (1985), Plummer (1992),
Parkhurst and Plummer (1993), Bethke (1996), Glynn and
Brown (1996), Parkhurst (1997), Nordstrom (2004) and
Konikow and Glynn (2005, in press).

Examples of the use of transport codes
in geochemical modeling
Glynn and Brown (1996) review the use, assumptions,
and limitations of geochemical modeling in the investi-
gation of a dynamically evolving contaminated ground-
water system in the Pinal Creek Basin in Arizona, USA.
The authors used inverse modeling to determine a range
of reaction model possibilities, which were then used
together with other considerations, to construct a set of
one-dimensional (1-D) reactive transport simulations. The
simulations documented the sensitivity of movement of
pH and redox fronts as a function of possible chemical
reactions, mineral concentrations, and longitudinal dis-
persion. The sensitivity analysis was used to highlight,
assess, and prioritize the uncertainties that needed to be

resolved to obtain a better predictive model of contami-
nant transport at the site. Comparison between the trans-
port sensitivity analysis, available field evidence, and
laboratory-column experiments resulted in a range of
predictive estimates for the movement of the low pH and
high Fe(II) waters at the Pinal Creek site.

Solute-transport codes have been used to assess the
performance of nuclear-waste disposal sites, and more
generally to simulate contaminant transport in a variety of
settings. Highly simplified single-species transport mod-
els have been used in most such efforts. These transport
codes assume that the retardation of a reactive solute
relative to a conservative tracer can be adequately de-
scribed through a one-parameter linear sorption model
(the constant Kd model), or through two-parameter
models (e.g. Langmuir, Freundlich; cf. Drever 1997, for
descriptions). These models ignore the effects of com-
petitive sorption, aqueous complexation, pH and redox
effects, precipitation and dissolution, and a multiplicity of
other possible geochemical processes. Following an ear-
lier critique by Reardon (1981), Glynn (2003) contrasts
the use of highly simplified “reactive” transport codes
with the PHREEQC geochemical transport code, a code
limited to a 1-D description of flow and transport, but
with a more complex, conceptually more accurate de-
scription of sorption mechanisms and multispecies geo-
chemical processes. Effects of chemical heterogeneity on
transport are also investigated.

Although a number of studies have shown the utility
of 1-D geochemical transport modeling (including Ap-
pelo and Willemsen 1987; Appelo et al. 1990; Appelo
and Postma 1993; Appelo 1994; Glynn and Brown 1996;
Brown et al. 1998; Glynn 2003), there are relatively few
studies that have used 3-D geochemical transport codes.
In one example, geochemical modeling of the Central
Oklahoma aquifer, Oklahoma, USA, succeeded in elu-
cidating the factors controlling dissolved arsenic con-
centrations and the geochemical evolution of the ground
waters (Parkhurst et al. 1992; Parkhurst, written com-
munication 2002: described in Konikow and Glynn
2005, in press). Inverse and forward geochemical mod-
eling were conducted, including a 3-D geochemical
transport model using the U.S. Geological Survey
(USGS) code PHAST. Parkhurst’s geochemical transport
model simulated the processes of ground-water flow and
solute transport, with areal recharge in the eastern un-
confined part of the aquifer and discharge to some
bounding rivers. The model also considered ion-ex-
change reactions, the dissolution of calcite and dolomite,
and pH-dependent surface-complexation reactions on
hydrous iron oxides that affected the concentration of
dissolved As in the water. Use of the PHAST code al-
lowed an analysis of the magnitude and sensitivity of
various factors affecting ground-water flow, solute
transport, and geochemical evolution in the Central
Oklahoma aquifer. The constructed model matched
general hydrological and geochemical observations and
explained the occurrence of high As concentrations in
the western part of the aquifer. Parkhurst and Petkowich
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(2002) and Parkhurst et al. (2003) document other ap-
plications of the PHAST code.

Other mathematical tools used in understanding
ground-water geochemistry and flow systems
Though often misused, there is a place for the informed
application of statistical principles in hydrochemistry—in
particular for hypothesis testing. Factor analysis, cluster
analysis, and principal component analysis have been
advocated as tools that can provide understanding of the
geochemistry of ground-water systems. In theory, these
techniques can provide an unbiased description of a dis-
tribution of samples, the distribution of their composi-
tions, and in the case of principal component analysis, can
potentially describe the components that explain the
variance in the distribution of compositions. In addition to
the benefits of having “unbiased” descriptions of data,
providing a statistical frame of reference for a given ob-
servation (or set of observations) and of its significance is
also very useful. Maps of chemical (or other) variables
can be created using statistical tools by combining ob-
servations with interpolation models that can sometimes
incorporate simple process relations (Pebesma and
Kwaadsteniet 1997; SPARROW code and application:
Smith et al. 1997). In the experience of the authors (no-
vices in the use and understanding of statistics), statistical
tools used in ground-water geochemistry often confirm
information obtained through simpler means. Alterna-
tively, the extraction of nonintuitively obvious informa-
tion may require highly advanced techniques, where the
lack of bias of a particular technique and its proper use
become highly debatable.

The authors have seen what they would consider
questionable use of principal component analyses, where
results of the analyses, carried out on a variety of both
inert and reactive elements/isotopes in solution, were used
to assess the degree of conservative mixing between “end-
member” solution compositions, while ignoring the re-
actions that could cause the precipitation or dissolution of
some the elements/isotopes used in the analysis. Statisti-
cal modeling tools have the potential to contribute to
understanding ground-water geochemistry and flow, but
their use can be complex, explanations of results can be
highly abstruse, and there is significant potential for
misuse, especially when use and results of these tools are
not supported with basic geochemical and hydrogeologic
knowledge.

Geochemical investigations and modeling philosophy

The primary value of model construction and of geo-
chemical modeling is to force the user to put all available
data within a conceptual framework. The user then con-
fronts the available observations with his/her intuition/
experience and a-priori understanding of the system. In
geochemical modeling of ground-water systems, the ob-
servations may include hydrological, chemical, isotopic,
and mineralogical data. Knowledge/assumptions con-

cerning reaction thermodynamics and kinetics, mineral
forms, geology, and hydrology are also essential. By it-
self, constructing a model should: (1) result in improved
understanding of the chemical and isotopic reactions re-
sponsible for the observed evolution of the waters; (2)
help refine/correct hydrological understanding of the
system, and, most importantly; (3) help assess the nature
of remaining uncertainties in the constructed conceptual
framework.

The construction of an initially simple model is highly
advisable. The number and complexity of processes
considered should be increased gradually as the model is
refined, to the extent needed to understand or explain
available observations, or, stretching the use of the model
further, to the extent needed to make simple testable
predictions. The user must at some point decide when
sufficient adjustments have been made to the represen-
tation of parameters and processes, and when the con-
structed model is adequate for its intended purpose. Al-
ternatively, the user may reject the model as inadequate,
and may need to construct an entirely different model
and/or seek new data or information. In many respects,
geochemical modeling is a process of elimination of hy-
pothetical reaction models, within a given set of uncer-
tainties relating to the input data, the thermodynamic data,
and available system knowledge (Plummer et al. 1983).
Forward geochemical modeling requires a valid initial
conceptualization of the system that includes representa-
tive reaction possibilities and is consistent with geo-
chemical intuition. A forward model that does not predict
a geochemically reasonable result, or that does not agree
with the limited observations that might be available, can
be eliminated. In inverse geochemical modeling, multiple
reactants and products are considered and reaction sets
that are inconsistent with available observations are
eliminated. In both types of modeling, the available ob-
servations are usually not sufficient to eliminate all the
reaction possibilities.

As is true for practically any type of modeling effort,
modeling designed primarily to explain the available data,
such as inverse geochemical modeling, or inverse flow
modeling, should be conducted preferably before predic-
tive or “forward” modeling is conducted (such as geo-
chemical transport modeling). Inverse geochemical
modeling is best used early in the data-acquisition process
because it forces the user to evaluate the nature and extent
of knowledge gaps and uncertainties. Inverse geochemical
modeling can be used to guide the field-data acquisition
process, and can also be used to help construct “forward”
geochemical models (Glynn and Brown 1996). Depend-
ing on the questions being addressed, inverse geochemi-
cal modeling may be all that is needed in a particular
investigation.

Views on the application and use of “forward” nu-
merical models differ amongst scientists and engineers.
Some strive to construct numerical models that are as
“realistic,” and suitably complex as possible; they use the
constructed models, after a “validation” exercise, to make
predictions on the future state of a system. Other scientists
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consider that a model is, by definition, a much simplified
construct of assumptions that is meant to help understand
some facet(s) of reality; they see models merely as tools
that provide some understanding of possible system be-
havior, and they use sensitivity analyses (multiple model
runs with varying parameters, boundary and/or initial
conditions) to increase their quantitative understanding of
process interactions and of the assumption construct. The
validity of each approach depends to some extent on the
type of modeling that is conducted, and on what predic-
tions are sought. Nevertheless, the present authors tend to
consider models as tools that should be used primarily to
increase system understanding rather than to make pre-
dictions, and the discussion in this paper relates to their
view. Konikow and Bredehoeft (1992), Nordstrom (1994,
2004), Oreskes et al. (1994), Oreskes (2000) and Koni-
kow and Glynn (2005, in press) discuss some of the dif-
fering views relating to the philosophy of applying and
testing ground-water flow and geochemical models.

Ground-water systems typically have less geochemical
and hydrogeologic information known about them than
may be desirable for predictive modeling of geochemical
transport. Detailed hydrogeologic and geochemical stud-
ies often are too expensive to consider, particularly on
large aquifer systems. The lack of chemical and hydro-
logical data means that investigators should try to use, as
efficiently as possible, all tools and knowledge available.
A combination of inverse and forward modeling of
ground-water flow and transport, and inverse and forward
geochemical modeling, may often provide substantial
knowledge gains, and at a minimum can be used to
identify the most critical data needed to gain a better
understanding of the ground-water system. In general,
modeling (hydrological/geochemical; inverse or forward)
should be conducted as part of a continuous iterative
cycle, helping guide data acquisition, helping interpret the
data obtained, and helping provide an integrated under-
standing of the ground-water system, to a desired (or fi-
nancially feasible) level of detail.

Geochemical investigations
Geochemical studies have been conducted on numerous
ground-water systems. Selected studies where geochem-
istry has improved understanding of ground-water sys-
tems are:

1. Major USA aquifers studied as a part of the U.S.
Geological Survey (USGS) Regional Aquifer Systems
Analysis program and summarized in the USGS
Ground Water Atlas of the United States (Miller
1999).

2. The Floridan aquifer system, USA (Back and Han-
shaw 1970; Sprinkle 1989; Plummer and Sprinkle
2001).

3. The Madison aquifer system, USA (Busby et al. 1983,
1991; Back et al. 1983; Plummer et al. 1990).

4. The Middle Rio Grande Basin, USA (Anderholm
1988; Bexfield and Anderholm 2002; Plummer et al.
2004a, 2004b, 2004c; Sanford et al. 2004a, 2004b).

5. The Carizzo Sandstone Aquifer of South Texas, USA
(Pearson et al. 1983; Andrews and Pearson 1984;
Stute et al. 1992a, 1992b).

6. The Central Oklahoma aquifer, USA (Parkhurst et al.
1992).

7. The High Plains aquifers, USA (Nativ and Smith
1987; Nativ and Gutierrez 1989; Dutton 1995; Mehta
et al. 2000; Gosselin et al. 2001; Fryar et al. 2001;
McMahon et al. 2004).

8. The Milk River aquifer, Canada (Hendry and
Schwartz 1990; Nolte et al. 1990; Hendry et al. 1991;
Ivanovich et al. 1992).

9. The East Midlands Triassic aquifer, UK (Bath et al.
1979; Andrews et al. 1984; Edmunds et al. 1982;
Andrews et al. 1994; Edmunds and Smedley 2000).

10. The Paris Basin, France (Fu et al. 1990; Marty et al.
1993; Castro et al. 1998a, 1998b).

11. The Molasse Basin of Upper Austria (Andrews et al.
1985).

12. The Madrid Basin, Spain (Llamas and Martinez 1981;
Jones and Llamas 1989).

13. The Great Hungarian Plain, Hungary (D�ak et al.
1987; Stute et al. 1992a, 1992b).

14. The Great Artesian Basin, Australia (Torgersen and
Clarke 1985; Herczeg et al. 1991; Torgersen et al.
1991; Andrews and Fontes 1993; Torgersen and Phi-
lips 1993).

15. The Murray Basin, Australia (Leaney and Allison
1986; Herczeg et al. 1993; Jones et al. 1994).

16. The Stripa and �sp fractured rock sites in Sweden
(Stripa: Andrews et al. 1988, 1989; Nordstrom et al.
1989; �sp: Glynn and Voss 1999)

17. Underground laboratory studies in clay and clay rock
(Boom clay at Mol in Belgium, Mont Terri in
Switzerland, other sites in Canada, England, France
and Italy; Bath et al. 2001; Pearson et al. 2003)

18. Crystalline Rock studies in Switzerland (Pearson et al.
1991)

19. Natural Analogue Studies (for radioactive waste dis-
posal) around the world (Miller et al. 1994) and at the
Po�os de Caldas site in Brazil (Chapman et al. 1993)

20. Nuclear-waste disposal sites in the USA (Yucca
mountain, Nevada: Paces et al. 2001; Thorstenson et
al. 1998; WIPP site, New Mexico: Bodine and Jones
1990; Siegel and Anderholm 1994; Jones and An-
derholm 1996)

21. The Great Basin aquifers of Nevada, USA (Winograd
and Thordarson 1976; Winograd and Pearson 1976;
Thomas et al. 1989a, 1989b; Winograd 2001). The
500,000 year climatic record determined for Nevada
groundwaters (from the Devil’s Hole limestone core)
has been correlated with several other paleoclimate
records and has even been used to refine the dating of
the Vostok, Antarctica, ice-core paleoclimate record
(Landwehr and Winograd 2001)!

22. Ground-water investigations in Africa, Asia and the
Middle East (Nash and McCall 1994; Kurnub Group
paleowaters in the Sinai-Negev province, Israel, Ro-
senthal et al. 1998)
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Needs and future directions in the geochemical un-
derstanding of ground-water systems

This paper has reviewed a few key historical develop-
ments, and some current state-of-the-art techniques and
approaches in the field of geochemistry, as specifically
applied to the understanding of ground-water systems.
There are many areas in which further research holds
significant promise for improving understanding of
ground-water systems. These include:

1. Advances in representative sampling (e.g. for waters,
aquifer/aquitard materials, colloids, bacteria, unsatur-
ated-zone gases) and uses of geophysical and mini-
mally disturbing techniques to obtain hydrologic, ge-
ologic and geochemical information.

2. Advances in collection and measurement techniques
for dissolved noble gas isotopes (e.g. 85Kr, t1/2 =10.76
years; 39Ar t1/2 =269 years; 81Kr, t1/2 =229,000 years).
Current techniques generally require very large sam-
ple volumes, and complex, labor-intensive analytical
methods that severely limit practical applications.
Better techniques could significantly improve ground-
water dating.

3. The study of homogeneous and heterogeneous reac-
tion kinetics, inhibitory and/or catalytic processes, the
measurement/estimation of effective surface areas,
and the prediction of reaction rates in ground-water
systems.

4. Investigations of bacterial activity and diversity,
population distributions, and microbially mediated
processes (Chapelle 1993), biofilms, microbe-mineral
interactions, and microbial transport. Microbial evi-
dence may include culturing as well as DNA, RNA,
specific protein and/or lipid extractions, and charac-
terization.

5. The processes affecting colloid transport, as well as
the formation and decay of colloids. Understanding
colloid processes, their generation, transport and de-
cay is essential to many important water quality and
supply issues, such as: the efficiency of bank filtra-
tion, the possibilities for aquifer storage and recovery,
nuclear-waste disposal and other contaminant trans-
port issues.

6. The characterization of organic molecules: their
chemical composition and functional characteristics,
reactivity, their stable and radioactive isotope contents
(13C, 14C, 15N, ...), and any other techniques that
might allow dating and/or tracing of their origin (plant
materials with different photosynthetic cycles and 13C
contents, fungi, molds, microbial growth, animal/in-
sect waste products/debris).

7. The characterization of naturally occurring proteins,
hormones, enzymes, and their degradates in ground-
water systems. The ground-water recharge and dis-
charge of these compounds (and anthropogenically
introduced surrogates or inhibitor compounds) may
play a key role in “environmental signaling”. Envi-
ronmental signaling through chemical means (e.g.

McLachlan 2001, and references therein) can strongly
affect symbiotic relationships and the health, diversity
and survival of species in ecological systems, and may
provide key controls on the evolution and adaptation
of these systems.

8. Isotopic fingerprinting of specific molecular species:
this is a developing field that not only has significant
promise in determining the sources of contaminants in
ground-water systems, but may also help characterize
natural tracers and solutes, and may provide infor-
mation on water and solute origins, recharge modes,
transport, and ages.

9. Studies of deep aquifer systems (e.g. sedimentary
basins) and their interactions with shallow ground
waters, heat convection, and geothermal reactions,
salinity effects, diagenetic reactions, and detection
and interpretation of magmatic emissions (such as N2,
CO2, and He).

10. Unsaturated zone geochemistry: this area of research
has not received as much attention as it should, except
by soil scientists, perhaps because the physics of un-
saturated zone flow and transport are by themselves a
complex field of study. Nevertheless, coupling geo-
chemical processes to unsaturated zone hydrology is
critical to understanding processes that control and
modify the recharge and source of environmental
tracers in ground-water systems and may also offer
information on paleo-recharge conditions (Scanlon
and Cook 2002).

11. The study of geochemical processes occurring as a
result of surface-water/ground-water interactions: re-
search in this area may help understand and quantify
the processes affecting the recharge of water and so-
lutes to ground-water systems, as well as the processes
affecting discharge into streams. Sediment transport
may also be important to consider in these studies
because of its impact on the geometry and nature of
ground-water/surface-water interactions. Sediments
often carry significant quantities of reactive con-
stituents, such as organic matter and metals, and
sediments may, through their chemical and physical
characteristics, record past ground-water/surface-wa-
ter interactions.

Ground-water environments with special needs
Some environments offer unique complexities and diffi-
culties in conducting ground-water geochemistry re-
search. Focused research on these systems can be ex-
pected to bring about significant advances not only in the
understanding of system processes, but also in the de-
velopment of new techniques and methods in ground-
water geochemistry. Fractured rock and karst environ-
ments are perhaps best known for their complexity, but
aquitards, geothermally affected ground waters, per-
mafrost environments, glacially covered ground-water
systems, coastal ground-water systems, and submarine
ground-waters also are of significant relevance and
complexity, or difficult to conduct studies on.
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Fractured-rock environments are an important field of
study because of their abundance, the difficulties in pre-
dicting their behavior with respect to flow and solute
transport, their increasing importance for water supply,
and their suggested use for nuclear-waste disposal. Karst
environments are similarly complex, and highly relevant
for study because of their importance for water supply
around the world and their susceptibility to contamina-
tion.

Because of their slow response to hydrologic and
chemical transients, aquitards and confining units are
difficult to study, but may offer important controls on
water supply and water quality in some ground-water
systems (Neuzil 1986; Pucci 1999; Remenda 2001).
Complex processes such as osmosis and ultrafiltration,
compaction/subsidence and paleo-loading effects may
affect some aquitards. Because of their sharp gradients in
chemical and redox properties, aquitard/aquifer interfacial
zones can support significant microbial activity (McMa-
hon 2001) and can strongly affect water quality. Aqui-
tards may also provide useful archives of paleo-environ-
mental information.

Understanding the geochemistry and ground-water
flow of geothermal systems is of significant societal in-
terest because they offer a potential energy resource. In
volcanically active areas, they also may offer potential
clues to future eruptions (Evans et al. 2004); lastly, they
test some of the limits of understanding of coupled pro-
cesses. The hydrogeology and geochemistry of permafrost
environments are also of interest because of their im-
portant role and expected modifications during climate
change. Permafrost environments can act as significant
sources of stored organic carbon, which may be oxidized
and released as temperatures increase. Salting-out effects
during freezing and the generation of dense salty waters
affects the hydrogeology of permafrost systems and their
very structure. The hydrogeology of permafrost environ-
ments is highly complex and geochemical investigations
can be expected to provide key information. Glacially
covered ground-water systems (e.g. under the Greenland
and Antarctic ice sheets, under the Icelandic glaciers; cf.
Glynn and Voss 1999; Glynn et al. 1999) are difficult
environments to observe and sample. Their potential im-
portance relates to performance assessments for the dis-
posal of nuclear waste, and may also relate to the
movement of glaciers and icesheets (through lubrication
and through heat-flow impacts). Coastal ground-water
systems have high relevance to societal needs due to the
large and increasing coastal population, and due to the
sensitivity of coastal ecosystems to salinity changes that
are in part controlled by the ground-water flow regime
and usage. In addition, ground-water inputs of nutrients
may contribute significantly to hypoxia in coastal marine
environments. Submarine hydrogeology, for example the
investigation of “ground-waters” at mid-ocean ridges, is a
field where research has hardly started. Investigations
would likely be related to studies of manganese nodules
and the formation of other mineral ores, or to the potential
impacts of climate and sea-level changes on the forma-

tion, or abrupt disintegration of clathrates. Lastly, the last
frontier in “ground-fluid geochemistry” may lie in the
exploration of subsurface fluids on other planets and
moons. Martian and extraterrestrial hydrology is already
of interest (e.g. Baker et al., Hydrogeology Journal, this
issue).

Some final thoughts
In addition to improved theoretical descriptions of natural
processes, two major technological trends have led sci-
entific advancements in the field of ground-water geo-
chemistry over the last 40 years: (1) the development of
analytical techniques capable of measuring an ever-in-
creasing array of isotopes, elements, and molecular spe-
cies at ever smaller concentrations; and (2) the develop-
ment of computers and software capable of numerically
simulating an ever-increasing number of hydrologic, ge-
ologic, and geochemical processes, at greater spatial and
temporal scales, with ever-increasing refinement. These
two trends are likely to continue to contribute to ad-
vancements in ground-water geochemistry for many years
to come. Indeed, with every new measurement of the
concentration of a new constituent in ground water, there
is a new story to be told. New information is gained; a
better understanding of the flow system may be achieved;
a better assessment may be obtained of prior climates or
of other surficial conditions preserved in the ground-water
archive; an improved understanding of reaction processes/
rates may be reached. Numerical simulations of flow and
solute transport will improve as additional geochemical
observations are taken into account. Use of environmental
tracer data, such as 14C observations, and locations of
flow boundaries (boundaries between hydrochemical
zones; Plummer et al. 2004b) in combination with particle
tracking and inverse modeling procedures can provide a
useful calibration procedure in which geochemical, hy-
drologic, and geologic data are combined (Sanford et al.
2004b). This process will develop further as new tracers
become available, and as more sophisticated numerical
models evolve that can incorporate diverse hydrochemical
and hydrogeological data and that can account for a wide
range of processes.

At the completion of a study, investigators often know
better how the study should have been conducted. Hy-
drologic investigations would generally benefit from the
development of numerical model(s) that utilized available
data (geologic, hydrologic, and geochemical), as well as
the investigators’ initial concepts and intuition. Once an
initial model is constructed, sensitivity analyses and hy-
pothesis testing can be used to help identify additional
data that should be collected to address specific questions.
This should be part of an iterative cycle of model de-
velopment and refinement, sensitivity analyses, and hy-
pothesis testing and data gathering.

Integration and synthesis of information collected from
a wide variety of fields of expertise across a diversity of
spatial and temporal scales, using different conceptual
approaches and perspectives, is one of the keys to future
advances in ground-water geochemistry and in the un-
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derstanding of ground-water systems. An approach ex-
pressing the various processes that affect a ground-water
system in terms of mass and energy fluxes could provide a
framework for the integration and synthesis of the infor-
mation available, and would provide a better perspective
of the relative importance of different processes and dif-
ferent pieces of information. The processes that affect
ground-water systems are all dynamic in nature, even
under steady-state conditions, and any information ob-
tained from a ground-water system is usually interpreted
in terms of its meaning for either a past or a future system
condition. A great number of processes affect ground-
water systems, and their importance in a particular study
often depends on the time scale of interest. Potential
processes to consider include sedimentation, compaction/
subsidence, diagenesis, erosion, glacial (or ice sheet) ad-
vance/retreat, sea-level rise/decline, ocean tides, earth
tides, regional or local tectonic stresses, fracturing or
plastic deformation, heat flow, the growth/dormancy/de-
cay of microbial populations, geochemical and/or bio-
geochemically mediated reactions, fluid advection, gas
generation and transport, solute diffusion and advection,
radioactive decay chains, and many others. Scientific
understanding and investigation of all these processes is
typically predicated on the laws of conservation of mass
and of conservation of energy. And yet the processes are
rarely described or compared to one another on the basis
of mass and/or energy fluxes. Considering ground-water
systems in the mass/energy-based framework of thermo-
dynamics would provide significant insights into various
processes and their relative importance. At a minimum, it
would provide a framework that could be used to inte-
grate and synthesize available information (current
ground-water and geochemical-simulation codes offer
only a limited step in this direction). Even more inter-
estingly, because ground-water systems can be considered
open thermodynamic systems with “dissipative” organi-
zation structures (e.g. Nicolis and Prigogine 1989; Kon-
depudi and Prigogine 1998), processes with high flux
densities (i.e. with spatially concentrated high mass/en-
ergy throughput) may potentially reveal complex behav-
ior. The formation of convective circulation cells due to
high heat throughput or high mass density differences
(Simmons et al. 2001; Prasad and Simmons 2003) is a
relatively wellknown common occurrence of such
“complex” behavior typical of an open thermodynamic
system. Microbial growth is another example, on a much
smaller spatial scale; so is the formation of Liesegang
rings, or of other reactive patterns (Ortoleva 1994). Ac-
tually, there are a significant number of mass/energy
transport processes that occur in ground-water systems
that create ordering or patterns, i.e. that result in the
formation of information (negative entropy). Providing a
proper “open system” thermodynamic framework could
help elucidate some of the commonalities that control,
result from, or provide evidence on the transport of fluids
and solutes in ground-water systems. Gibbs’ (1876, 1878)
theoretical work on closed-system thermodynamics led to
significant advances and applications in geochemistry

about 75 years later. In similar fashion, the work of I.
Prigogine (winner of the 1977 Nobel Prize in chemistry)
and his co-workers on open-system thermodynamics may
lead to significant advances in the understanding of
ground-water systems and other natural systems.
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