
Adventures in Time and Space

Norman Danner
Dept. of Mathematics and Computer Science,
Wesleyan University, Middletown, CN, USA

ndanner@wesleyan.edu

James S. Royer
EECS Dept., Syracuse University, Syracuse, NY, USA

royer@ecs.syr.edu

Abstract
This paper investigates what is essentially a call-by-value version
of PCF under a complexity-theoretically motivated type system.
The programming formalism,ATR1, has its first-order programs
characterize the poly-time computable functions, and its second-
order programs characterize the type-2 basic feasible functionals
of Mehlhorn and of Cook and Urquhart. (TheATR1-types are
confined to levels 0, 1, and 2.) The type system comes in two
parts, one that primarily restricts the sizes of values of expressions
and a second that primarily restricts the time required to evaluate
expressions. The size-restricted part is motivated by Bellantoni and
Cook’s and Leivant’s implicit characterizations of poly-time. The
time-restricting part is an affine version of Barber and Plotkin’s
DILL. Two semantics are constructed forATR1. The first is a
pruning of the näıve denotational semantics forATR1. This pruning
removes certain functions that cause otherwise feasible forms of
recursion to go wrong. The second semantics is a model forATR1’s
time complexity relative to a certain abstract machine. This model
provides a setting for complexity recurrences arising fromATR1

recursions, the solutions of which yield second-order polynomial
time bounds. The time-complexity semantics is also shown to be
sound relative to the costs of interpretation on the abstract machine.

Categories and Subject DescriptorsF.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs —program and re-
cursion schemes, type structure; F.1.3 [Computation by Abstract
Devices]: Complexity Measures and Classes; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages

General Terms Languages, Performance, Theory

1. Introduction
A Lisp programmer knows the value of everything, but the
cost of nothing. —Alan Perlis

Perlis’ quip is an overstatement—but not by much. Programmers
in functional (and object-oriented) languages have few tools for
reasoning about the efficiency of their programs. Almost all tools
from traditional analysis of algorithms are targeted toward roughly
the first-order fragment of C. What tools there are from formal
methods are interesting, but piecemeal and preliminary.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

This paper is an effort to fill in part of the puzzle of how to rea-
son about the efficiency of programs that involve higher types. Our
approach is, roughly, to takePCF and its conventional denotational
semantics [24, 30] and, using types, restrict the language and its se-
mantics to obtain a higher-type “feasible fragment” ofPCF and the
PCF computable functions. Our notion of higher-type feasibility is
based on thebasic feasible functionals(BFFs) [5, 21], a higher-type
analogue of poly-time computability, and Kapron and Cook’s [15]
machine-based characterization of this class at type-level 2.1 Bas-
ing our work on a higher-type notion of computational complexity
provides a connection to the basic notions and tools of traditional
analysis of algorithms (and their lifts to higher types). Enforcing
feasibility constraints onPCF through types provides a connection
to much of the central work in formal methods.

Our approach is in contrast to the work of [3, 11, 18] which also
involves higher-type languages and types that guarantee feasibility.
These programming formalisms are feasible in the sense that: (i)
they have poly-time normalization properties and (ii) the type-
level 1 functions expressible by these systems are guaranteed to be
(ordinary) poly-time computable. The higher-type constructions of
these formalisms are essentially aides for poly-time programming;
as of this writing, there is no analysis of what higher-type functions
these systems compute.2

For a simple example of a feasible higher-type function, con-
siderC: (N→ N)→ (N→ N)→ (N→ N) with C f g = f ◦ g.
(Convention:N is always interpreted as{0,1 }∗, i.e.,0-1-strings.)
In our setting, a reasonable implementation ofC has a run-time
bound that is a second-order polynomial (see§2) in the complexi-
ties of arbitraryf andg; in particular, iff andg are poly-time com-
putable, so isC f g. Such a combinatorC can be considered as part
of the “feasible glue” of a programming environment—when used
with other components, its complexity contribution is (higher-type)
polynomially bounded in terms of the complexity of the other com-
ponentsand the combined complexity can be expressed in a natu-
ral, compositional way. More elaborate examples of feasible func-
tionals include many of the deterministic “black box” constructions
from cryptography that, for example, map one pseudo-random gen-
eratorg to anotherg′ with better cryptographic properties in such
a way that the complexity properties of the program forg′ are not

1 Mehlhorn [21] originally discovered the class of type-2 basic feasible
functionals the mid-1970s. Later Cook and Urquhart [5] independently
discovered this class and extended it to all finite types over the full set-
theoretic hierarchy.N.B. If one restricts attention to continuous models,
then starting at type-level 3 there are alternative notions of “higher-type
poly-time” [13]. Dealing with type-level 3 and above involves some knotty
semantic and complexity-theoretic issues beyond the scope of this paper,
hence our restriction ofATR1 types to orders 2 and below.
2 In fact, the work of [3, 11] and of this paper sit on different sides of an
important divide in higher-type computability between notions ofcompu-
tation over computable data(e.g., [3, 11, 18]) and notions ofcomputation
over continuous data(e.g., this paper) [19, 20].

POPL’06 1 2006/1/7

much worse that of the program ofg, but where this program for
g many not run indeterministicpoly-time.3 (See Chapter 3 in Gol-
dreich’s [8] for examples.)

While our notion of feasibility is based on the BFFs, the full
class of functions our formalism computes is more subtle than the
BFFs. For example, considerprn: (N→ N→ N)→ N→ N with:

prn f ε −→ f ε ε.
prn f (a⊕ y) −→ f (a⊕ y) (prn f y).

ff
(1)

(Conventions:⊕ denotes string concatenation anda ∈ {0,1 }.)
So, prn is a string-variant offoldr. It is well-known that starting
with poly-time primitives,prn can be used to define any primi-
tive recursive function.(Hence,prn is not a BFF.) But, as Cob-
ham [4] noted, if one adds to (1) the side-condition to that, for
some polynomialp, we have|prn f x y| ≤ p(|x|, |y|), and if
one starts with poly-time primitives, then this modifiedprn pro-
duces definitions of only poly-time computable functions. Bellan-
toni and Cook [2] showed how get rid ofexplicit use of such a side
condition through what amounts to a typing discipline. However,
their approach (which has been in large part adopted by the im-
plicit complexity computational community, see Hofmann’s survey
[10]), requires thatprn be a “special form” and that thef in (1) be
always given by a syntactic definition. We, on the other hand, want
to be able to defineprn (see Figure 8) and have the definition’s
meaning given by a conventional denotational semantics. We thus
use Bellantoni and Cook’s [2] (and Leivant’s [16]) ideas in both
syntacticand semanticcontexts. That is, we extract the growth-
rate bounds implicit in the aforementioned systems, extend these
bounds to high types, and create a type system, programming lan-
guage, and semantic models that work to enforce these bounds. As
a consequence, we can defineprn, with a particular typing, and be
assured that, whether thef corresponds to a purely syntactic term
or to the interpretation a free variable,prn will not go wrong and
produce something of undesirable complexity. The language and
its model thus implicitly incorporate side-conditions on growth via
types.4 Handling constructs likeprn as first class functions is im-
portant because programmers care more about such combinators
than about most any BFF.

Outline §3 presents the syntactic side of our programming for-
malismATR1 and its type system.§4 explains what can go wrong
in a näıve semantics forATR1 and its types.§4 also shows how
to prune the näıve semantics obtain a semantics for which we can
provepolynomial-size boundednessfor ATR1, that is, that the size
of of the value of eachATR1 expressionE has a second-order poly-
nomial bound over the sizes of the values ofE’s free variables.§5
gives a time-complexity semantics forATR1 expressions that can
be shown: (i) sound for the cost model of a particular abstract ma-
chine for evaluatingATR1 and (ii) polynomial-time bounded, that
is that the time-complexity eachATR1 expressionE has a second-
order polynomial bound over the time-complexities of ofE’s free
variables.§5 also states thatATR1 can compute each basic feasible
functional.§6 briefly discusses work related to ours and§7 consid-
ers possible extensions of our work. We begin in§2 by stating some
basic background definitions.N.B. This is an abstract of a much
longer paper. The present paper omits proofs, secondary examples,
and discussions of finer points of this work.

3 E.g.,g andg′ may be computed by a probabilistic poly-time programs or
even by families of circuits.
4 Incorporating side-conditions in models is nothing new. A fixed point
combinator has the implicit side-condition that its argument is continuous
or at least monotone so that, by Tarski’s fixed point theorem [30], we know
the result is meaningful. Models of languages with fixed point combinators
typically have continuity built-in so the side-condition is always implicit.

E : : = K | (ca E) | (d E) | (ta E) | (down E E) | V

| (E E) | (λV . E) | (if E then E else E) | (fix E)

K : : = {0,1 }∗ a ∈ {0,1 } T : : = the simple types overN

Figure 1. PCF syntax

Const-I:
Γ ` K: N

Id-I:
Γ, v: σ ` v: σ

op-I:
Γ ` E: N

Γ ` (op E): N

down-I:
Γ0 ` E0: N Γ1 ` E1: N

Γ0 ∪ Γ1 ` (down E0 E1): N
→-I:

Γ, v: σ ` E: τ

Γ ` (λv . E): σ → τ

→-E:
Γ0 ` E0: σ → τ Γ1 ` E1: σ

Γ0 ∪ Γ1 ` (E0 E0): τ
fix-I:

Γ ` (λf . E) : σ → σ

Γ ` (fix (λf . E)) : σ

If-I:
Γ0 ` E0: N Γ1 ` E1: N Γ2 ` E2: N

Γ0 ∪ Γ1 ∪ Γ2 ` (if E0 then E1 else E2): N

Figure 2. PCF typing rules

(ca x) −→ a⊕x. (d (a⊕x)) −→ x. (d ε) −→ ε.

(ta x) −→ [1, if x ∈ a{0,1 }∗; ε, otherwise]

(down x y) −→ [x, if |x| ≤ |y|; ε, otherwise]

(if x then y else z) −→ [y, if x 6= ε; z, otherwise]

fix (λf . E) −→ E[f ← (fix (λf . E)].

Figure 3. SomePCF reduction rules

2. Background definitions
Strings and tallies Each element ofN is identified with its0-1-
dyadic representation, i.e.,0 ≡ ε, 1 ≡ 0, 2 ≡ 1, 3 ≡ 00, etc.
Each element ofω is identified with its0-unary representation, i.e.,
0 ≡ ε, 1 ≡ 0, 2 ≡ 00, 3 ≡ 000, etc.N-values are numeric/
string values to be computed over;ω-values are tallies of lengths
and run times.Notation:For each natural numberk, k = 0k.

Types Below, b ranges over base types andB ranges over
nonempty sets of base types. We use fairly standard notation and
terminology for thesimple types(T : : = B | T → T) and the
simple product types(T : : = B | T → T | () | T × T) over a
set of base typesB. In particular, we abbreviate(σ1 → (σ2 →
(· · · → (σn → τ) . . .))) = σ1 → σ2 → · · · → σn → τ by
(σ1, . . . , σn) → τ and define thelevel of a type by:level(b) =
level(()) = 0; level(σ × τ) = max(level(σ), level(τ)); and
level(σ → τ) = max(1 + level(σ), level(τ)).

Type contexts A type contextis a finite mapping of variables to
types; these are usually written as a list:v1:σ1, . . ., vk:σk. Γ,Γ′

denotes the union of two type contexts with disjoint preimages and
Γ ∪ Γ′ denotes the union of two consistent type contexts.

Semantic conventions For a semanticsS for a formalismF ,
S[[·]] is the semantic mapthat takes anF -syntactic object to its
S-meaning.S[[τ]] is the collection of things named by typeτ under
S. For a type contextΓ = x1: τ1, . . . , xn: τn, S[[Γ]] is the set of
all finite maps{x1 7→ a1, . . ., xn 7→ an }, wherea1 ∈ S[[τ1]], . . .,
an ∈ S[[τn]]; i.e., environments. (Convention:ρ, with or without
decorations, ranges over environments.)S[[Γ ` E: τ]] is the map
from S[[Γ]] to S[[τ]] such thatS[[Γ ` E: τ]] ρ is the element of
S[[τ]] that is theS-meaning ofE whenE’s free-variables have the
meanings given byρ. S[[E]] is typically written forS[[Γ ` E: τ]] as
the type judgment is usually understood from context.

Call-by-value PCF Figure 1 gives the syntax of our version of
PCF. Figure 2 provides the typing rules in whichop ∈ { c0, c1, d,

POPL’06 2 2006/1/7

P : : = K | (� P P) | V | (P P) | (λV . P)

K : : = 0∗ T : : = the level 0, 1, and 2 simple types overT

Figure 4. The syntax for second-order polys, where� = ∨, +, ∗

Const-I:
Σ ` K: T

�-I:
Σ ` P0: T Σ ` P1: T

Σ ` (� P0 P1): T
(� = ∨, +, ∗)

Figure 5. The additional typing rules for second-order polys

t0, t1 }. For emphasis we may writeλv:σ .E instead ofλv .E. N
is interpreted as{0,1 }∗. The reduction rules are the standard ones
for call-by-valuePCF [22, 23] plus the rules of Figure 3. In tests,
“x 6= ε” is syntactic sugar for “x” and “|E0| ≤ |E1|” is syntactic
sugar for “(down c0(E0) c0(E1)).” A CEK-machine [6] (omitted
in this version of the paper) provides an operational semantics. We
takeV (for value) to be a conventional denotational semantics for
PCF [30]. It is standard that these two semantics agree.

The total continuous functionals Let σ andτ be simple product
types over base typeN. TheTCσ sets are inductively defined by:
TCN = N, TC() = ?, TCσ×τ = TCσ × TCτ , andTCσ→τ

= theKleene-Kreisel total continuous functions[20] from TCσ to
TCτ . This paper is concerned with only the type-level 0, 1, and 2
portions ofTC from which we construct our models forATR1.

Let σ and τ be simple product types over base typeT (for
tally). TheMCσ sets and partial orders≤σ are inductively defined
by: MCT = ω and≤T = the usual ordering onω; MC() = ?
and ? ≤() ?; MCσ×τ = MCσ × MCτ and (a, b) ≤σ×τ

(a′, b′) ⇐⇒ a ≤σ a′ andb ≤τ b
′; andMCσ→τ = the Kleene-

Kreisel total continuous functions fromMCσ to MCτ that are
monotone (w.r.t.≤σ and≤τ), and≤σ→τ is the point-wise ordering
on MCσ→τ . (E.g.,MCT→T = { f :ω → ω f(0) ≤ f(1) ≤
f(2) ≤ · · · }.) As withTC, our concern is with only the type-level
0, 1, and 2 portions ofMC from which we construct our models
of size and time bounds.

Lengths For x ∈ N, let |x| = k, wherek is the length ofx’s
dyadic representation (e.g.,|011| = 3 = 000). Following Kapron
and Cook [15], forf ∈ TC(Nk)→N, define|f | ∈MC(Tk)→T by:

|f |(~̀) = max
˘
|f(~x)| |xi| ≤ `i for i = 1, . . . , k

¯
. (2)

For eachσ, a simple type overN, let |σ| = σ[N ← T] (e.g.,
|N → N| = T → T). Note that ifx ∈ TCσ andγ is level 0
or 1, then|x| ∈ MC|σ|. For γ = (σ1, . . . , σk) → N of level-2,
F ∈ TCγ , and`1 ∈MC|σ1|, . . . , `k ∈MC|σk|, define

|F |(~̀) = max
˘
|F (~x)| |xi| ≤|σi| `i for i = 1, . . . , k

¯
. (3)

|F | as defined above turns out to be an element ofMC|γ|.

Maximums and polynomials Letx1∨x2 = max({x1, x2 }) andWk
i=1 xi = max({x1, . . . , xk }) for x1, . . . , xk ∈ ω. By conven-

tion, max(∅) = 0. We allow∨ as another arithmetic operation
in polynomials;∨ binds closer than either multiplication or addi-
tion. Coefficients in polynomials will always be nonnegative; hence
polynomials denote monotone nondecreasing functions.

The second-order polynomialsWe definesecond-order polyno-
mials[15] as a type-level 2 fragment of the simply typedλ-calculus
over base typeT with arithmetic operations∨, +, and∗. Figure 4
gives the syntax. (We often write∨-, +-, and∗-expressions in infix
form.) The typing rules areId-I,→-E, and→-I from Figure 2 plus
the rules in Figure 5. TheL-semantics for second-order polynomi-
als is as follows. Forσ, a simple type overT, takeL[[σ]] = MCσ.

L[[Σ ` p:σ]] is defined in the standard way.Important: Thedepth
a second-order polynomialq is the maximal depth of nesting of ap-
plications inq’s β-normal form, e.g.,g0((g0(2∗y ∗g1(y2))∨6)3)
has depth 3. For second-order polynomials, depth plays something
like the role degree does for ordinary polynomials.

Time complexity The CEK machine, mentioned above, provides
an operational semantics for bothPCF andATR1. As our concern
is with the costs of evaluating expressions, we use the CEK ma-
chine as our standard model of computation and use a simple cost
model to the CEK as the standard notion of time complexity.5 Our
CEK machine handles oracles (type-level 1 functions overN) as
the values of particular variables in the initial environment for an
evaluation. As with Kapron and Cook’s answer-length cost model
for oracle Turing machines [15], part of the CEK-cost of querying
an oracle includes the length of the answer.

The basic feasible functionals Supposeτ = (σ1, . . . , σk) → N
is a simple type overN of level 1 or 2. We say thatf ∈ V[[τ]] is
basic feasiblewhen there is a closed type-τ , PCF-expressionEf

and a second-order polynomialqf such thatV[[Ef]] = f and, for
all vi ∈ V[[σ1]], . . . , vk ∈ V[[σk]], CEK-time(Ef , v1, . . . , vk) ≤
qf (|v1|, . . . , |vk|). (Kapron and Cook’s machine-based characteri-
zation [15] of the type-2 BFFs is the basis of the above definition.
For level-1τ ’s, the above yields ordinary poly-time computability.)

3. Affine tail recursion
3.1 Ingredients

Ramified base typesBellantoni and Cook’s [2] well-known poly-
time programming formalism features a recursion construct along
the lines ofprn of (1) without a side condition. They avoided the
side condition by separating the roles ofN-values intonormal
and safe values. Roughly, a normal value can be used to drive
a recursion, but cannot be the result of a recursion, whereas a
safe value can be the result of a recursion, but cannot be used to
drive a recursion.6 The separation of roles allows enough power to
compute poly-time, but forbids “bad feedbacks” through which the
unconstrainedprn can produce non-poly-time results.

At type-level 2 there are new “bad feedbacks” to be avoided,
e.g.,F0 = λf ∈ N → N, x ∈ N . (f (|x|)(x)) fails to be a BFF as
|F0(λw ∈ N . (w⊕w), x)| = |x| · 2|x|. Note however that bothF1

= λf ∈ N → N, x ∈ N . f(f(x)) andF2 = λf ∈ N → N, x ∈
N . [g(|x|)(x), whereg(w) = f(w) mod (x + 1)] are BFFs. So,
any restrictions that prohibitF0’s definition must also leave enough
room forF1’s andF2’s definitions. To deal with these problems we
use the facts that each expression in our language will need to have
a second-order polynomial size bound and that each second-order
polynomial has a specific depth, e.g.,f(f(x)) has the size bound
|f |(|f |(|x|)) which has depth 2. We shall have depth-d versions
of normal and safe base types, ford = 0, 1, . . . , with the subtype
ordering: depth-0-normal≤: depth-0-safe≤: depth-1-normal≤:
depth-1-safe≤: · · · . An expressionE being of a depth-d type will
turn out to mean thatE has a depth-d second-order polynomial
size bound. Moreover, ifE is of the depth-d-normal type, thenE
will turn out to an input value (or else size bounded by some such
value), where a depth-0 input is just an ordinary string input and
a depth-(d + 1) is the answer returned by a type-1 inputf when

5 Under the CEK cost model: (i) operations that involve the entirety of string
x (in reading, writing, or testingx) have cost1 ∨ |x|, and (ii) all other
operations have unit cost. The standard model of computation underlying
this CEK machine is Scḧonhage’sstorage modification machine[27], which
is known to be polynomially related to standard Turing machines.
6 Bellantoni and Cook did not use typing per se, but most of the followup
work has recast their ideas in terms of type systems.

POPL’06 3 2006/1/7

queried on depth-d-safe values. IfE is of the depth-d-safe type,
then its value is the result of (type-2) poly-time computation over
depth-d-normal terms (or else size bounded by some such value).

Clocked, linear, tail-recursions In place offix, ATR1 has the
combinatorcrec (for clocked recursion) with the reduction rule:

crec c (λrf .E) −→ λ~v .
`
if |c| ≤ |v1| then

`
E′ ~v

´
else ε

´
with E′ = E[f ←

`
crec (0⊕ c) (λrf .E)

´
],

wherec is a constant and~v = v1, . . . , vk is a sequence of variables.
Roughly,|c| acts as the tally of the number of recursions thus far
and0⊕ c is the result of a tick of the clock. The value ofv1 is
program’s estimate of the total number of recursions it needs to do
its job. Typing constraints will make sure that eachcrec-recursion
recursion terminates after polynomially many steps. Without these
constraints,crec is essentially equivalent tofix.7

Besides being clocked, recursions have two other restrictions.

ONE USE. In any expression(crec a (λrf .E)), we require that
f has at most oneusein E. Operationally this means that, in any
possible evaluation ofE, at most one application off takes place.
One consequence of this restriction is that no free occurrence off
is allowed within any innercrec expression. (Even iff occursbut
once in an innercrec, the presumption is thatf may beusedmany
times.) Affine typing constraints enforce this one-use restriction.

Under the one-use restriction, bounds on the cost ofm steps of a
crec recursion are provided by recurrences of the formT (m,~n) ≤
T (m−1, ~n)+q(~n), where~n represents the other parameters andq
is a (second-order) polynomial. SuchT ’s grow polynomially inm.
Thus, a polynomial bound on the depth of acrec recursion implies
a polynomial bound on the recursion’s total cost.8

TAIL RECURSIONS. We restrictcrec terms to expressing just
tail recursions. Primarily, this is just a simplifying restriction; but
secondarily, we focus on tail recursions because almost all of the
implicit complexity literature has focused on primitive recursions.

3.2 ATR1 syntax, types, and typing

Syntax ATR1 (for affine tail recursion) has the same expressions
asPCF with two changes:fix is replaced withcrec as discussed
above and the only variables allowed are those of orders 0 and 1.

Types The ATR1 types consist oflabeled base types(T0 from
Figure 6) and the order 1 and 2 simple types over these base types.
We first consider labels (L from Figure 6).

LABELS. Labels are strings of alternating�’s and2’s in which the
rightmost symbol of a nonempty label is always�. A labelak . . . a0

can be thought of as describing program-oracle interactions: each
symbol ai represents an action (2 = an oracle action,� = a
program action) with the ordering in time beinga0 throughak.
Terminology:ε = the empty label,L ≤ L′ means labelL is a
suffix of labelL′, andL∨L′ is the≤-maximum ofL andL′. Also
let succ(L) = the successor ofL in the≤-ordering,depth(L) =
the number of2’s in L, and, for eachd ∈ ω, 2d = (2�)d and
�d = �(2�)d. Note:depth(2d) = depth(�d) = d.

LABELED BASE TYPES. The ATR1 base types are all of the
form NL, whereL is a label. We subtype-order these types by:
NL ≤: NL′ ⇐⇒ L ≤ L′, and thus have the linear ordering:

7 Clocking the fixed point process is a strong restriction. However, there
are results ([25, Chapter 4]) that suggest that clocking, whether explicit
or implicit, is needed to produce programs for which one can effectively
determine explicit run-time bounds.
8 Were two uses allowed, the recurrences would be of the formT (m,~n) ≤
2 · T (m− 1, ~n) + q(~n) and suchT ’s can grow exponentially inm.

E : : = . . . | (crec K (λrV . E)) L : : = (2�)∗ | �(2�)∗

T0 : : = NL T : : = the order 0, 1, and 2 simple types overT0

Figure 6. ATR1 syntax

Zero-I:
Γ;∆ ` ε: Nε

Const-I:
Γ;∆ ` K: N�

Aff-Id-I:
Γ; v: γ ` v: γ

Int-Id-I:
Γ, v: σ;∆ ` v: σ

op-I:
Γ;∆ ` E: N�d

Γ;∆ ` (op E): N�d

Shift:
Γ;∆ ` E: σ

Γ;∆ ` E: τ
(σ ∝ τ) Subsumption:

Γ;∆ ` E: σ

Γ;∆ ` E: τ
(σ ≤: τ)

down-I:
Γ;∆0 ` E0: NL0 Γ;∆1 ` E1: NL1

Γ;∆0, ∆1 ` (down E0 E1): NL1

→-I:
Γ, v: σ;∆ ` E: τ

Γ;∆ ` (λv . E): σ → τ
→-E:

Γ;∆ ` E0: σ → τ Γ; ` E1: σ

Γ;∆ ` (E0 E1): τ

if-I:
Γ; ` E0: NL Γ;∆1 ` E1: NL′ Γ;∆2 ` E2: NL′

Γ;∆1 ∪∆2 ` (if E0 then E1 else E2): NL′

crec–I:
` K: N� Γ; f : γ ` E: γ

Γ; ` (crec K (λrf . E)) : γ

`
γ ∈ R andTailPos(f, E)

´
where:

R def
=

n
(N2d ,b2, . . . ,bk)→ b

if bi ≤: N2d , then
bi is also oracular

o
.

TailPos(f, E)
def
=

h
Each occurrence off in E
is as the head of a tail call

i
.

Figure 7. ATR1 typing rules

reverse: Nε → N� = // reversea1 . . . ak = ak . . . a1.
λw . letrec f : Nε → N� → N� =

λb, x, r . if (t0 x) then f b (d x) (c0 r)
else if (t1 x) then f b (d x) (c1 r)
else r

in f w w

prn: (N� → N� → N�)→ Nε → N� = // prn e y = (See (1).)
λe, y . letrec f : Nε → N� → N� → N� → N� =

λb, x, z, r .
if (t0 x) then f b (d x) (c0 z) (e (c0 z) r)
else if (t1 x) then f b (d x) (c1 z) (e (c1 z) r)
else r

in f y (reversey) ε (e ε ε)

cat: Nε → N� → N� = // cat w x =w⊕x.
λw, x . let f : N� → N� → N� =

λy, z . if (t0 y) then (c0 z)
else if (t1 y) then (c1 z)
else x

in prn f w

// fcat f a1 . . . ak = (f a1 . . . ak)⊕(f a2 . . . ak)⊕ · · ·⊕(f ε).
fcat: (N� → N2�)→ Nε → N�2� =

λf, x . let e: N� → N�2� → N�2� = λy, r . (cat (f y) r)
in prn e x

findk: (N� → N2�)→ N� → N� = // findk f x = (See (5).)
λf, x . letrec h: N2� → N� → N� =

// Invariant: k ≤ len(m) and|m| ≤ |f |(|x|)
λm, k . if k == x then k

else if k == (len m) then k
else h (max(f (k + 1)) m) (k + 1)

in h (f ε) ε

where the above uses the syntactic sugar:

(let x = D in E)
def
≡ E[x← D].

(letrec f = D in E)
def
≡ E[f ← (crec 0 (λrf . D))]

Figure 8. ATR1 versions ofreverse, prn, cat, fcat, andfindk

POPL’06 4 2006/1/7

Nε ≤: N� ≤: N2� ≤: N�2� ≤: · · · , or equivalently,N20 ≤:
N�0 ≤: N21 ≤: N�1 ≤: · · · . Definedepth(NL) = depth(L),
side(N2d) = 2, andside(N�d) = �. N2d is the depth-d-normal
type discussed above andN�d is the depth-d-safe type.

THE ATR1 ARROW TYPES. These are just the order 1 and 2
simple types over theNL’s. We extend≤: to the arrow types via:

σ1 ≤: σ0 & τ0 ≤: τ1 ⇐⇒ σ0 → τ0 ≤: σ1 → τ1. (4)

Terminology:We writeτ :≥ σ for σ ≤: τ andσ �: τ for [σ ≤: τ
andσ 6= τ]. Let shape(σ) = the simple type overN resulting from
erasing all the labels. Thetail of a type is given by:

tail(NL) = NL. tail(σ → τ) = tail(τ).

Let depth(σ) = depth(tail(σ)) andside(σ) = side(tail(σ)). When
side(σ) = 2, we callσ anoracular type, and whenside(σ) = �
we callσ acomputationaltype.

DEFINITION 1 (Predicative, impredicative, flat, and strict types).
An ATR1 type γ is predicativewhenγ is a base type or elseγ
= σ → τ with τ predicative andtail(σ) ≤: tail(τ). A type
is impredicativewhen it fails to be predicative. AnATR1 type
(σ1, . . . , σk)→ NL is flat whentail(σi) = NL for somei. A type
is strict when it fails to be flat.

Examples:Nε → N� is predicative whereasN� → Nε is
impredicative, and both are strict. BothN� → N� and N� →
N2� → N� are flat, but the first is predicative and the second
impredicative. Recursive definitions tend to involve flat types.

Example 11 below illustrates that values of both impredicative
and flat types require special semantic restrictions. These restric-
tions will be detailed in§4.3 and§4.4 below. Here we give a quick
sketch of these restrictions as they figure in definition of∝, the
shifts-torelation, used in the typing rules.For each impredicative
type(~σ)→ NL: if f : (~σ)→ NL, then the value of|f(~x)| is essen-
tially independent of the values of the|xi|’s with tail(σi) :
 NL.
For each flat type(~σ) → NL (that for simplicity here we further
restrict to be a type-level-1 computational type): if` f : (~σ)→ NL,
then|f(~x)| ≤ p+

W
{ |xi| tail(σi) = NL }, wherep is a second-

order polynomial over elements of{ |xi| tail(σi) �: NL }.

Typing rules TheATR1-typing rules are given in Figure 7. The
rulesZero-I, Const-I, Int-Id-I, Subsumption, op-I, →-I, and→-E
are fairly standard (with one subtlety in→-E discussed below). The
if-I anddown-I rules are designed to allow definitions for functions
like theF2 example of§3.1.9 The remaining three rulesShift (that
coerces types) andAff-Id-I andcrec-I (that relate to recursions and
the split type contexts) require some discussion.

SHIFT. TheShift rule covariantly coerces the type of a term to be
deeper. For types of shapeN→ N, the core idea in the definition of
the shifts-to relation (∝) is: (NL1 → NL0) ∝ (NL′1

→ NL′0
) when

depth(NL′0
) = depth(NL0) +

`
depth(NL′1

) − depth(NL1)
´
. The

motivation for this is that ifp andq are second-order polynomials
of depthsdp and dq, respectively, andx is a base-type variable
appearing inp that is treated as representing a depth-dx value (with
dx ≤ dq), thenp[x← q] is of depth≤ dp+(dq−dx). The full story
for ∝ has to account of the sides (2 and�) of component types,
impredicative and flat types, and more. In the interest of space, we
omit the fussy details of the definition of∝ in this version of the

9 E.g.: SupposeΓ = f : N�0 → N21, x: N�0, y: N�0, g: N�1 → N�1 →
N�1 and thatg denotesλx, y ∈ N . (x mod (y + 1)). Then Γ; `
g(f(x), y): N�1 , but Γ; ` down(g(f(x), y), y): N�0 and this term is
equivalent tof(x) mod (y + 1) since(x mod (y + 1)) ≤ y. From this
point is it clear how one can construct a type(N�0 → N21) → N�0 →
N�0 definition ofF2. The mild bit of imprediticativity inif-I anddown-I
gets around much of the usual irritations of ramified type systems.

paper. Here is a key example of how the Shift rule is used. Consider
the problem:Γ; ` f(f(x)): ?, whereΓ = f :N� → N2�, x:N�.
Using→-E andSubsumption, we deriveΓ; ` f(x):N�2�. Using
Shift we deriveΓ; ` f :N�2� → N2�2�. Using→-E again we
obtainΓ; ` f(f(x)): N2�2� as desired.

AFFINELY RESTRICTED VARIABLES ANDcrec. EachATR1 type
judgment is of the formΓ;∆ ` E: γ where each type context
is separated into two parts: aintuitionistic zone(Γ) and anaffine
zone(∆). Γ and∆ are simply finite maps (with disjoint preimages)
from variables toATR1-types. By convention, “” denotes an empty
zone. Also by convention we shall restrict our attention toATR1

type judgments in which each affine zone consists of at most one
type assignment. In reading the rules of Figure 7, think of a variable
in an affine zone as destined to be the recursor variable in some
crec expression. An intuitionistic zone assigns types to each of the
mundane variables.Terminology:A variablef is said to beaffinely
restrictedin Γ;∆ ` E:σ whenf is assigned a type by∆ or else is
λr-abstracted over inE.

The split type contexts is adapted from Barber and Plotkin’s
DILL [1]. The key appropriation from DILL is→-E; it forbids free
occurrences of affinely restricted variables in the operand position
of any intuitionistic application. This precludes the typing ofcrec-
expressions containing subterms such asλrf . (λg . (g (g ε)) f)
≡β λrf . (f (f ε)) wheref is used multiple times.

The crec-I rule forbids any free occurrence of an affinely re-
stricted variable; if such an occurrence was allowed, it could be
used any number of times via thecrec-recursion. Thecrec-I rule re-
quires that the recursor variable have a type inR (as defined in Fig-
ure 7). Whenγ = (N2d ,b2, . . . ,bk) → b ∈ R, it turns out that
R’s restrictions limit a type-γ crec-expression to at mostp-many
recursions, wherep is some fixed, depth-d second-order polyno-
mial. ExcludingN�, . . . ,N�d−1 in γ forbids depth0, . . . , d−1 ana-
logues of safe-values from figuring in the recursion, consequently,
the recursion cannot accumulate information that could unbound-
edly changep’s value.

SCHOLIUM 2. ATR1 has no explicit(-types.Implicitly, a subex-
pression(λrf .E) is of typeγ (γ andcrec-I plays that roles
of both(-I and(-E. ATR1’s very restricted use of affinity per-
mits this(-bypass. Dropping theTailPos(f,E) side condition in
crec-I fails to add many interesting typable programs because of
the empty affine zone restriction in→-E. If ATR1 had explicit(-
types, then dropping theTailPos(f,E) becomes more interesting.

Some examples Figure 8 contains five sample programs.10 For
the typing offcat, cat’s type is shifted toN21 → N�1 → N�1 and
prn’s type is shifted to(N�0 → N�1 → N�1)→ N20 → N�1 . The
final program computes

λf ∈ (N→ N), x ∈ N . (5)(
(µk < x)

ˆ
k = maxi≤k len(f(i))

˜
, if such ak exists;

x, otherwise;

where len(z) = the dyadic representation ofz’s length. This is a
surprising and subtle example of a BFF due to Kapron [14] and
was a key example that lead to the Kapron-Cook Theorem [15]. In
findk, we assume we have: a type-(N21 → N21 → N21) definition
of (x, y) 7→ [1, if x = y; ε, otherwise] , a type-(N21 → N21)
definition of len, a type-(N21 → N21 → N21) definition ofmax,
and a type-(N�0 → N�0) definition ofx 7→ x + 1. It is an easy
exercise to fill in these details. A much more challenging exercise
is to define (5) viaprn’s.

10For the sake of readability, we use thelet and letrec constructs as
syntactic sugar, where in this paper(let x = D in E) ≡ E[x ← D]
and(letrec f = D in E) ≡ E[f ← (crec 0 (λrf . D))].

POPL’06 5 2006/1/7

Zero-I:
Σ ` 0: Tε

Const-I:
Σ ` k: T�

Subsumption:
Σ ` S: σ

Σ ` S: τ
(σ ≤: τ) Shift:

Σ ` S: σ

Σ ` S: τ
(σ ∝ τ)

∨-I:
{Σi ` pi: T�d }i=1,2

Σ0 ∪ Σ1 ` (∨ S0 S1): TL

+-I:
{Σi ` pi: T�d }i=1,2

Σ1 ∪ Σ2 ` p1 + p2: T�d

∗-I:
{Σi ` pi: T�d }i=1,2

Σ1 ∪ Σ2 ` p1 ∗ p2: T�d

Figure 9. The additional size typing rules

Semantics The CEK machine forPCF also provides an opera-
tional semantics ofATR1. For a denotational semantics weprovi-
sionally take the obvious modification ofPCF’s V-semantics (in-
troduced in§2). We discuss some serious troubles with this seman-
tics in §4.2.

Some syntactic propertiesThe number ofusesof variable v
in expressionE (written: uses(v,E)) is defined similarly to the
count of free occurrences ofv in E except thatuses(v, (if E0

then E1 else E2)) = uses(v,E0) + uses(v,E1) ∨ uses(v,E2) and
uses(v, (crec k (λrf .E0))) = unboundedif v occurs free in the
crec-expression.

LEMMA 3 (One-use).For Γ; f : γ ` E: γ and forΓ; ` (crec k
(λrf .E)): γ, we have uses(f,E) ≤ 1.

LEMMA 4 (Subject reduction).If Γ;∆ ` E: γ andE βη-reduces
toE′, thenΓ;∆ ` E′: γ.

LEMMA 5. Γ;∆ ` λ~x .E: (~σ)→ NL ⇐⇒ Γ, ~x:~σ;∆ ` E:NL.

Lemma 5 acts as a reality check on∝’s definition.

4. Polynomial-size boundedness
The goal of this section is to establish that everyATR1 expression
has a second-order polynomial size bound, where the form of the
size bound is determined by the type of theATR1 expression (The-
orem 24). We show in§4.2 that if this size bound is to be true at all,
thenV, the näıve denotational semantics forATR1 inherited from
PCF, must be trimmed.11 This trimming is done in§4.3 for impred-
icative types and in§4.4 for flat types. The result of this trimming is
Vwt, thewell-tempered semanticsof Definition 20, under which we
can prove the polynomial-size boundedness theorem in§4.5. We do
not have the evidence to claim thatVwt is in any way “canonical.”
However, we strongly suspect thatany ramified type system that
characterizes the type-level 2 basic feasible functionals will have
to include restrictions analogous to those forVwt.

4.1 Size bounds

The size types To work with size bounds, we introduce thesize
typesand a typing of second-order polynomials under these types.
The size types parallel the intuitionistic part ofATR1’s type system.

DEFINITION 6.
(a) For eachATR1 typeσ, let |σ| = σ[N → T]. (E.g.,|Nε →

N�| = Tε → T�.) These|σ|’s are thesize types. All the ATR1-
types terminology and operations (e.g.,shape, tail,≤:,∝, etc.) are
defined analogously for size types.

11As noted in footnote 4, this sort of tirmming is not new. Arguably, the
simpliest denotational semantics for the simply-typedλ-calculus over base
type N is H, the full set-theoretic hierarchy over{0,1 }∗. However, for
PCF (≈ the simply-typedλ-calculus + a fixed-point combinator),H must
be trimmed in order for fixed-points to have a definite meaning.

E1: Nε → N� = // Assumeg1: N� → Nε.
λw . let h1: N� → N� → N� =

λx, y . if x 6= ε then (dup (g1 y) (g1 y)) else w
in prn h1 w

E2: Nε → N� = // Assumeg2: N� → N�.
λw . let h2: N� → N� → N� =

λx, y . if x 6= ε then (g2 y) else w
in prn h2 w

Figure 10. Two problematic programs

(b) The typing rules for the second-order polynomials under the
size types consist ofId-I,→-I, and→-E from Figure 2 and the rules
of Figure 9.

WeprovisionallytakeL[[σ]] = L[[shape(σ)]] andL[[Σ ` p:σ]] =
as before. Later a pruned version of theL-semantics will end up as
our intended semantics for the second-order polynomials to parallel
our pruning of theV-semantics forATR1.

We note a few basic properties of the second-order polynomials
under the size types. In particular, Lemma 8 connects the depth of
a second-order polynomialp and the depths of the types assignable
to p. Terminology:Inductively define0γ by: 0TL

= 0 and0 σ→τ =
λx . 0τ . We often write0γ for L[[` 0γ : γ]]ρ.

LEMMA 7 (Subject Reduction).SupposeΣ ` p:σ and p βη-
reduces top′. ThenΣ ` p′:σ.

LEMMA 8 (Label Soundness).SupposeΣ ` p:σ has a derivation
in which the only types assigned by contexts are from{Nε } ∪
{ (Nk

�)→ N2� k > 1 }. Then depth(p) ≤ depth(σ).

LEMMA 9. 0γ is the≤γ-least element ofL[[γ]].

The following definition formalizes what it means for anATR1

expression to be polynomially size-bounded.N.B. If v is anATR1

variable, we treat|v| as a size-expression variable.

DEFINITION 10. Supposeσ is aATR1 type,Γ;∆ is aATR1 type
context, andρ ∈ V[[Γ;∆]].

(a) |Γ;∆| def
= { |v| 7→ |σ| (Γ;∆)(v) = σ }.

(b) Define|ρ| ∈ L[[|Γ;∆|]] by |ρ|(|v|) = |ρ(v)|.12

(c) SupposeΓ;∆ ` E:σ and |Γ;∆| ` p: |σ|. We say thatp
bounds the size ofE (or, p is a size-bound forE) with respect to
Γ;∆ when for allρ ∈ V[[Γ;∆]], |V[[E]] ρ| ≤ L[[p]] |ρ|.

4.2 Semantic troubles

A näıve (andfalse!!) statement of polynomial-size boundedness for
ATR1 would be:For eachΓ;∆ ` E:σ, there is a second-order
polynomialpE that bounds the size ofE with respect toΓ;∆. The
following illustrates the problems here.

EXAMPLE 11. LetE1 andE2 be as in Figure 10, letprn be as in
Figure 8, and letdupbe anATR1-program such that(dupw x) =
|w|-manyx’s concatenated together; so|dupw x| = |w| ∗ |x|.

(a) SupposeΓ1 = g1:N� → Nε and ρ1 = { g1 7→ λz ∈
N . z }. Then|V[[E1]] ρ1| = λn ∈ ω . n2n

. Note|ρ1(g1)| = λn ∈
ω . n is a polynomial function. The problem is thatρ1(g1) =
λx ∈ N . x subverts the intent of the type-system by allowing an
unrestricted flow of information about “safe” values into “normal”
values.

(b) SupposeΓ2 = g2:N� → N� and ρ2 = { g2 7→ λz ∈
N . z⊕ z }. Then|V[[E2]] ρ2| = λn ∈ ω . n · 2n. Note|ρ2(g2)| =

12N.B. The | · | in “ |v|” is syntactic, whereas the| · | in “ |ρ|” and “|ρ(v)|”
are semantic.

POPL’06 6 2006/1/7

λn ∈ ω . 2n is a polynomial function. The problem is thatρ2(g2) =
λy ∈ N . y⊕ y subverts the “poly-max restriction” on the sizes of
“safe” values discussed in§4.4.

The problem of Example 11(a) is addressed in§4.3 by pruning
theL- andV-semantics to restrict impredicative-type values. The
problem of Example 11(b) is addressed in§4.4 by further pruning
to restrict flat-type values.

4.3 Impredicative types and nearly well-foundedness

Failing to restrict impredicative-type values leads to problems like
that of Example 11(a). These problems can be avoided by requiring
that each such value have a length that isnearly well-founded.

DEFINITION 12. An` ∈ L[[γ]] is γ-well-foundedwhenγ = TL or
elseγ = (σ1, . . . , σk)→ TL and, for eachi with tail(σi) :
 TL,
` has no dependence on itsi-th argument. Aǹ is nearly γ-well-
foundedwhen there is aγ-well-founded̀ ′ such that̀ ≤ `′.

Why nearlywell-founded? The natural sources ofATR1-terms
with impredicative types are theif-then-else anddown constructs.
Let c = λx, y, z . (if x then y else z) andd = λx, y . (downx y),
where` c: (NL,N

2
L′) → NL′ , ` d: (NL,NL′) → NL′ , and

L > L′. Thus |c| ∈ L[[|(NL,N
2
L′) → NL′ |]] and |d| ∈

L[[|(NL,NL′) → NL′ |]]. Neither |c| nor |d| is well-founded
since |c| = λk,m, n . [m, if k = 0; n, otherwise] and |d| =
λk,m . min(k,m). However, both|c| and |d| are nearly well-
founded as|c| ≤ λk,m, n . (m ∨ n) and|d| ≤ λk,m .m.

LEMMA 13. SupposeΣ ` p:σ, ρ ∈ L[[Σ]], andρ(x) is nearly
Σ(x)-well-founded for eachx ∈ preimage(Σ). ThenL[[p]] ρ is
nearlyσ-well-founded.

Lemma 13 indicates that a semantics for the second-order poly-
nomials based on nearly well-foundedness will be well defined.
Terminology:The restriction of f ∈ (X1, . . . , Xk) → Y to
(X ′

1, . . . , X
′
k) → Y (whereX ′

1 ⊆ X1, . . . , X
′
k ⊆ Xk) is λx1 ∈

X ′
1, . . . , xk ∈ X ′

k . f(x1, . . . , xk).

DEFINITION 14 (The nearly well-founded semantics).
(a) Inductively defineLnwf [[γ]] by: Lnwf [[TL]] = ω. For γ =

(σ1, . . . , σk)→ TL, Lnwf [[γ]] is the restriction to(Lnwf [[σ1]], . . . ,
Lnwf [[σk]])→ Lnwf [[TL]] of theγ-nearly well-founded elements of
L[[γ]]. DefineLnwf [[Σ]] andLnwf [[Σ ` p: γ]] in the obvious way.

(b) Inductively defineVnwf [[γ]] by: Vnwf [[NL]] = N. For γ =
(σ1, . . . , σk)→ NL, Vnwf [[γ]] is the restriction to(Vnwf [[σ1]], . . . ,
Vnwf [[σk]]) → Vnwf [[NL]] of thef ∈ V[[γ]] with |f | ∈ Lnwf [[|γ|]].
DefineVnwf [[Γ;∆]] andVnwf [[Γ;∆ ` E: γ]] in the obvious way.

(c)p =nwf p
′ meansLnwf [[Σ ` p: γ]] |ρ| = Lnwf [[Σ ` p′: γ]] |ρ|

for all |ρ| ∈ Lnwf [[Σ]]. Define≤nwf ,≥nwf , . . . analogously.

There is still a problem with impredicative-type values. In giv-
ing closed form upper bounds on recursions, we often need a well-
founded upper bound on the value of a variable of an impredicative
type. There is no effective way to obtain such bound. To deal with
this we introduce a combinatorp such that(p p) stands for an ar-
bitrarily chosen well-founded upper bound onp.13 In most uses,
(p p)-expressions are destined to be substituted for by concrete,
well-founded terms. As this version of the paper omits the proofs
in whichp plays a role, we omit formally definingp here.

The following terminology is useful in working with terms
involving impredicative types.

DEFINITION 15 (Shadowing). SupposeΣ ` p:σ. An occurrence
of a subtermr of p is shadowedwhen it properly appears within an-
other shadowed occurrence or else it has an enclosing subexpres-

13This is analogous to the situation where one knowsf ∈ O(n) and picks
an arbitrarya ∈ ω such thatf(n) ≤ a · (n + 1) for all n ∈ ω.

sion (t r) where thet is of an impredicative typeσ → τ with
tail(σ) :
 tail(τ). A variablev is ashadowed free variablefor s
when all ofv’s free occurrences inp are shadowed; otherwisev is
anunshadowed free variablefor p.

4.4 Flat types and well-temperedness

Safe upper bounds The restriction to theVnwf-semantics solves
the problem with impredicative types, butnot the problem with flat
types. Below we work towards addressing the flat-types problem by
noting thatATR1 expressions that do not involve flat-type variables
have upper bounds that aresafe(Definition 16). The next section
shows that the problem with flat-types can be solved by requiring
each flat-type length to have a safe upper bound.

Safe second-order polynomial bounds are a generalization of
thepoly-maxbounds of Bellantoni and Cook [2]. In their formalism
if one has a type-level 1 functionf defined over normal variables
x1, . . . , xj and safe variablesy1, . . . , yk, then for all values of
x1, . . . , yk, we have

|f(~x, ~y)| ≤ p+ max(|y1|, . . . , |yk|) (6)

wherep is polynomial over|x1|, . . . , |xj |. Such poly-max bounds
play a key role in the complexity-theoretic aspects of systems
inspired by Bellantoni-Cook’s formalism. Definition 16 lifts these
poly-max bounds to type-level 2.Convention:In writing p =
(v s1 . . . sk), we meanv is a variable and, whenk = 0, p = v.

DEFINITION 16 (Strictness, chariness, and safety). Supposeb, γ,
σ, andτ range over size types and thatΣ ` p: γ.

(a) We say thatp isb-strict with respect toΣ whentail(γ) ≤: b
and every unshadowed free-variable occurrence inp has a type with
tail �: b.

(b) We say thatp is b-charywith respect toΣ whenγ = b and
either (i) p = (v q1 · · · qk) with k ≥ 0, q1, . . . , qk b-strict, and
b is the≤:-minimal type assignable top with respect toΣ, or (ii)
p = p1 ∨ · · · ∨ pm, where eachpi satisfies (i). (Note that0 sneaks
in asb-chary; takem = 0 in (ii).)

(c) A p is γ-safewith respect toΣ if and only if Σ ` s: γ and:
(i) if γ = T2d , thenp =nwf q ∨ r whereq is γ-strict andr is
γ-chary; (ii) if γ = T�d , thenp =nwf q + r whereq is aγ-strict
polynomial andr is γ-charyr; and (iii) if γ = σ → τ , then(p v)
is τ -safe with respect toΣ, v:σ.

Example:In the right-hand side of (6), thep is equivalent to
a T�-strict term,

Wk
j=1 |yj | is equivalent to aT�-chary term, and,

hence, the entire right-hand side is equivalent to aT�-safe term.
Terminology:We say that a type judgment isflat-type variable

freewhen no variable is explicitly or implicitly assigned a flat type
by the judgment. We note:

LEMMA 17. If Γ;∆ ` E:σ is flat-type variable free, then there is
a |γ|-safepE with respect to|Γ;∆| such thatpE bounds the size of
E with respect toΓ;∆.

So if Γ;∆ ` E:σ is flat-type variable free, but nonethelessσ
is a flat type, then by Lemma 17E has a|σ|-safe size boundpE .
(Moreover, thispE turns out to be flat-type variable free.)

Well-temperedness To avoid problems like the one of Exam-
ple 11(b), flat-type values need to be restricted. Lemma 17 tells us
that every flat-type variable freeATR1 term has a safe upper bound.
This suggests that the solution to the flat-type problem is to require
all flat-type values to have safe size bounds. We call this property
well-temperedness, meaning: all things are in the right proportions.

DEFINITION 18. An ` ∈ Lnwf [[γ]] is γ-well-temperedwhenγ is
strict or else whenγ is flat and there is a closed,γ-safep with
` ≤ Lnwf [[p]].

POPL’06 7 2006/1/7

LEMMA 19. SupposeΣ ` p:σ, ρ ∈ Lnwf [[Σ]], andρ(x) is Σ(x)-
well-tempered for eachx ∈ preimage(Σ). ThenLnwf [[p]] ρ is σ-
well-tempered.

Lemma 19 indicates that a semantics for the size expressions
based on well-temperedness will be well-defined.

DEFINITION 20 (The well-tempered semantics).
(a) Inductively defineLwt[[σ]] by: Lwt[[TL]] = ω and, forσ =

(σ1, . . . , σk) → TL, Lwt[[σ]] is the restriction to(Lwt[[σ1]], . . . ,
Lwt[[σk]]) → Lwt[[TL]] of the σ-well-tempered elements of
Lnwf [[σ]]. Lwt[[Σ]] andLwt[[Σ ` p:σ]] are defined in the obvious
way.

(b) Inductively defineVwt[[σ]] by: Vwt[[NL]] = N and, forσ =
(σ1, . . . , σk) → NL, Vwt[[σ]] is the restriction to(Vwt[[σ1]], . . . ,
Vwt[[σk]]) → Vwt[[NL]] of thef ∈ Vnwf [[σ]] with |f | ∈ Lwt[[|σ|]].
Vwt[[Γ;∆]] andVwt[[Γ;∆ ` E:σ]] are defined in the obvious way.

(c) We writep =wt p
′ whenLwt[[Σ ` p:σ]] |ρ| = Lwt[[Σ `

p′:σ]] |ρ| for all |ρ| ∈ Lwt[[Σ]]. We define≤wt, ≥wt, . . . analo-
gously.

There is still a problem with flat-type values. To give closed
form upper bounds on recursions, we sometimes need to decom-
pose a flat-type expression into its strict and chary parts. To help
with this we introduce two new combinators,q andr, which are
roughly analogous to thep combinator of§4.3. Since we do not
need to useq andr explicitly in this version of the paper, we omit
their definitions and development. However, thanks in part toq and
r we have the following second-order polynomial decomposition.

LEMMA 21 (Safe polynomial decomposition).SupposeΣ ` p:b,
where{ y1, . . . , yk } = { v Σ(v) = b }. Then we can effectively
find ab-strict q and ab-charyr such thatp ≤wt q � r ∨

Wk
i=1 y,

where� = ∨, if b is oracular, and� = +, if b is computational.
Moreover,r can be chosen to have no free occurrence of anyyi.

We state another key property of safe terms. Note that the≤wt

in the conclusioncannot, in general, be improved to=wt.

LEMMA 22 (Safe polynomial substitution).Fix Σ. Given aγ-safe
polynomial p0, a σ-safe polynomialp1, and a variablev with
Σ(v) = σ, we can effectively find aγ-safe polynomialp′0 such
thatp0[v ← p1] ≤wt p

′
0.

4.5 The polynomial size boundedness theorem

We now have a reasonable semantics forATR1 and the tools to
establish asafe polynomial boundednessresult forATR1, where:

DEFINITION 23. SupposeΓ;∆ ` E:σ. We say thatp is a|σ|-safe
second-order polynomial size boundfor E with respect toΓ;∆
whenp is a |σ|-safe polynomial with respect to|Γ;∆| such that,
for all ρ ∈ Vwt[[Γ;∆]], |Vwt[[E]] ρ| ≤ Lwt[[s]] |ρ|.

THEOREM 24 (Polynomial Boundedness).Given Γ;∆ ` E: γ,
we can effectively findpE , a |γ|-safe second-order size-bound for
E with respect toΓ;∆.

This theorem’s proof is a structural induction on the derivation
of Γ;∆ ` E: γ. Handling each of theATR1 constructs, other that
crec, is reasonably straightforward. Handlingcrec is more work,
but the argument is clean and fairly direct.

5. Polynomial-time boundedness
5.1 Time bounds

The next major goal is to show that everyATR1 expression is
CEK-computable within a second-order polynomial time bound
(Theorem 44). The first step towards this goal is to set up a formal

framework for working with time bounds. We start by noting the
obvious: Run time is not an extensional property of programs.
That is,Vwt-equivalent expressions can have quite distinct run time
properties. We thus introduceT , a new semantics forATR1 that
provides upper bounds on the time complexity of expressions.

The setting for time complexities
CEK costs.As previously stated, our cost model forATR1

computations is the CEK cost model.
Worst-case bounds.T [[E]] will provide an upper bound on the

CEK cost of evaluatingE, but not necessarily a tight upper bound.
No free lunch.All evaluations have positive costs. This even ap-

plies to “immediately evaluating” expressions (e.g.,λ-expressions),
since checking if something “immediate-evaluates” counts as a
computation with costs.

Inputs as oracles.We treat each type-level 1 inputf as an
oracle. In a time-complexity context this means that anf is thought
of answering any query in one time step, or equivalently, any
computation involved in determining the reply to a query happens
unobserved off-stage. Thus the cost of a query tof involves only
(i) the time to write down a query,x, and (ii) the time to read the
reply, f(x). The times (i) and (ii) are roughly|x| and |f |(|x|),
respectively. Thus our time bounds will ultimately be expressed in
terms of thelengthsof the values of free and input variables.

Currying and time complexity In common usage, “the time com-
plexity ofE” can mean one of two things. First, whenE is of base
type, the phrase usually refers to the time required to compute the
value ofE. We might think of this astime past—the time it took to
arrive atE’s value. Second, whenE is of an arrow type, the phrase
usually refers to the function that, given the sizes of arguments, re-
turns the time the procedure described byE will take when run on
arguments of the specified sizes. We might think of this astime in
possible futuresin whichE’s value is applied. An expression can
have both a past and futures of interest. Consider(E0 E1) where
E0 is of typeNε → Nε → N� andE1 is of typeNε. Then(E0 E1)
has a time complexity in the first sense as it took time to evaluate
the expression, and, since(E0 E1) is of typeNε → N�, it also has
a time complexity in the second sense. Now consider justE0 itself.
It too can have a nontrivial time complexity in the first sense and
the potential/futures part ofE0’s time complexity must account for
the multiple senses of time complexity just attributed to(E0 E1).
Type-level-2 expressions add further twists to the story. Our treat-
ment of time complexity takes into account these extended senses.

Costs and potentials In the following the time complexity of an
expressionE always has two components: acostand apotential.
A cost is always a positive (tally) integer and is intended to be an
upper bound on the time it takes time to evaluateE. The form of
a potential depends on the type ofE. SupposeE is of a base (i.e.,
NL) type. ThenE’s potential is intended to be an upper bound on
the length of its value, an element ofω. The length ofE’s value
describes the potential ofE in the sense that whenE’s value is
used, its length is the only facet of the value that plays a role in
determining time complexities. Now supposeE is of type, say,
Nε → N�. ThenE’s potential will be anfE ∈ (ω → ω × ω)
that maps ap ∈ ω (the length/potential of the value of an argument
of E) to a (cr, pr) ∈ ω × ω wherecr is the cost of applying the
value ofE to something of lengthp andpr is the length/potential
of the result. Note that(cr, pr) is a time complexity for something
of base type. Generalizing from this, our motto will be:

The potential of a type-(σ→ τ) thing is a map from poten-
tials of type-σ things to time complexities of type-τ things.

Our first task in making good on this motto is to situate time
complexities in a suitable semantic model.

POPL’06 8 2006/1/7

A model for time complexities Thetime typesare the result of the

following translations ofATR1 types:‖σ‖ def
= T× 〈〈σ〉〉, 〈〈NL〉〉

def
=

TL, and〈〈σ → τ〉〉 def
= 〈〈σ〉〉 → ‖τ‖. So,‖NL1 → NL2 → NL0‖ =

T × (TL1 → T × (TL2 → T × TL0)) and‖(NL1 → NL2) →
NL0‖ = T×((TL1 → T×TL2)→ T×TL0). The time types are
thus a subset of the simple product types over{T, Tε, T�, T2�,
. . . }. The intent is thatT is the type of costs, theTL’s help describe
lengths,‖γ‖ is the type of complexity bounds of type-γ objects, and
〈〈γ〉〉 is the type of potentials of type-γ objects. (Note:〈〈σ → τ〉〉’s
definition parallels the motto.)

Our proof of polynomial time boundedness forATR1 (Theo-
rem 44) needs to intertwine the size estimates implicit in poten-
tials and the size bounds of Theorem 24. The semantics for the
time types thus needs to be an extension of theLwt-semantics
(Definition 20(a)). To define this extension we use a combina-
tor, Pot, defined in Definition 35 below. For the moment it is
enough to know that, for eachATR1-typeσ andp ∈ Lwt[[〈〈σ〉〉]],
Pot(p) ∈ Lwt[[|σ|]] is a canonical projection ofp to a type-|σ| size
bound. Following the definition ofPot, Lemma 36 notes that all of
the notions introduced between here and there mesh properly.

DEFINITION 25 (Lwt extended to the time types). Supposeσ and

τ areATR1 types. ThenLwt[[‖σ‖]]
def
= ω×Lwt[[〈〈σ〉〉]],Lwt[[〈〈NL〉〉]]

def
= ω, and Lwt[[〈〈σ → τ〉〉]] def

= the set of allf , a monotone
Kleene-Kreisel function fromLwt[[〈〈σ〉〉]] to Lwt[[‖τ‖]], such that:
(i) Pot(f) ∈ Lwf [[|σ → τ |]] and (ii) Pot(f(p1)) = Pot(f(p2))
wheneverPot(p1) = Pot(p2).

Condition (i) above restrictsLwt[[〈〈σ → τ〉〉]] so that the pro-
jection Pot acts as advertised. Condition (ii) restricts eachf ∈
Lwt[[〈〈σ → τ〉〉]] so that the size information inf(p) depends only
on the size information inp.

We can now define the time-complexity and potential interpre-
tations of theATR1 types. (P[[·]] is a notational convenience.)

DEFINITION 26. Supposeσ is an ATR1-type. ThenT [[σ]]
def
=

Lwt[[‖σ‖]] andP[[σ]]
def
= Lwt[[〈〈σ〉〉]].

The T -interpretation of constants and oraclesThe following
two definitions introduce a translation from theVwt model (Def-
inition 20(b)) into theT model. We use this translation to assign
time complexities to inputs: string/numeric constants and oracles.

DEFINITION 27. Let ‖a‖ def
= (1 ∨ |a|, 〈〈a〉〉) and 〈〈a〉〉 def

= |a| for
eacha ∈ Vwt[[NL]].

By Lemma 36(a) below,‖a‖ ∈ T [[NL]]. We view‖a‖ as the
time complexity of the string/numeric constanta. The interpreta-
tion of the cost component of‖a‖ is that cost of evaluating the con-
stanta is the cost of writing downa character by character. (When
a = ε, we still charge1.)

DEFINITION 28. Let‖f‖ def
= (1, 〈〈f〉〉) and〈〈f〉〉 def

= λp ∈ P[[σ]] .
max { ‖(f x)‖ 〈〈x〉〉 ≤ p } for eachf ∈ Vwt[[σ → τ]].

By Lemma 36(a) below,‖f‖ ∈ T [[σ → τ]]. We view‖f‖ as the
time complexity off as an oracle: the only time costs associated
with applyingf are those involved in setting up applications off
and reading off the results. Recall that under call-by-value, aλ-
expression immediately evaluates to itself. The functionf will be
treated analogously to aλ-term. Hence, the cost component of‖f‖
is 1. The definition of〈〈f〉〉 parallels both our informal discussion
of the notion of the potential of a type-level 1 function and the
definition of the length of functions in§2. One can show that when
f is a type-level 2,〈〈f〉〉 is total. (The argument is similar to the
proof of the totality of the type-level 2 notion of length defined by
(3) in §2.) The following unpacks Definition 28.

LEMMA 29. For f ∈ Vwt[[(NL1 , . . . ,NLk) → NL0]], 〈〈f〉〉 = q1
whereqi = λpi ∈ ω . (1, qi+1) (for 1 ≤ i < k) andqk = λpk ∈
ω .

`
1 ∨ |f |(~p), |f |(~p)

´
.

T -Applications

DEFINITION 30.
(a) Supposet0 ∈ T [[σ → τ]] and t1 ∈ T [[σ]], wheret0 =

(c0, p0), t1 = (c1, p1), and(cr, pr) = p0(p1). Thent0 ? t1
def
=

(c0 + c1 + cr + 3, pr).
(b) Supposet0 ∈ T [[(σ1, . . . , σk)→ τ]], t1 ∈ T [[σ1]], . . . , tk ∈

T [[σk]]. Thent0 ? ~t
def
= t0 ? t1 ? · · · ? tk. (The? left associates.)

By Lemma 36(b) below,t0 ? t1 ∈ T [[τ]] whent0 ∈ T [[σ → τ]]
andt1 ∈ T [[σ]]. Supposet0 (resp.,t1) is the time complexity of a
type-(σ → τ) expressionE0 (resp., type-σ expressionE1). Then
t0 ? t1 is intended to be the time complexity of(E0 E1). The cost
component oft0 ? t1 is: (the cost of evaluatingE0) + (the cost of
evaluatingE1) + (the cost of applyingE0’s value toE1’s value)
+ 3, where3 is the CEK-overhead of an application. The potential
component is simply the potential of the result of the application.

T -Environments As a companion toT -application we shall de-
fine an analogue currying inT . Before doing that we need to in-
troduceT -environments. Recall that in a call-by-value language,
variables namevalues[23], i.e., the end result of a (terminating)
evaluation. Thus, a value does not need to be evaluated again, at
least no more than an input value does. Hence, if aT -environment
maps a variable to a type-γ time complexity(c, p), thenc should
be:1 ∨ p, whenγ is a base type, and1, whenγ is an arrow type.

DEFINITION 31. Supposeσ andτ vary overATR1 types andΓ;∆
is anATR1 is type context.

(a)‖Γ;∆‖ def
= { v 7→ ‖σ‖ (Γ;∆)(v) = σ }.

(b) Forp ∈ P[[b]], val(p)
def
= (1 ∨ p, p).

(c) Forp ∈ P[[σ → τ]], val(p)
def
= (1, p).

(d) Tval[[σ]]
def
= { val(p) p ∈ P[[σ]] }.

(e) T [[Γ;∆]] is the set of all finite maps of the form{ v1 7→
t1, . . . , vk 7→ tk }, where{ v1, . . . , vk } = preimage(Γ;∆) and
t1 ∈ Tval[[(Γ;∆)(v1))]], . . . , tk ∈ Tval[[(Γ;∆)(vk))]].

(f) For eachρ ∈ Vwt[[Γ;∆]], define ‖ρ‖ ∈ T [[Γ;∆]] by
‖ρ‖ (v) = ‖ρ(v)‖. Such at‖ρ‖ is called anoracle environment.

We use% as a variable overT [[Γ;∆]]. N.B. Not everyT -envi-
ronment of interest is an oracle environment.

T -currying Here then is our time-complexity analogue to curry-
ing. Recall thatT [[Γ;∆ ` E: τ]] will be (when we get around to
defining it) a function fromT [[Γ;∆]] to T [[τ]].

DEFINITION 32. Suppose thatΓ;∆ is a ATR1 type context with
(Γ;∆)(vi) = σi, for i = 1, . . . , k; that Γ′;∆′ is the result
of removing v1:σ1 from Γ;∆; and thatX is a function from
T [[Γ;∆]] to T [[τ]]. ThenΛ?(v1, X) is the function fromT [[Γ′;∆′]]
to T [[σ1 → τ]] given by:

Λ?(v1, X) %′
def
=

`
1, λp ∈ P[[σ1]] . (X %′p)

´
, (7)

where%′ ∈ T [[Γ′;∆′]] and%′p = %′ ∪ { v1 7→ val(p) }. Also, for

k > 1, Λ?(v1, v2, . . . , vk, X)
def
= Λ?(v1,Λ?(v2, . . . , vk, X)).

Note the complementary roles ofΛ? and?: Λ? shifts the past
(the cost) into the future (the potential) and? shifts part of the future
(the potential) into the past (the cost). This being complexity theory,
there are carrying charges on all this shifting. This is illustrated
by the next lemma that shows howΛ? and ? interact. First, we
introduce:

POPL’06 9 2006/1/7

DEFINITION 33. dally(d, (c, p))
def
= (c + d, p) for d ∈ ω and

(c, p), a time complexity.

LEMMA 34 (Almost theη-law). SupposeΓ;∆, X, ~v, ~σ, and τ
are as in Definition 32. LetΓ′;∆′ be the result of removing
v1:σ1, . . . , vk:σk from Γ;∆. Let % ∈ T [[Γ;∆]] and let%′ be the
restriction of% to the domain of definition ofΓ′;∆′. Then`

Λ?(v1, . . . , vk, X) %′
´
? %(v1) ? · · · ? %(vk) = (8)

dally(5 · k + 4 +
Pk

i=1ci, X %),

where(c1, p1) = %(v1), . . . , (ck, pk) = %(vk).

Projections The next definition introduces a way of recovering
more conventional bounds from time complexities. Note, by Defi-
nitions 27 and 28, and Lemma 29, whenx is a string/numeric con-
stant or a type-1 oracle we can treat‖x‖ as a function of|x|.

DEFINITION 35. Supposeσ and (σ1, . . . , σk) → NL areATR1

types.

(a) For eacht ∈ T [[σ]], let cost(t)
def
= π1(t) andpot(t)

def
= π2(t).

(So,t = (cost(t), pot(t)).)
(b) For eacht ∈ T [[NL]], let Cost(t) = cost(t) andPot(t) =

pot(t) and, for eacht ∈ T [[(σ1, . . . , σk) → NL]], let Cost(t)
def
=

λ
−→
|x| . cost(t?

−−→
‖x‖) andPot(t)

def
= λ
−→
|x| . pot(t?

−−→
‖x‖), where

−→
|x| ab-

breviates|x1| ∈ Lwt[[σ1]], . . . , |xk| ∈ Lwt[[σk]] and
−−→
‖x‖ abbrevi-

ates‖x1‖ , . . . , ‖xk‖. (So,t ?
−−→
‖x‖ = (Cost(t)(

−→
|x|),Pot(t)(

−→
|x|)).)

(c) For eachp ∈ P[[σ]], let Pot(p)
def
= Pot((1, p)).

Supposet is the time complexity of an expressionE of type
(~σ)→ NL. Then bothCost(t) andPot(t) are functions of the sizes

of possible arguments ofE. The intent is thatCost(t)(
−→
|x|) is an

upper bound on the time cost of first evaluatingE and then applying
its value to arguments of the specified sizes and thatPot(t) is an
upper bound on the length ofE’s value.

LEMMA 36 (The consistency check).Supposeσ andσ → τ are
ATR1 types.

(a) For eachx ∈ Vwt[[σ]], ‖x‖ ∈ T [[σ]] andPot(x) = |x|.
(b) For eacht0 ∈ T [[σ → τ]] andt1 ∈ T [[σ]], t0 ? t1 ∈ T [[τ]].
(c) Λ? is well-defined in the sense that the left-hand side of (7)

is in T [[σ1 → τ]] as asserted in Definition 36

Time-complexity polynomials To complete the basic time-com-
plexity framework, we define an extension of the second-order
polynomials for the simple product types overT, Tε, T�, . . . under
theL-semantics. The restriction of these to the time types under
theLwt-semantics are thetime-complexity polynomials. First we
extend the grammar for raw expressions to include:P : : = (P, P)
| π1(P) | π2(P). Then we add the following typing rules:

Σ ` P :σ1 × σ2

Σ ` πi(P):σi

{Σ ` Pi:σi }i=1,2

Σ ` P1 � P2:σ

{Σ ` Pi:σi }i=1,2

Σ ` (P1, P2):σ1 × σ2

for second-order polynomials, whereσ, σ1, andσ2 simple product
types overT, Tε, T�, . . . and� stands for any of∗, +, or ∨.
Next we extend the arithmetic operations to all types by recursively

defining, for eachγ and eachx, y ∈ L[[γ]], x� y def
=8>>><>>>:

?, if γ = ();

the usual thing, if γ is a base type;
(π1(x)� π1(y), π2(x)� π2(y)), if γ = σ × τ ;
λz ∈ L[[σ]] . (x(z)� y(z)), if γ = σ → τ.

TheL-interpretation of the polynomials is just the obvious thing.
Note that q1 of Lemma 29 and the right-hand side of (8) are

T [[c]] % = ‖c‖ T [[(ca E0)]] % = (c0 + 2, p0 + 1).

T [[v]] % = %(v). T [[(ta E0)]] % = (c0 + 2, 1).

T [[(d E0)]] % = (c0 + 2, (p0 − 1) ∨ 0).

T [[(down E0 E1)]] % = (c0 + c1 + p0 + p1 + 3, min(p0, p1)).

T [[(λv . E0)]] % = Λ?(v, T [[E0]]) %.

T [[(E0 E1)]] % = (T [[E0]] %) ? (T [[E1]] %).

T [[(if E0 then E1 else E2)]] % = (c0 + 2, 0) + (c1, p1) ∨ (c2, p2).

Above:c is a constant,% ∈ T [[Γ;∆]], and

(ci, pi) = T [[Γ;∆ ` Ei: σi]] % for i = 0, 1, 2.

Figure 11. TheT -interpretation ofATR−1 .

well-typed, time-complexity polynomials. Also note that by Def-
inition 30(a), if q1 and q2 time-complexity polynomials with
‖Γ;∆‖ ` q1: ‖σ → τ‖ and ‖Γ;∆‖ ` q2: ‖σ‖, thenq1 ? q2 is
a time-complexity polynomial with‖Γ;∆‖ ` q1 ? q2: ‖τ‖.

5.2 The time-complexity interpretation of ATR−1

We here establish a poly-time boundedness result forATR−1 , the
subsystem ofATR1 obtained by dropping thecrec construct. Def-
inition 37 introduces theT -interpretation ofATR−1 and the proof
of Theorem 41 shows thatATR−1 -expressions have time complex-
ities that are polynomial bounded and well-behaved in other ways.
All of this turns out to be reasonably straightforward.Convention:
Through out this section suppose thatγ, σ, andτ areATR1 types
andΓ;∆ is anATR1 type context.

DEFINITION 37. Figure 11 provides theT -interpretation for each
ATR−1 construct.

There are three key things to establish about the time complex-
ities assigned byT , that they are: (i) not too big, (ii) not too small,
and (iii) monotone. “Not too big” means that the time complexi-
ties are polynomially bounded in the sense of Definition 38 below.
“Not too small” means thatcost(T [[E]] ‖ρ‖) ≥ CEK-cost(E, ρ)
andPot(T [[E]] ‖ρ‖) is at least as large as|Vwt[[E]] ρ|, but no larger
thanCost(T [[E]] ‖ρ‖). This “not too small” property (soundness)
is introduced in Definition 39. Finally, “monotone” means that
T [[E]] % ≤ T [[E]] %′ when% ≤ %′14 and that whenT [[E]] % is a
function, it is point-wise, monotone nondecreasing. Monotonicity
is introduced in Definition 40 and plays an important role in deal-
ing with crec. Theorem 41 establishes that theT -interpretation of
ATR−1 satisfies these three properties.Convention:Below let F
range over programming formalisms (e.g.,ATR−1 andATR1).

DEFINITION 38 (Constructive polynomial-time boundedness). A
T -interpretation ofF is constructively polynomial-time bounded
when, for eachF -judgmentΓ;∆ ` E:σ, we can effectively find
a time-complexity polynomialq with |Γ;∆| ` q: ‖σ‖ such that
T [[E]] ‖ρ‖ ≤ Lwt[[q]] |ρ| for eachρ ∈ Vwt[[Γ;∆]].

DEFINITION 39 (Soundness). AT -interpretation ofF is sound
when, for eachF -judgmentΓ;∆ ` E: γ and eachρ ∈ Vwt[[Γ;∆]],
we haveCEK-cost(E, ρ) ≤ cost(T [[E]] ‖ρ‖) and

˛̨
Vwt[[E]] ρ

˛̨
≤

Pot(T [[E]] ‖ρ‖) ≤ Cost(T [[E]] ‖ρ‖).

DEFINITION 40 (Monotonicity). AT -interpretation ofF ismono-
tonewhen, for eachF -judgmentΓ;∆ ` E: γ: (i) T [[E]] is a point-
wise, monotone nondecreasing function fromT [[Γ;∆]] to T [[γ]],

14Convention:For%, %′ ∈ T [[Γ;∆]], we write% ≤ %′ when%(v) ≤ %′(v)
for eachv ∈ preimage(Γ;∆).

POPL’06 10 2006/1/7

and (ii) if γ = (σ0, . . . , σk) → b, then the functionT [[Γ;∆]] ×
T [[σ0]] × · · · × T [[σk]] to T [[b]] given by (%, x0, . . . , xk) 7→
((T [[E]] %)x0 . . . xk) is pointwise, monotone nondecreasing.

THEOREM 41. TheT -interpretation ofATR−1 is monotone, sound,
and constructively polynomial-time bounded.

The proof is a logical relations argument.

5.3 An affine decomposition of time complexities

When analyzing a program’s run time, one often must decompose
its time complexity into pieces that may have little to do with the
program’s apparent syntactic structure. Theorem 43 below is a gen-
eral time-complexity decomposition result forATR1 expressions.
TheATR1 typing rules for affinely restricted variables are critical
in ensuring this decomposition. The decomposition is used to ob-
tain the recurrences needed to analyze the time complexity ofcrec
expressions.15 To help in the theorem’s statement, we introduce:

DEFINITION 42.
(a) (c1, p1)] (c2, p2)

def
= (c1 + c2, p1 ∨ p2), where(c1, p1),

(c2, p2) ∈ T [[γ]]. (Clearly,(c1, p1)] (c2, ph2) ∈ T [[γ]].)
(b) For eachATR1-typeγ, defineεγ inductively by:εNL = ε

andεσ→τ = λx . ετ . (Clearly,` εγ : γ and|Vwt[[εγ]] ρ∅| = 0|γ|.)
(c) Given f : (σ1, . . . , σk) → NL, an expression of the form

(f E1 . . . Ek) is called afull applicationof f .

THEOREM 43 (Affine decomposition).SupposeΓ; f : γ ` E:NL0 ,
whereγ = (NL1 , . . . ,NLk) → NL0 ∈ R and TailPos(f,E). Let
ζ denote the substitution[f ← εγ]. Then

T [[E]] % ≤ T [[E ζ]] %] ((T [[f]] %) ? ~t), (9)

for each% ∈ T [[Γ; f : γ]], where(f E1
1 . . . E1

k), . . . , (f E`
1 . . .

E`
k) are the full applications off occurring in E and tj =W`
i=1 val(T [[Ei

j]]) %, for j = 1, . . . , k.

By Lemma 3 we know that there is at most one use of an affinely
restricted variable in an expression. In terms of costs, (9) says that
the cost of evaluatingE can be bounded by the sum of: (i) the cost
of evaluatingE ζ, which includes the all of the costs ofE except
for the possible application of the value off to the values of its
arguments, and (ii)cost((T [[f]] %) ? ~t), which clearly bounds the
cost of any suchf application. In terms of potentials, (9) says that
E is size bounded by the maximum of (i) the size of the value of
E ζ, which covers all the cases wheref is not applied, and (ii)
pot((T [[f]] %) ? ~t), which covers all the cases wheref is applied.

If (9) solely concerned CEK costs, the above remarks would
almost constitute a proof. However, (9) is aboutT -interpretations
of expressions andT [[E]] is an approximation to the true time
complexities involved in evaluatingE. The theorem asserts that
ourT -interpretation ofATR1 is verisimilar enough to capture this
property of time complexities. This later requires a little work.

5.4 The time-complexity interpretation of ATR1

We are now consider the time complexity properties ofcrec expres-
sions. This version of the paper omits the details of this, but the idea
is simply that we use Theorem 43 to defineT [[(crec a (λrf .A))]]
in terms ofT [[(crec (0⊕a) (λrf .A))]]. This gives us a recurrence
equation for eachcrec expression so that we can now prove:

THEOREM 44. TheT -interpretation ofATR1 is monotone, sound,
and constructively polynomial-time bounded.

15The theorem presupposes thatT [[·]] is defined oncrec expressions. But,
since no affinely restricted variable can occur free in a well-typedcrec-
expression and since the application of the theorem will be within an
induction, this presupposition does not add any difficulties.

The proof of this is a direct extension of the proof of Theo-
rem 41 in which we solve the recurrences given by the definition of
T [[(crec a (λrf .A))]]. The presence of higher-type functions in
the recurrences is a manageable complication here.

5.5 Polynomial-time completeness

Finally, we note that each type-1 and type-2 BFF is computable by
someATR1 program.Terminology:An ATR1-typeγ is unhindered
whenγ is a base type or elseγ = (γ1, . . . , γk)→ NL is strict and
predicative with eachγ1 unhindered. By the definition of theVwt-
semantics,Vwt[[γ]] = V[[shape(γ)]] exactly whenγ is unhindered.

THEOREM 45. Supposeσ is a simple type overN of level 1 or 2.
Then the class of type-σ BFFs = {Vwt[[` E: γ]] σ = shape(γ)
andγ is unhindered}.

The⊆ containment follows by straightforward programming.
The⊇ containment follows by Theorem 44.

6. Related work
Ramified types based on Bellantoni and Cook’s ideas, higher types,
and linear types are common features of work on implicit com-
plexity (see Hofmann’s survey [10]), but most of that work has fo-
cused on guaranteeing complexity of type-level 1 programs. The
ATR1 type system is roughly a refinement of the type systems of
[12, 13] which were constructed to help study higher-type complex-
ity classes. Also, the type systems of this paper and [12, 13] were
greatly influenced by Leivant’s ramified type systems [17, 16].

The time-complexity cost/potential distinction appears in prior
work. A version of this distinction can be found in Sands’ Ph.D. the-
sis [26]. Shultis [28] sketched how to use the distinction in order to
give time-complexity semantics for reasoning about the run-time
programs that involve higher types. Van Stone [29] gives a much
more detailed and sophisticated semantics using this distinction.
Very roughly, Sands’, Shultis’, and Van Stone’s work was targeted
toward giving static analyses to extract time-bounds for functional
programs that compute first-order functions. The time-complexity
semantics of this paper was developed independently of Shultis’
and Van Stone’s work.

7. Possible extensions
Recursions with type-level 1 parametersIn work extending the
results of this paper we have a programming formalism,ATR2, that
extendsATR1 to permit type-level 1 parameters increc-recursions.
In particular,ATR2 is expressive enough to give a continuation-
passing-style definition ofprn. The proofs of polynomial-size
boundedness and of polynomial-time boundedness forATR2 are
more involved than those forATR1, but not excessively so.

Type checking, type inference, time-bound inferenceWe have
not studied the problem ofATR1 type checking. But sinceATR1 is
just an applied simply typed lambda calculus with subtyping, stan-
dard type-checking tools should suffice. Type inference is a much
more interesting problem. We suspect that a useful type inference
algorithm could be based on Frederiksen and Jones’ [7] work on
applying size-change analysis to detect whether programs run in
polynomial time. Another interesting problem would be to start
with a well-typedATR1 program and to then extract reasonably
tight size and time bounds.

Lazy evaluation To handle a call-by-name or a call-by-need ver-
sion of ATR1, one would: (i) construct an abstract machine for
this lazy-ATR1, (ii) modify theT -semantics a bit to accommodate
the lazy constructs; and (iii) rework theT -interpretation ofATR1

POPL’06 11 2006/1/7

which would then have to be shown monotone, sound, and con-
structively polynomial-time bounded. If our lazy-ATR1 allowed in-
finite strings, then theVwt-semantics would also have to be mod-
ified. Note that Sands [26] and Van Stone [29] both consider lazy
evaluation in their work.

Lists and streams There are multiple senses of the “size” of a
list. For example, the run-time ofreverseshould depend on just
a list’s length, whereas the run-time of a search depends on both
the list’s length and the sizes of the list’s elements. Any useful
extension ofATR1 that includes lists needs to account for these
multiple senses of size in both the type system and theVwt- andT -
semantics. If lists are combined with laziness, then we also have the
problem of handling infinite lists. However,ATR1 and its semantics
already handle one flavor of infinite object, i.e., type-level 1 inputs,
so handling a second flavor of infinite object many not be too hard.

More general recursions The fact thatATR2 can express at least
some linear continuations is indicative that our basic type system
and semantics can be extended to handle a reasonably general
class of linear recursion schemes. Nonlinear recursions (e.g. tree
recursions) are trickier to handle because there must be independent
clocks on each branch of the recursion that together guarantee
certain global upper bounds.

Beyond type-level 2 There are semantic and complexity-theoretic
issues to be resolved in order to extend the semantics ofATR1 to
type-levels 3 and above. The key problem is that (3), our definition
of the length of a type-2 function, does not generalize to type-level
3 because for total, continuousΨ: ((N → N) → N) → N and
G: (N→ N)→ N, we can havesup{ |ψ(F)| |F | ≤ |G| } =∞,
even if G is 0-1 valued. To fix this problem one can introduce
difference notion of length that incorporates information about a
function’s modulus of continuity. It appears thatATR1 and the
Vwt- andT -semantics extend to this new setting. However, it also
appears that this new notion of length gives us a new notion of
higher-type feasibility that goes beyond the BFFs. Sorting out what
is going on here should be fun.

Acknowledgments
Thanks to Susan Older and Bruce Kapron for repeatedly listening
to me describe this work along its evolution. Thanks to Neil Jones
and Luke Ong for inviting me to Oxford for a visit and for some
extremely helpful comments on an early draft of this paper. Thanks
also to the anonymous POPL referees for many helpful comments.
Finally many thanks to Peter O’Hearn, Josh Berdine, and the Queen
Mary theory group for hosting my visit in the Autumn of 2005 and
for repeatedly raking my poor type-systems over the coals until
something reasonably simple and civilized survived the ordeals.
This work was partially supported by EPSRC grant GR/T25156/01
and NSF grant CCR-0098198.

References
[1] A. Barber and G. Plotkin,Dual intuitionistic linear logic, Tech.

report, LFCS, Univ of Edinburgh, 1997.
[2] S. Bellantoni and S. Cook,A new recursion-theoretic characterization

of the polytime functions, Computational Complexity2 (1992), 97–
110.

[3] S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg,Characterising
polytime through higher type recursion, Annals of Pure and Applied
Logic (2000), 17–30.

[4] A. Cobham,The intrinsic computational difficulty of functions,
Proceedings of the International Conference on Logic, Methodology
and Philosophy (Y. Bar Hillel, ed.), North-Holland, 1965, pp. 24–30.

[5] S. Cook and A. Urquhart,Functional interpretations of feasibly
constructive arithmetic, Annals of Pure and Applied Logic63 (1993),
103–200.

[6] M. Felleisen and D. Friedman,Control operators, the SECD-machine,
and the lambda calculus, Formal Descriptions of Programming
Concepts III, 1987, pp. 193–217.

[7] C. Frederiksen and N. Jones,Recognition of polynomial-time
programs, Tech. Report TOPPS/D-501, DIKU, University of
Copenhagen, 2004.

[8] O. Goldreich,Foundations of cryptography, Vol. I: Basic tools,
Cambridge University Press, 2001.

[9] D. J. Gurr, Semantic frameworks for complexity, Ph.D. thesis,
University of Edinburgh, 1990.

[10] M. Hofmann,Programming languages capturing complexity classes,
SIGACT News31 (2000), 31–42.

[11] , Linear types and non-size increasing polynomial time
computation, Information and Computation183(2003), 57–85.

[12] R. Irwin, B. Kapron, and J. Royer,On characterizations of the basic
feasible functional, Part I, Journal of Functional Programming11
(2001), 117–153.

[13] , On characterizations of the basic feasible functional, Part
II , unpublished manuscript, 2002.

[14] B. Kapron,Feasible computation in higher types, Ph.D. thesis,
Department of Computer Science, University of Toronto, 1991.

[15] B. Kapron and S. Cook,A new characterization of type 2 feasibility,
SIAM Journal on Computing25 (1996), 117–132.

[16] D. Leivant,A foundational delineation of poly-time, Information and
Computation110(1994), 391–420.

[17] , Ramified recurrence and computational complexity I: Word
recurrence and poly-time, Feasible Mathematics II (P. Clote and
J. Remmel, eds.), Birkḧauser, 1995, pp. 320–343.

[18] D. Leivant and J.-Y. Marion,Lambda calculus characterizations of
polytime, FundamentæInformaticæ19 (1993), 167–184.

[19] J. Longley,On the ubiquity of certain total type structures (Extended
abstract), Proceedings of the Workshop on Domains VI (M. Escardó
and A. Jung, eds.), Electronic Notes in Theoretical Computer Science,
vol. 73, Elsevier Science Publishers, 2004, pp. 87–109.

[20] , Notions of computability at higher types, I, Logic Collo-
quium 2000 (R. Cori, A. Razborov, S. Torcevic, and C. Wood, eds.),
Lecture Notes in Logic, vol. 19, A. K. Peters, 2005.

[21] K. Mehlhorn,Polynomial and abstract subrecursive classes, Journal
of Computer and System Science12 (1976), 147–178.

[22] B. Pierce,Types and programming languages, MIT Press, 2002.
[23] G. Plotkin,Call-by-name, call-by-value and theλ-calculus, Theoret-

ical Computer Science1 (1975), 125–159.
[24] , LCF considered as a programming language, Theoretical

Computer Science5 (1977), 223–255.
[25] J. Royer and J. Case,Subrecursive programming systems: Complexity

& succinctness, Birkhäuser, 1994.
[26] D. Sands,Calculi for time analysis of functional programs, Ph.D.

thesis, University of London, 1990.
[27] A. Scḧonhage,Storage modification machines, SIAM Journal on

Computing8 (1980), 490–508.
[28] J. Shultis,On the complexity of higher-order programs, Tech. Report

CU-CS-288-85, University of Colorado, Boulder, 1985.
[29] K. Van Stone,A denotational approach to measuring complexity

in functional programs, Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, 2003.

[30] G. Winskel,Formal semantics, MIT Press, 1993.

POPL’06 12 2006/1/7

