Adventures in Time and Space

Norman Danner James S. Royer
Dept. of Mathematics and Computer Science, EECS Dept., Syracuse University, Syracuse, NY, USA
Wesleyan University, Middletown, CN, USA royer@ecs.syr.edu

ndanner@wesleyan.edu

Abstract This paper is an effort to fill in part of the puzzle of how to rea-

This paper investigates what is essentially a call-by-value version SON about the efficiency of programs that involve higher types. Our
of PCF under a complexity-theoretically motivated type system. 2PProachis, roughly, to tak&CF and its conventional denotational
The programming formalismATR;, has its first-order programs semantics [24, 30] ar_1d, using ty“pes, restrict the language and its se-
characterize the poly-time computable functions, and its second- Mantics to obtain a higher-type *feasible fragmentP@F and the
order programs characterize the type-2 basic feasible functionals”CF computable functions. Our notion of higher-type feasibility is
of Mehlhorn and of Cook and Urquhart. (THETR, -types are based on thbasic feasible functional@FFs) [5,21],ah|gher-t}/pe
confined to levels 0, 1, and 2.) The type system comes in two analogue of poly-time CO”.‘PUFab"“% ?“d Kapron and Cook's [15]
parts, one that primarily restricts the sizes of values of expressionsMachine-based characterization of this class at type-leV@as-
and a second that primarily restricts the time required to evaluate N9 0ur work on a higher-type notion of computational complexity
expressions. The size-restricted part is motivated by Bellantoni and Provides & connection to the basic notions and tools of traditional
Cook’s and Leivant's implicit characterizations of poly-time. The 2analysis of algorithms (and their lifts to higher types). Enforcing
time-restricting part is an affine version of Barber and Plotkin's feasibility constraints o CF through types provides a connection
DILL. Two semantics are constructed féTR;. The first is a © much of the central work in formal methods. .

pruning of the nive denotational semantics far R; . This pruning _ Ourapproachis in contrast to the work of [3, 11, 18] which also
removes certain functions that cause otherwise feasible forms of NVolves higher-type languages and types that guarantee feasibility.
recursion to go wrong. The second semantics is a modélT&: 's These programming formallgms. are fea3|b!e in the sense that: (i)
time complexity relative to a certain abstract machine. This model 1€y have poly-time normalization properties and (ii) the type-
provides a setting for complexity recurrences arising fldifrR; Ieve! 1 functlons. expressible by these systems are guarantged to be
recursions, the solutions of which yield second-order polynomial (ordinary) poly-time computable. The higher-type constructions of
time bounds. The time-complexity semantics is also shown to be these formalisms are essentially aides for poly-time programming;

sound relative to the costs of interpretation on the abstract machine. 2 Of this writing, there is no analysis of what higher-type functions
these systems comptfte.

Categories and Subject Descriptors~.3.3 [Logics and Meanings For a simple example of a feasible higher-type function, con-
of Program$: Studies of Program Constructs program and re- siderC:(N - N) - (N—=N) = (N—=N)withC fg= fog.
cursion schemes, type structuré~.1.3 [Computation by Abstract (ConventionN is always interpreted &s0, 1 }*, i.e.,0-1-strings.)

Deviceg: Complexity Measures and Classes; F.3.2dics and In our setting, a reasonable implementationcvhas a run-time
Meanings of ProgranjsSemantics of Programming Languages bound that is a second-order polynomial (§8¢in the complexi-
General Terms Languages, Performance, Theory ties of arbitraryf andg; in particular, if f andg are poly-time com-
putable, so i€ f g. Such a combinatat’ can be considered as part
1. Introduction of the “feasible glue” of a programming environment—when used

with other components, its complexity contribution is (higher-type)
A Lisp programmer knows the value of everything, but the polynomially bounded in terms of the complexity of the other com-
cost of nothing. —Alan Perlis ponentsand the combined complexity can be expressed in a natu-
ral, compositional way. More elaborate examples of feasible func-
tionals include many of the deterministic “black box” constructions
from cryptography that, for example, map one pseudo-random gen-
eratorg to anotherg’ with better cryptographic properties in such
a way that the complexity properties of the programdoare not

Perlis’ quip is an overstatement—but not by much. Programmers
in functional (and object-oriented) languages have few tools for
reasoning about the efficiency of their programs. Almost all tools
from traditional analysis of algorithms are targeted toward roughly
the first-order fragment of C. What tools there are from formal

methods are interesting, but piecemeal and preliminary.

IMehlhorn [21] originally discovered the class of type-2 basic feasible
functionals the mid-1970s. Later Cook and Urquhart [5] independently
discovered this class and extended it to all finite types over the full set-
theoretic hierarchyN.B. If one restricts attention to continuous models,
then starting at type-level 3 there are alternative notions of “higher-type
Permission to make digital or hard copies of all or part of this work for personal or poly-time” [13]. Dealing with type-level 3 and above involves some knotty

classroom use is granted without fee provided that copies are not made or distributed gemantic and complexity-theoretic issues beyond the scope of this paper
for profit or commercial advantage and that copies bear this notice and the full citation hence our restriction ATR; types to orders 2 and below. '
on the first page. To copy otherwise, to republish, to post on servers or to redistribute 1y ’

to lists, requires prior specific permission and/or a fee. 2|n fact, the work of [3, 11] and of this paper sit on different sides of an
POPL’06 January 11-13, 2006, Charleston, South Carolina, USA. important divide in higher-type computability between notionsafnpu-
Copyright(© 2006 ACM 1-59593-027-2/06/0001. . . $5.00. tation over computable dat@.g., [3, 11, 18]) and notions @bmputation

over continuous datée.qg., this paper) [19, 20].

POPL06 1 2006/1/7

much worse that of the program g¢f but where this program for
¢ many not run irdeterministigpoly-time2 (See Chapter 3 in Gol-
dreich’s [8] for examples.)

While our notion of feasibility is based on the BFFs, the full

class of functions our formalism computes is more subtle than the

BFFs. For example, considpm: (N — N — N) — N — N with:
prnfe — fee

prn f (@®y) — f(a®y) (prn fy). } @

(Conventions:® denotes string concatenation aads { 0,1 }.)

So, prn is a string-variant ofoldr. It is well-known that starting
with poly-time primitives,prn can be used to define any primi-
tive recursive function(Hence,prn is not a BFF.) But, as Cob-
ham [4] noted, if one adds to (1) the side-condition to that, for
some polynomiap, we havelprn f z y| < p(|z|,|y|), and if
one starts with poly-time primitives, then this modifiech pro-
duces definitions of only poly-time computable functions. Bellan-
toni and Cook [2] showed how get rid ekplicit use of such a side
condition through what amounts to a typing discipline. However,

their approach (which has been in large part adopted by the im-

plicit complexity computational community, see Hofmann’s survey
[10]), requires thaprn be a “special form” and that thgin (1) be
always given by a syntactic definition. We, on the other hand, want
to be able to defingrn (see Figure 8) and have the definition’s

meaning given by a conventional denotational semantics. We thus

use Bellantoni and Cook’s [2] (and Leivant’s [16]) ideas in both
syntacticand semanticontexts. That is, we extract the growth-

E::=K | (caE)| dE) | (taE) | (down EE) | V
| (EE) | (AV.E) | (if E then E else E) | (fix E)
K ::= {0,1}* ac{0,1} T ::= the simple types ove
Figure 1. PCF syntax
'+ E:N
Const-l: —— ld-h —— op-li — —
' K:N Iviokwvio 't (op E):N
I'oF Eo:N T'1F Eq:N Tyviek E:7
down-l: -l
ToUT1 F (down Eg E1):N 't (MW.E):c—rT
I'oFEg:oc—7 I'i+Ej:0 '(\f.E):c >0
—-E: ix-1:

IoUTD + (Eo Eo): 7 Tk (fix \f.E)):0o
ToFEg:N T'1'FEi:N T9kF Eo:N

If-1:
Toul'yuTs (if Eg then Ej else EQ): N

Figure 2. PCF typing rules

(caz) — aduz. (d(a®z)) — =. (de) — e

(taz) — [1, ifze€al0,1}*; e, otherwisg
(down z y) — [=z, if |z| < |y|; ¢, otherwisé
(if = then y else z) — [y, if x # € z, otherwisé

fix (\f.E) — E[f — (fix (\f.E)].

Figure 3. SomePCF reduction rules

rate bounds implicit in the aforementioned systems, extend these
bounds to high types, and create a type system, programming lan-

guage, and semantic models that work to enforce these bounds. A L

a consequence, we can defisra, with a particular typing, and be 2. Background definitions
assured that, whether thfecorresponds to a purely syntactic term Strings and tallies Each element oN is identified with its0-1-

or to the interpretation a free variablan will not go wrong and

dyadic representation, i.dd,=¢ 1 =0, 2 =1, 3 = 00, etc.

produce something of undesirable complexity. The language and Each element ab is identified with itsO-unary representation, i.e.,

its model thus implicitly incorporate side-conditions on growth via
types? Handling constructs likern as first class functions is im-

0=¢ 1 =0, 2=00, 3 =000, etc.N-values are numeric/
string values to be computed over:values are tallies of lengths

portant because programmers care more about such combinatorsind run timesNotation: For each natural numbét, k = 0",

than about most any BFF. Types Below, b ranges over base types a8l ranges over

nonempty sets of base types. We use fairly standard notation and

Outline §3 presents the syntactic side of our programming for- terminology for thesimple type§T ::= B | T — T) and the

malismATR; and its type systent4 explains what can go wrong

in a ndve semantics foATR; and its types§4 also shows how simple product type¢T' ::= B |T — T'| () | T x T) over a
to prune the nize semantics obtain a semantics for which we can S€t of base types. In particular, we abbreviater, — (02 —
provepolynomial-size boundednefss ATR, thatis, that the size ('~ — (@n = 7).))) = o1 > 02 — - = o — 7 DY
of of the value of eacATR; expressiorE has a second-order poly- 71>~ - n) - and define thdevel of a type by.IeveI(lE)) -

level ()) = 0; leveloc x 7) = max(levelo),levelr)); and

nomial bound over the sizes of the values/i$ free variables§5
gives a time-complexity semantics fAM R, expressions that can
be shown: (i) sound for the cost model of a particular abstract ma- Type contexts A type contexts a finite mapping of variables to
chine for evaluatingATR; and (ii) polynomial-time boundedhat types; these are usually written as a list: o1, . . ., vg: op. I, TV

is that the time-complexity eadkiT R, expressiorE has a second- denotes the union of two type contexts with disjoint preimages and
order polynomial bound over the time-complexities off3§ free I’ UT” denotes the union of two consistent type contexts.
variables§5 also states tha®TR; can compute each basic feasible
functional.§6 briefly discusses work related to ours gidconsid-

ers possible extensions of our work. We begif2rby stating some
basic background definitionsl.B. This is an abstract of a much
longer paper. The present paper omits proofs, secondary example
and discussions of finer points of this work.

levelo — 7) = max(1 + levelo), levelr)).

Semantic conventions For a semanticsS for a formalism F,
S[-] is thesemantic maghat takes arF-syntactic object to its
S-meaningS[r] is the collection of things named by typainder
<S- For atype context’ = x1:71,...,2n: Tn, S[I is the set of
all finite maps{ z1 — a1, ..., zn — an }, Wwherea; € S[r], ...,
an € S[m.]; i.e., environments(Convention:p, with or without
decorations, ranges over environmen&[)' + E: 7] is the map
%E.g.,g andg’ may be computed by a probabilistic poly-time programs or - from S[I'] to S[r] such thatS[I" - E:7]p is the element of
even by families of circuits. S[7] that is theS-meaning ofE when E’s free-variables have the
4 Incorporating side-conditions in models is nothing new. A fixed point meanings given by. S[E] is typically written forS[I" - E: 7] as
combinator has the implicit side-condition that its argument is continuous the type judgment is usually understood from context.

or at least monotone so that, by Tarski’s fixed point theorem [30], we know

the result is meaningful. Models of languages with fixed point combinators Call-by-value PCF Figure 1 gives the syntax of our version of
typically have continuity built-in so the side-condition is always implicit. PCF. Figure 2 provides the typing rules in whiep € { co, c1, d,

POPL06 2006/1/7

P::=K | (®@PP)|V | (PP)| (A\V.P)

K ::= 0* T ::= thelevel0, 1, and 2 simple types ovEr

Figure 4. The syntax for second-order polys, wheye= Vv, +, *

SFP:T SEP:T

Const-I:
Y (@ Py Pl): T

- 1 - =V,+,
SEK:T (©=V,+%)

Figure 5. The additional typing rules for second-order polys

to, t1 }. For emphasis we may writev: o . E instead of\v . E. N

isinterpreted a§ 0, 1 }*. The reduction rules are the standard ones

for call-by-valuePCF [22, 23] plus the rules of Figure 3. In tests,
“x # € is syntactic sugar for£” and “|Eo| < |E1]|” is syntactic

sugar for {down co(Fo) co(F1)).” A CEK-machine [6] (omitted

L[F p: o] is defined in the standard waynportant: Thedepth

a second-order polynomialis the maximal depth of nesting of ap-
plications ing’s B-normal form, e.9.go((go(2*y* g1 (y?)) V6)?)

has depth 3. For second-order polynomials, depth plays something
like the role degree does for ordinary polynomials.

Time complexity The CEK machine, mentioned above, provides
an operational semantics for bd®#@CF andATR;. As our concern

is with the costs of evaluating expressions, we use the CEK ma-
chine as our standard model of computation and use a simple cost
model to the CEK as the standard notion of time complex®ur

CEK machine handles oracles (type-level 1 functions dVeas

the values of particular variables in the initial environment for an
evaluation. As with Kapron and Cook’s answer-length cost model
for oracle Turing machines [15], part of the CEK-cost of querying
an oracle includes the length of the answer.

The basic feasible functionals Supposer = (o1,...,0%) — N

in this version of the paper) provides an operational semantics. Weijs a simple type oveN of level 1 or 2. We say thaf € V[r] is

takeV (for valué to be a conventional denotational semantics for

PCF [30]. It is standard that these two semantics agree.

The total continuous functionals Let o andr be simple product
types over base typd. The TC, sets are inductively defined by:
TCyn = N, TC() =%, TCy,x, = TC, x TC,, andTC(,_,T
= theKleene-Kreisel total continuous functiof0] from TC, to

TC-. This paper is concerned with only the type-level O, 1, and 2

portions of T'C from which we construct our models faiTR;.

Let o and 7 be simple product types over base type(for
tally). TheMC, sets and partial orders, are inductively defined
by: MCt = w and <t = the usual ordering ow; MC(, = x
and S() *; MC,x» = MC, x MC, and (a,b) <oxr
(a',V) < a <, d andb <, b’; andMC,_,, = the Kleene-
Kreisel total continuous functions frodWIC, to MC. that are
monotone (w.r.t<, and<), and<,_, is the point-wise ordering
onMC,_-. (E.g.,.MCr_1 = {fiw — w | f(0) < f(1) <
f(2) <---}.) Aswith TC, our concern is with only the type-level
0, 1, and 2 portions oM C from which we construct our models
of size and time bounds.

Lengths Forz € N, let|z| = k, wherek is the length ofz’s
dyadic representation (e.¢011| = 3 = 000). Following Kapron
and Cook [15], forf € TC yx,_, define| f| € MC x,_ 1 by:

1F1(0) = max {|f(@)] ! |zs| <lifori=1,....,k}. (2)

For eacho, a simple type ovelN, let [s| = [N — T] (e.g.,
IN — N| = T — T). Note that ifx € TC, and~y is level 0
or 1, thenjz| € MC\,|. Fory = (01,...,0,) — N of level-2,
FeTC, andl; € MCy,,|,..., & € MCy,, |, define

|F|(€) = max { |F(@)| | |2i| <joy) Lifori=1,...,k}. (3)
|F| as defined above turns out to be an elemeNia®, .

Maximums and polynomials Letz; Vs = max({z1,z2 }) and
\/f:1 z; = max({x1,...,zx }) for z1,...,zx € w. By conven-
tion, max(@)) = 0. We allow Vv as another arithmetic operation
in polynomials;V binds closer than either multiplication or addi-

tion. Coefficients in polynomials will always be nonnegative; hence

polynomials denote monotone nondecreasing functions.

The second-order polynomialsWe definesecond-order polyno-
mials[15] as a type-level 2 fragment of the simply typedalculus
over base typd with arithmetic operations, +, andx*. Figure 4
gives the syntax. (We often write-, +-, and=-expressions in infix
form.) The typing rules art-1, —-E, and—-I from Figure 2 plus
the rules in Figure 5. Thé-semantics for second-order polynomi-
als is as follows. For, a simple type oveT, takeL[c] = MC,.

POPL06

basic feasiblevhen there is a closed type-PCF-expressionE s

and a second-order polynomigf such thatV[E;] = f and, for
allv; € V[[O’l]], L,V € V[[O’k]], CEK-tiIne(Ef,’Ul7 - ,vk) <
qs(Jv1l, - .-, |vk]). (Kapron and Cook’s machine-based characteri-
zation [15] of the type-2 BFFs is the basis of the above definition.
For level-17’s, the above yields ordinary poly-time computability.)

3. Affine tail recursion
3.1 Ingredients

Ramified base typesBellantoni and Cook’s [2] well-known poly-
time programming formalism features a recursion construct along
the lines ofprn of (1) without a side conditionThey avoided the
side condition by separating the roles Wfvalues intonormal

and safe values. Roughly, a normal value can be used to drive
a recursion, but cannot be the result of a recursion, whereas a
safe value can be the result of a recursion, but cannot be used to
drive a recursiofi.The separation of roles allows enough power to
compute poly-time, but forbids “bad feedbacks” through which the
unconstrainegrn can produce non-poly-time results.

At type-level 2 there are new “bad feedbacks” to be avoided,
e.g.Fo=Af € N = N, z € N.(f(D(z)) fails to be a BFF as
|Fo(Aw € N. (w ® w),)| = || - 2/*. Note however that both,
=AfeN—->NzeN.f(f(zx))andFo =Af e N> N,z €
N.[g"D(z), whereg(w) = f(w) mod (z + 1)] are BFFs. So,
any restrictions that prohibffy’s definition must also leave enough
room for F;’s and F5's definitions. To deal with these problems we
use the facts that each expression in our language will need to have
a second-order polynomial size bound and that each second-order
polynomial has a specific depth, e.g(,f(z)) has the size bound
[71(171(Jz])) which has depth 2. We shall have deptlversions
of normal and safe base types, fbe= 0, 1,. .., with the subtype
ordering: depth-0-normak: depth-0-safe<: depth-1-normak:
depth-1-safec: - - - . An expressiorE being of a deptht type will
turn out to mean thalkl has a deptht second-order polynomial
size bound. Moreover, iF/ is of the depthd-normal type, ther®
will turn out to an input value (or else size bounded by some such
value), where a depth-0 input is just an ordinary string input and
a depth{d + 1) is the answer returned by a type-1 ingutvhen

5Under the CEK cost model: (i) operations that involve the entirety of string
z (in reading, writing, or testing:) have costl Vv |z|, and (ii) all other
operations have unit cost. The standard model of computation underlying
this CEK machine is Séinhage’storage modification machija7], which

is known to be polynomially related to standard Turing machines.

6Bellantoni and Cook did not use typing per se, but most of the followup
work has recast their ideas in terms of type systems.

2006/1/7

queried on deptl-safe values. IfE is of the depthd-safe type,

then its value is the result of (type-2) poly-time computation over = | (erec K (VL E)) L=

(B0)" | o(00)*
the order 0, 1, and 2 simple types o¥er

depthd-normal terms (or else size bounded by some such value). To ::= Np T ::=

Clocked, linear, tail-recursions In place offix, ATR; has the
combinatorcrec (for clocked recursiopwith the reduction rule:

Figure 6. ATR; syntax

crecc (A f.E) — AT. (if |c| < |v1] then (E'¥) else ¢€)
with E' = E[f « (crec (0 c) (\-f.E))],

wherecis a constantand = vy, ..., v iS a sequence of variables.
Roughly, |¢| acts as the tally of the number of recursions thus far
and 0 @ c is the result of a tick of the clock. The value of is
program’s estimate of the total number of recursions it needs to do
its job. Typing constraints will make sure that eaghc-recursion
recursion terminates after polynomially many steps. Without these
constraintsgrec is essentially equivalent tiix.”

Besides being clocked, recursions have two other restrictions.

ONE USE In any expressioffcrec a (A, f . E)), we require that
f has at most onasein E. Operationally this means that, in any
possible evaluation oF, at most one application of takes place.
One consequence of this restriction is that no free occurrenge of
is allowed within any innetrec expression. (Even if occursbut
once in an innectrec, the presumption is thgt may beusedmany
times.) Affine typing constraints enforce this one-use restriction.
Under the one-use restriction, bounds on the cost efeps of a
crec recursion are provided by recurrences of the farm, 77) <
T(m—1,7)+q(7), whereri represents the other parameters and

Zero-l:

el

Const-I: Aff-1d-I:

AR K: N
;AR E:N

Int-ld-l; ——— opely =2 %d

Ivio;Akwvio T;AF (op E):Noy
AR E: o . AR E:o

iftt —— Subsumption:———

IARE: T AR E:T

A0k Eo:Ng, T';5A1FE1:Np,
I'; Ag, Ay F (down Eg E1):Np,

I'vio;AFE: 7T INAREp:o—»715 FE;:o

I'AFeNg

(o xT)

(0 <:7)

down-I:

Doy oy

"T;AF (W.E)io—T AR (Eo Ev):7
£l T FEe:Np T;A1FE1:Np,, T;As b Eo:Np,
1T-1:
;A1 UAg (if Eo then E; else EQ):NL/
FK:N ;fiy+ E:)
crec—I: 2 17 2 (v € R andTailPog(f, E))
T;_F (crec K (A f.E)):vy
where:
def , if b; <: Ng, then
R = {(Nud’b%""bk)_)b ' b, is also oracular }

i def [Each occurrence ofin E
TailPos(f, E) = [is as the head of a tail call”

is a (second-order) polynomial. Su€ts grow polynomially inm.
Thus, a polynomial bound on the depth afrac recursion implies

Figure 7. ATR; typing rules

a polynomial bound on the recursion’s total cbst.

TAIL RECURSIONS We restrictcrec terms to expressing just
tail recursions. Primarily, this is just a simplifying restriction; but
secondarily, we focus on tail recursions because almost all of the
implicit complexity literature has focused on primitive recursions.

3.2 ATR; syntax, types, and typing

Syntax ATR; (for affine tail recursiof has the same expressions
as PCF with two changesfix is replaced withcrec as discussed
above and the only variables allowed are those of orders 0 and 1.

Types The ATR; types consist ofabeled base type€l, from

Figure 6) and the order 1 and 2 simple types over these base types.

We first consider labeld(from Figure 6).

LABELS. Labels are strings of alternatirg andO’s in which the
rightmost symbol of a nonempty label is alway® labelay. . . . ag

can be thought of as describing program-oracle interactions: each
symbol a; represents an actiord(= an oracle actionp = a
program action) with the ordering in time beirg throughay.
Terminology:e = the empty labelL < L’ means label is a
suffix of label L/, andL v L' is the <-maximum ofL andL’. Also

let sucqL) = the successor ok in the <-ordering,deptiL) =

the number of’s in L, and, for eachl € w, O; = (00)? and

oa = o(00)%. Note:dept{O4) = depth(oq) = d.

LABELED BASE TYPES The ATR; base types are all of the
form Nz, where L is a label. We subtype-order these types by:
Nr <: Np, <= L < L/, and thus have the linear ordering:

7 Clocking the fixed point process is a strong restriction. However, there
are results ([25, Chapter 4]) that suggest that clocking, whether explicit
or implicit, is needed to produce programs for which one can effectively
determine explicit run-time bounds.

reverseN, — N, = /lreversea; ...a, = ai...ay.
Aw . letrec f: N — No — No =
Ab, z, r. if (to x) then f b (d z) (co 7)
elseif (t1) then f b (d z) (c1 r)
else r
in fww

prn: (No — No — No) = Ne¢ = No = //prmey=(See (1).)
Ae, y. letrec f: N — No — No — No — No =
Ab, z, z, 7.
if (to) then f b (d x) (co 2) (e (co 2) 7)
else if (t1 x) then f b (d z) (c1 2) (e (c1 2))
elser
in f y (reversey) e (e € €)
cat N. — Ny, — Ny =
Aw, . let f:Noe — No — No =
Ay, z. if (to y) then (co 2)
else if (t1 y) then (c1 2)
else ¢
inprn f w
llfcatfay...ap = (far...ax) ®(fag...a) D - B(fe).
fcat: (No — NDQ) — Ng — Nopo =
Af, x. lete:No — Nooo — Neoo = Ay, 7. (cat (fy) r)
inprnex
findk (No — Noo) — No — No =
Af,x. letrec h: Ngo — No — No =
I Invariant: k < len(m) and|m| < |f|(|z])
Am, k. if k ==z thenk

/[catwXx=w & x.

Il findk f z = (See (5).)

else if k == (lenm) then k
else h (max(f (k+ 1)) m) (k+1)
in h(fe)e

where the above uses the syntactic sugar:
(letz=DinE) & Elx— D]
d
(letrec f =D in E) et E[f < (crec0 (A\rf.D))]

8Were two uses allowed, the recurrences would be of the B(m, 77) <

Figure 8. ATR; versions ofreverse prn, cat, fcat, andfindk

2-T(m — 1,7) + ¢(7) and sucHls can grow exponentially im.

POPL06 4

2006/1/7

N: <: No <: Noo <: Nopo <& ---, or equivalently,Ng, <:
Noo <: No, <: No; <: --- . DefinedeptiN.) = depth(L),
sidgNg,) = O, andsidgN,,) = ©. Ng, is the depthd-normal
type discussed above ahd , is the depthd-safe type.

THE ATR; ARROW TYPES These are just the order 1 and 2
simple types over thil;,'s. We extend<: to the arrow types via:

(4)

Terminology:We writer :> o foro <: 7 ando <: 7for[o <: 7
ando # 7|. Letshapéo) = the simple type oveN resulting from
erasing all the labels. Thail of a type is given by:

taiI(NL) = N.
LetdeptH{c) = deptHtail(c)) andsideg(o) = sidgtail (o)). When
sidgo) = O, we callo anoracular type, and whersidgo) = ©
we callo acomputationatype.

01<:00 & o <:11 <= o00—T10<:01 —>TI.

tail(c — 7) = tail(7).

DEfFINITION 1 (Predicative, impredicative, flat, and strict types).
An ATR; type ~ is predicativewhen~ is a base type or else
= o — 7 with 7 predicative andail(c) <: tail(7). A type
is impredicativewhen it fails to be predicative. AMTR; type
(o1,...,0k) — N isflatwhentail (c;) = N for somei. A type
is strict when it fails to be flat.

Examples:N. — N, is predicative whereaBl, — N. is
impredicative, and both are strict. Botfh, — N, andN, —
Noo — N, are flat, but the first is predicative and the second
impredicative. Recursive definitions tend to involve flat types.

paper. Here is a key example of how the Shift rule is used. Consider
the problemT’;_+ f(f(x)): ?, whereI' = f:No — Noo, : No.
Using —-E andSubsumptioywe derivel;_+ f(x): Nooo. Using
Shiftwe derivel’;_ + f:Nooo — Noooo. Using —-E again we
obtainT; _F f(f(x)): Noooo as desired.

AFFINELY RESTRICTED VARIABLES ANDcrec. EachATR; type
judgment is of the fornT'; A + E:~ where each type context
is separated into two parts:i@atuitionistic zone(I') and anaffine
zong(A). I andA are simply finite maps (with disjoint preimages)
from variables tAATR; -types. By convention, * denotes an empty
zone. Also by convention we shall restrict our attentiorAToR;
type judgments in which each affine zone consists of at most one
type assignment. In reading the rules of Figure 7, think of a variable
in an affine zone as destined to be the recursor variable in some
crec expression. An intuitionistic zone assigns types to each of the
mundane variableFerminology:A variable f is said to beaffinely
restrictedin I'; A - E: o whenf is assigned a type b or else is
Ar--abstracted over it

The split type contexts is adapted from Barber and Plotkin’s
DILL [1]. The key appropriation from DILL is—-E; it forbids free
occurrences of affinely restricted variables in the operand position
of any intuitionistic application. This precludes the typingcedc-
expressions containing subterms suchXag . (Ag.(g(ge)) f)
=3 M\ f.(f (f€)) wheref is used multiple times.

The crec-| rule forbids any free occurrence of an affinely re-
stricted variable; if such an occurrence was allowed, it could be
used any number of times via theec-recursion. Therec-| rule re-

Example 11 below illustrates that values of both impredicative quires that the recursor variable have a typRias defined in Fig-

and flat types require special semantic restrictions. These restric-ure 7). Wheny = (No;, ba, ..

tions will be detailed ir§4.3 and§4.4 below. Here we give a quick
sketch of these restrictions as they figure in definitiorgfthe
shifts-torelation, used in the typing ruleBor each impredicative
type(d) — Nr:if f: (&) — Nz, then the value off (%) is essen-
tially independent of the values of the; |'s with tail (o) :> Ng.
For each flat typgg) — Nz (that for simplicity here we further
restrict to be a type-level-1 computational type}: if': (&) — Ny,
then|f(Z)| < p+ V{|z:| ' tail(o;) = N }, wherep is a second-
order polynomial over elements ¢fz;| | tail(o;) <: Nz }.

Typing rules The ATR;-typing rules are given in Figure 7. The
rules Zero-l, Const-I, Int-1d-] Subsumptionop-I, —-I, and —-E
are fairly standard (with one subtlety-n-E discussed below). The
if-l anddown-I rules are designed to allow definitions for functions
like the F» example 0f§3.1° The remaining three ruleBhift (that
coerces types) anfff-ld-1 andcrec-1 (that relate to recursions and
the split type contexts) require some discussion.

SHIFT. TheShiftrule covariantly coerces the type of a term to be
deeper. For types of shape— N, the core idea in the definition of
the shifts-to relationc) is: (N, — Ni,) o< (N, — N/) when
depth(N.,) = depti(Nr,) + (dept(N.;) — dept{Nz,)). The
motivation for this is that ifp andq are second-order polynomials
of depthsd, andd,, respectively, and: is a base-type variable
appearing irp that is treated as representing a degthsalue (with

d. < dg),thenplz — ¢]is of depth< d,+(dq—d.). The full story
for o has to account of the side8l @@and) of component types,

.,bx) — b € R, itturns out that
R’s restrictions limit a typey crec-expression to at mogt-many
recursions, where is some fixed, depth-second-order polyno-
mial. ExcludingN,, ..., Ne,_, in~ forbids deptto, ..., d—1 ana-
logues of safe-values from figuring in the recursion, consequently,
the recursion cannot accumulate information that could unbound-
edly change’s value.

ScHoLIUM 2. ATR; has no explicito-types.Implicitly, a subex-
pression(\. f . F) is of typey — ~ andcrec-l plays that roles

of both —-I and—-E. ATR;’s very restricted use of affinity per-
mits this—-bypass. Dropping th&ailPog f, F) side condition in
crec-| fails to add many interesting typable programs because of
the empty affine zone restriction ir-E. If ATR; had explicit—-
types, then dropping thgailPog f, E) becomes more interesting.

Some examples Figure 8 contains five sample progratfgzor
the typing offcat, cats type is shifted tatNo, — N,, — N, and
prn’s type is shifted tdNo, — No, — No,) — No, — No,. The
final program computes
Af€(N—=N),zeN.

{(uk: < z) [k = max;<xlen(f(i))], if such ak exists;

(®)

T, otherwise;

wherelen(z) = the dyadic representation efs length. This is a
surprising and subtle example of a BFF due to Kapron [14] and
was a key example that lead to the Kapron-Cook Theorem [15]. In

impredicative and flat types, and more. In the interest of space, we findk we assume we have: a typlin, — No, — No,) definition

omit the fussy details of the definition of in this version of the

9E.g.: Suppos&’ = f:Noy — Nog, 2: Neog, ¥: Nogy g: Noy — Noy —
No, and thatg denoteshz,y € N.(x mod (y + 1)). ThenI;_ +
g(f(z),y): Noy, butT;_ = down(g(f(z),y),y): No, and this term is
equivalent tof (z) mod (y + 1) since(z mod (y + 1)) < y. From this
point is it clear how one can construct a tyfé,, — No;) — N, —
No, definition of F;. The mild bit of imprediticativity inif-l anddown-l
gets around much of the usual irritations of ramified type systems.

POPL06 5

of (z,y) — [1,if z = y; ¢, otherwisg, a type{No, — Ng,)
definition oflen, a type{No, — Ng, — Ng,) definition ofmax

and a typetN,, — N,,) definition ofz — x + 1. It is an easy
exercise to fill in these details. A much more challenging exercise
is to define (5) vigorn’s.

10For the sake of readability, we use thet and letrec constructs as
syntactic sugar, where in this papget « = D in E) = E[z «— D]
and(letrec f =D in E) = E[f <« (crec0 (\f.D))].

2006/1/7

zero-l: ——— Const-I: ——
XFO0:Te kT,
Y S: YES:
Subsumption: 7 (o <:7) shift =27 (0 xT)
YXES:T YES:T

{ZiFpiiToy, bim1,2
"XoUX1 (VS S1): Ty
{ZiFpirToy Yi=1,2 {ZiFpiiTo, biz1,2

+-I: *-|:
Y1 UXa bk p1+p2:To, Y1 UXa bk prxp2:Te,

Figure 9. The additional size typing rules

Semantics The CEK machine folPCF also provides an opera-
tional semantics oATR;. For a denotational semantics Wweovi-
sionally take the obvious modification ¢fCF’s V-semantics (in-
troduced ing2). We discuss some serious troubles with this seman-
tics in§4.2.

Some syntactic propertiesThe number ofusesof variable v

in expressionE (written: usegv, F)) is defined similarly to the
count of free occurrences af in E except thatusesv, (if Eo

then F; else E»)) = use$v, Fo) + usesv, F1) V usesv, E») and

useswv, (crec k (A-f . Ep))) = unboundedf v occurs free in the
crec-expression.

LEMMA 3 (One-use)For T'; f:v + E:~ and forT;_ + (crec k
(Arf.E)):v, we have us€g, F) < 1.

LEMMA 4 (Subject reduction)lf T'; A - E:~ and E 3n-reduces
to E', thenT; A - E': .

LEMMAS. T AR AZ.E: (6) > N < T',#:6;AF E:N¢.

Lemma 5 acts as a reality check ars definition.

4. Polynomial-size boundedness
The goal of this section is to establish that ev8MR, expression

E1:N: — No =
Aw. let h1:No — No — No =
Az,y. if x # e then (dup (g1 y) (g1 y)) else w
in prn hy w

/I Assumeyy: No — Ne.

Es:N: — Ny =
Aw. let ha: Ny — No — No =
Az, y. if x # e then (g2 y) else w
in prn ha w

/I Assumeyz: N — No.

Figure 10. Two problematic programs

(b) The typing rules for the second-order polynomials under the
size types consist dfl-I, —-I, and—-E from Figure 2 and the rules
of Figure 9.

We provisionallytakeL[o] = L[shapéc)] andL[X + p: o] =
as before. Later a pruned version of thesemantics will end up as
our intended semantics for the second-order polynomials to parallel
our pruning of thé-semantics foATR;.

We note a few basic properties of the second-order polynomials
under the size types. In particular, Lemma 8 connects the depth of
a second-order polynomigland the depths of the types assignable
to p. Terminologyinductively define), by:0;, =0and0,_,, =
Az .0_. We often write0 , for L[+ 0. o

LEMMA 7 (Subject Reduction)SupposeX + p:o and p [n-
reduces te’. ThenX - p': 0.

LEMMA 8 (Label SoundnessBuppose: - p: o has a derivation
in which the only types assigned by contexts are fijoih } U
{(N¥) = Ngo | k> 1}. Then deptlp) < depth{(o).

LEMMA 9. 0. is the<,-least element of[~].

The following definition formalizes what it means for AR,
expression to be polynomially size-boundBdB. If v is anATR;
variable, we treav| as a size-expression variable.

has a second-order polynomial size bound, where the form of the DEFINITION 10. Suppose is aATR; type,I'; A is aATR; type

size bound is determined by the type of tRER; expression (The-
orem 24). We show if4.2 that if this size bound is to be true at all,
thenV, the ndve denotational semantics f& R, inherited from
PCF, must be trimmed? This trimming is done ir§4.3 for impred-
icative types and i§4.4 for flat types. The result of this trimming is
Vwt, thewell-tempered semantiod Definition 20, under which we
can prove the polynomial-size boundedness theoreyh.;h We do
not have the evidence to claim thdt is in any way “canonical.”
However, we strongly suspect thay ramified type system that
characterizes the type-level 2 basic feasible functionals will have
to include restrictions analogous to those ¥ar. .

4.1 Size bounds

The size types To work with size bounds, we introduce thize
typesand a typing of second-order polynomials under these types.
The size types parallel the intuitionistic part®df R, ’s type system.

DEFINITION 6.

(a) For eachATR; typeo, let|o| = 0[N — T]. (E.g.,|Nc —
No| = Te — T,.) These|o|'s are thesize typesAll the ATR;-
types terminology and operations (e ghapetail, <:, «, etc.) are
defined analogously for size types.

11 As noted in footnote 4, this sort of tirmming is not new. Arguably, the
simpliest denotational semantics for the simply-typedalculus over base
type N is H, the full set-theoretic hierarchy ovgro, 1 }*. However, for
PCF (= the simply-typed\-calculus + a fixed-point combinatofl{ must

be trimmed in order for fixed-points to have a definite meaning.

POPL06

context, ang € V[I'; A].

(@75 Al = {Jo] = Jo| | (I3 A)(0) =0},

(b) Definelp| € L[|T; A[] by |p|(Jv]) = |p(v)|-**

(c) Supposd’; A + E:c and|T; A| - p:|o|. We say thap
bounds the size d (or, p is asize-bound for) with respect to
I'; Awhenforallp € V[T; A], [VIE]p| < L[p] |pl-

4.2 Semantic troubles

A naive (andfalse!!) statement of polynomial-size boundedness for
ATR; would be:For eachT'; A + E: o, there is a second-order
polynomialpg that bounds the size @& with respect td"; A. The
following illustrates the problems here.

EXAMPLE 11. Let F; and E» be as in Figure 10, leprnbe as in
Figure 8, and ledupbe anATR;-program such thafdupw z) =
|w|-manyz’s concatenated together; $dupw z| = |w| * |z|.

(@) Supposd’s = gi:No — N.andps = {g1 — Az €
N.z}. Then|V[Ei] pi| = An € w.n?". Note|pi(g1)| = An €
w.n is a polynomial function. The problem is that(g:) =
Az € N.z subverts the intent of the type-system by allowing an
unrestricted flow of information about “safe” values into “normal”
values.

(b) Supposd’s = g2:No — No andps = {g2 — Az €
N.z@z}. Then|V[E2] p2| = An € w.n - 2". Note|pz2(g2)| =

12N.B. The| - | in “|v|” is syntactic, whereas thie | in “|p|” and “|p(v)|”
are semantic.

2006/1/7

An € w.2nis apolynomial function. The problem s that(g2) = sion (¢t r) where thet is of an impredicative typee — 7 with
Ay € N.y @y subverts the “poly-max restriction” on the sizes of tail(c) :> tail(7). A variablev is ashadowed free variablfor s
“safe” values discussed if4.4. when all ofv’s free occurrences ip are shadowed; otherwiseis

The problem of Example 11(a) is addresse@4t8 by pruning anunshadowed free variabfer p.

the £- andV-semantics to restrict impredicative-type values. The

problem of Example 11(b) is addressecih4 by further pruning 4.4 Flattypes and well-temperedness

to restrict flat-type values. Safe upper bounds The restriction to thé/hw-semantics solves
the problem with impredicative types, bubtthe problem with flat
4.3 Impredicative types and nearly well-foundedness types. Below we work towards addressing the flat-types problem by

noting thatATR; expressions that do not involve flat-type variables
have upper bounds that asafe(Definition 16). The next section
shows that the problem with flat-types can be solved by requiring
each flat-type length to have a safe upper bound.

Failing to restrict impredicative-type values leads to problems like
that of Example 11(a). These problems can be avoided by requiring
that each such value have a length thatdarly well-founded

DEFINITION 12. An{ € L[~] is y-well-foundedvheny = T, or Safe second-order polynomial bounds are a generalization of

elsey = (o1,...,0%) — Tr and, for each with tail(o:) :> Ty, thepoly-maxbounds of Bellantoni and Cook [2]. In their formalism

¢ has no dependence on itgh argument. Ar¢ is nearly y-well- if one has a type-level 1 functiofi defined over normal variables

foundedwhen there is &-well-founded?’ such that < ¢'. x1,...,z; and safe variableg, ..., yx, then for all values of
Why nearlywell-founded? The natural sourcesAT R, -terms x1,..., Yk, We have

with impredicative types are thi&then-else anddown constructs. |f(&9 < p+max(|yil,---.,|yx]) (6)

Letc = Az, y, z. (if = then y else z) andd = Az, y . (downz y), . .

wherel ¢ (N2,N2,) — Np/, b d:(No,N) — Ny, and wherep is polynomial overiz1|, ..., |z;|. Such poly-max bounds

play a key role in the complexity-theoretic aspects of systems
L[(Nz,N./) — Ny|[. Neither || nor |d| is well-founded inspired by Bellantoni-Cook’s formalism. Definition 16 lifts these
Since|c7\ =)\k,m,n.[m-, if k — 0; n, otherwisé and |d| — poly-max bounds to type-level Zonvention:In writing p =

Mk, m . min(k, m). However, both|c| and |d| are nearly well- (vs1 ... sx), we mearv is a variable and, wheh = 0,p = v.

L > L'. Thus|c € L[(Nz,N2,) — Ng|] and |d|] €

founded agc| < Ak, m,n.(mVn)and|d| < Xk, m.m. DEFINITION 16 (Strictness, chariness, and safety). Supfosg
. o, andr range over size types and that- p: .

LEMMA 13. Supposel |- p:a, p € L[Z], andp(z) is nearly (a) We say thap is b-strict with respect t& whentail (7) <: b

3(x)-well-founded for eactr € preimage(X). ThenL[p] p is and every unshadowed free-variable occurrengenias a type with

nearly o-well-founded. tail <: b.

Lemma 13 indicates that a semantics for the second-order poly- . (P) We say thap is b-charywith respect t& wheny = b and
nomials based on nearly well-foundedness will be well defined. &ither ()p = (v g1 ---qx) with k > 0, g1, ..., g b-strict, and
Terminology: The restriction of f € (Xi,...,Xs) — Y t0 b is the <:-minimal type assignable tp with respect ta%, or (ii)
(X},...,X}) — Y (whereX}| C Xi,..., X} C Xp)is Azy € p=p1V---Vpm, Where_ ea__clpi satisfies (i). (Note thad sneaks
X, xn € Xho f(z1,. .., T) in asb-chary; takem = 0 in (ii).) _ _

(c) A p is v-safewith respect tax if and only if ¥ + s:~ and:
DEFINITION 1_4 (The _nearly well-founded semantics). () if v = Tao,, thenp =nwt ¢ V r Whereg is ~-strict andr is

(a) Inductively definelnws[v] by: Lows[TL] = w. Fory = ~-chary; (i) if v = To,, thenp =n.¢ ¢ + r whereq is a~-strict

(01,...,06) = Tr, Lawe[y] is the restriction tdLuwe[o1], - . ., polynomial and- is v-charyr; and (iii) if y = o — 7, then(pv)

Liwt[or]) — Lowt[T L] of they-nearly well-founded elements of s r-safe with respect t&, v: o.
L[~]. DefineLyuw[2] andLuwe[E F p: 7] in the obvious way.

(b) Inductively defineVuw:[v] by: Vawt[Nz] = N. Fory = Example:ln the;C right-h_and si_de of (6), the is equivalent to
(01,...,0%) — Np, Vawt[7] is the restriction tqVawe[o1], - - -, a To-strict term,\//_, |y;| is equivalent to & ,-chary term, and,
Vawt[0k]) — Vawt[NL] Of the f € V[+] with |f| € Lawe[|Y]]- hence, the entire right-hand side is equivalent To,ssafe term.
DefineVawt[['; A] andVowe [T; A F E:~] in the obvious way. Terminology:We say that a type judgmentfigt-type variable

(©)p =nwt P’ MeanLywt[Z F p:] lp| = Lawt[Z F p":7] |p] freewhen no variable is explicitly or implicitly assigned a flat type
for all |p| € Lowt[Z]. Define<pnwe, >nwi, ... analogously. by the judgment. We note:

There is still a problem with impredicative-type values. In giv- Lemma 17. If T'; A + E: ¢ is flat-type variable free, then there is
ing closed form upper bounds on recursions, we often need a well- 5 |v|-safepx with respect tdT'; A| such thaipz bounds the size of
founded upper bound on the value of a variable of an impredicative £ with respect td™; A.
type. There is no effective way to obtain such bound. To deal with
this we introduce a combinatgr such thatp p) stands for an ar- SoifI'; A + E: o is flat-type variable free, but nonetheless
bitrarily chosen well-founded upper bound pri® In most uses, s a flat type, then by Lemma 1% has ao|-safe size boungpz.
(p p)-expressions are destined to be substituted for by concrete,(Moreover, thigpg turns out to be flat-type variable free.)
well-founded terms. As this version of the paper omits the proofs
in which p plays a role, we omit formally defining here.

The following terminology is useful in working with terms
involving impredicative types.

Well-temperedness To avoid problems like the one of Exam-
ple 11(b), flat-type values need to be restricted. Lemma 17 tells us
that every flat-type variable fre®€T R, term has a safe upper bound.
This suggests that the solution to the flat-type problem is to require
DEFINITION 15 (Shadowing). Suppose F p: 0. An occurrence all flat-type values to have safe size bounds. We call this property
of a subtermr of p is shadowedvhen it properly appears withinan- well-temperednesseaning: all things are in the right proportions.

other shadowed occurrence or else it has an enclosing subexpres- . .
9 P DEFINITION 18. An{ € Lywe[v] is v-well-temperedvhen is

13This is analogous to the situation where one kngws O(n) and picks strict or else wheny is flat and there is a closed;safep with
an arbitrarya € w such thatf(n) <a-(n+1)foralln € w. £ < Lawe[p]-

POPL06 7 2006/1/7

LEMMA 19. Suppose F p: o, p € Luwt[2], andp(z) is X(z)-
well-tempered for eacl € preimage(X). ThenL,we[p] p is o-
well-tempered.

Lemma 19 indicates that a semantics for the size expressions

based on well-temperedness will be well-defined.

DEFINITION 20 (The well-tempered semantics).

(@) Inductively defineCw[o] by: Lw[Tr] = w and, foroc =
(01,...,0k) — Tr, Lwi[o] is the restriction td Lwi[o1], - .-,
Lwi[or]) — Lwt[Te] of the o-well-tempered elements of
Luwt[o]. Lwie[2] and Lwi[X + p: o] are defined in the obvious
way.

(b) Inductively defineVw¢[o] by: Vwt[NL] = N and, foroc =
(01,...,0k) — Nz, Vui[o] is the restriction tq Vi [o1], - - -,
Vwt[or]) — Vat[NL] Of the f € Vawe[o] with | f| € Lywi]|o]].
Vi [T; A] @andVyt [I'; A + E: o] are defined in the obvious way.

(c) We writep =w¢ p’ WhenLu[3 F p:o] |p| = Lwt[Z F
p':o]|p| for all |p] € Lwi[Z]. We define<yt, >wt, ... analo-
gously.

There is still a problem with flat-type values. To give closed
form upper bounds on recursions, we sometimes need to decom
pose a flat-type expression into its strict and chary parts. To help
with this we introduce two new combinatorg,andr, which are
roughly analogous to thp combinator of§4.3. Since we do not
need to use; andr explicitly in this version of the paper, we omit
their definitions and development. However, thanks in patitand
r we have the following second-order polynomial decomposition.

LEMMA 21 (Safe polynomial decompositiorfpuppose: + p: b,
where{ y1,...,yx } = {v | ¥(v) = b }. Then we can effectively
find ab-strict ¢ and ab-charyr such thatp <.+ ¢ ©® r Vv \/f:1 Y,
where® =V, if b is oracular, and® = +, if b is computational.
Moreover,r can be chosen to have no free occurrence of@ny

We state another key property of safe terms. Note thatthe
in the conclusiortannot in general, be improved te.:.

LEMMA 22 (Safe polynomial substitutionix . Given ay-safe
polynomial pg, a o-safe polynomialp;, and a variablev with
3(v) o, we can effectively find a-safe polynomiap; such
thatpo[v < p1] <wt Po-

4.5 The polynomial size boundedness theorem

We now have a reasonable semantics AR, and the tools to
establish aafe polynomial boundednessult forATR;, where:

DEFINITION 23. Suppos&; A - E: 0. We say thap is a|o|-safe
second-order polynomial size bouor £ with respect tol'; A

whenp is a|o|-safe polynomial with respect 1@"; A| such that,
forall p € Vi [I; A], [Vt [E] p| < Lwt[s] ol

THEOREM 24 (Polynomial BoundednesshivenT'; A + E:~,
we can effectively fingg, a |vy|-safe second-order size-bound for
E with respect td; A.

This theorem’s proof is a structural induction on the derivation
of I'; A + E:~. Handling each of th&TR; constructs, other that
crec, is reasonably straightforward. Handlirgec is more work,
but the argument is clean and fairly direct.

5. Polynomial-time boundedness
5.1 Time bounds

The next major goal is to show that eveATR; expression is
CEK-computable within a second-order polynomial time bound
(Theorem 44). The first step towards this goal is to set up a formal

POPL06

framework for working with time bounds. We start by noting the
obvious: Run time is not an extensional property of programs.
That is,Vy¢-equivalent expressions can have quite distinct run time
properties. We thus introducg, a new semantics foATR; that
provides upper bounds on the time complexity of expressions.

The setting for time complexities

CEK costs.As previously stated, our cost model f&TR;
computations is the CEK cost model.

Worst-case bound& [E] will provide an upper bound on the
CEK cost of evaluating?, but not necessarily a tight upper bound.

No free lunchAll evaluations have positive costs. This even ap-
plies to “immediately evaluating” expressions (eJgexpressions),
since checking if something “immediate-evaluates” counts as a
computation with costs.

Inputs as oraclesWe treat each type-level 1 inpyt as an
oracle. In a time-complexity context this means thafamthought
of answering any query in one time step, or equivalently, any
computation involved in determining the reply to a query happens
unobserved off-stage. Thus the cost of a query favolves only
(i) the time to write down a query;, and (ii) the time to read the
reply, f(z). The times (i) and (ii) are roughlyz| and |f|(|z]|),
respectively. Thus our time bounds will ultimately be expressed in
terms of thdengthsof the values of free and input variables.

Currying and time complexity In common usage, “the time com-
plexity of E” can mean one of two things. First, whénis of base
type, the phrase usually refers to the time required to compute the
value of E. We might think of this aiime past—the time it took to
arrive atE’s value. Second, whef is of an arrow type, the phrase
usually refers to the function that, given the sizes of arguments, re-
turns the time the procedure describedmbwvill take when run on
arguments of the specified sizes. We might think of thisras in
possible futuresn which E’s value is applied. An expression can
have both a past and futures of interest. Consid&y E1) where

Ey is oftypeN. — N. — N, andE is of typeN.. Then(Ey E1)

has a time complexity in the first sense as it took time to evaluate
the expression, and, sin¢&, E1) is of typeN. — N, it also has

a time complexity in the second sense. Now considerfigstself.

It too can have a nontrivial time complexity in the first sense and
the potential/futures part dfy’s time complexity must account for
the multiple senses of time complexity just attributed iy E1).
Type-level-2 expressions add further twists to the story. Our treat-
ment of time complexity takes into account these extended senses.

Costs and potentials In the following the time complexity of an
expression®’ always has two componentsccastand apotential

A cost is always a positive (tally) integer and is intended to be an
upper bound on the time it takes time to evaluateThe form of

a potential depends on the type Bf Supposer is of a base (i.e.,
N.) type. ThenE’s potential is intended to be an upper bound on
the length of its value, an element ©f The length ofE’s value
describes the potential df in the sense that wheR’s value is
used, its length is the only facet of the value that plays a role in
determining time complexities. Now suppoggis of type, say,

N. — N,. ThenE’s potential will be anfg € (w — w X w)

that maps @ € w (the length/potential of the value of an argument
of E) to a(cr,pr) € w x w Wherec, is the cost of applying the
value of E to something of lengtlp andp, is the length/potential

of the result. Note thafc,, p,-) is a time complexity for something

of base type. Generalizing from this, our motto will be:

The potential of a type-(c — 7) thing is a map from poten-
tials of type-o things to time complexities of type-T things.

Our first task in making good on this motto is to situate time
complexities in a suitable semantic model.

2006/1/7

A model for time complexities Thetime typesre the result of the

following translations oATR; types:|lo|| £ T x (o)), (N.) &'

de

e and((o — 1) £ (o) — || So,[NL, — Nz, — N, =
T x (TL1 — T x (TL2 — T X TLO)) al’]dH(NL1 — NL2) —
Neol|=Tx((Tp, = TxTr,) = TxTpr,). Thetime types are
thus a subset of the simple product types of@r, T, To, Too,
... }. Theintentis thaT is the type of costs, th€.'s help describe
lengths /||| is the type of complexity bounds of typgebjects, and
{v)) is the type of potentials of typg-objects. (Note{(c — 7))’s
definition parallels the motto.)

Our proof of polynomial time boundedness faTR; (Theo-

rem 44) needs to intertwine the size estimates implicit in poten-
tials and the size bounds of Theorem 24. The semantics for the

time types thus needs to be an extension of fhg-semantics

(Definition 20(a)). To define this extension we use a combina-

tor, Pot, defined in Definition 35 below. For the moment it is
enough to know that, for eachTR:-typec andp € Luw¢[{o)],
Pot(p) € Lwt[|o|] is a canonical projection ¢f to a typejo| size
bound. Following the definition dPot, Lemma 36 notes that all of
the notions introduced between here and there mesh properly.

DEFINITION 25 (Lt extended to the time types). Suppesand

7 areATR; types. TherCy.[|lo /] &' w x Lot [(oN], Lot [(NL)]

&, and Lwt[{c —)] ©' the set of all f, a monotone

Kleene-Kreisel function fronCy[{o)] to Lw:[||7]|], such that:

(i) Pot(f) € Lwi[lo — =] and (ii) Pot(f(p1)) = Pot(f(p2))
whenevePot(p1) = Pot(p2).

Condition (i) above restrict€.[{(c — 7))] so that the pro-
jection Pot acts as advertised. Condition (i) restricts egthe
Lwi[{(c — 7)] so that the size information ifi(p) depends only
on the size information ip.

We can now define the time-complexity and potential interpre-

tations of theATR; types. P[-] is a notational convenience.)

DEFINITION 26. Supposes is an ATR;-type. Then7 [o] o

Lulllo][] andPlo] < Lua[(o)].
The 7 -interpretation of constants and oraclesThe following

two definitions introduce a translation from th,. model (Def-
inition 20(b)) into theZ model. We use this translation to assign

time complexities to inputs: string/numeric constants and oracles.

DEFINITION 27. Let |l £ (1 V |a], (a))) and (a) £ |

eacha € Vit[NL].

By Lemma 36(a) belowjja|| € T[N.]. We view ||a| as the
time complexity of the string/numeric constantThe interpreta-
tion of the cost component ¢ifz|| is that cost of evaluating the con-
stanta is the cost of writing dowm character by character. (When
a = €, we still chargel.)

al for

DEFINITION 28. Let| f|| £ (L, (f)) and (f) & \p € P[o].

max { ||(fz)|| ' {z) < p}foreachf € Vyi[o — 7].
By Lemma 36(a) below| f|| € 7o — 7]. We view|| f|| as the

time complexity of f as an oracle: the only time costs associated

with applying f are those involved in setting up applicationsfof
and reading off the results. Recall that under call-by-valug; a
expression immediately evaluates to itself. The functfonill be
treated analogously to)eterm. Hence, the cost component|df|

is 1. The definition of((f)) parallels both our informal discussion

LEMMA 29. For f € Vwt[(Nz,,...,Nz.) — N], {(f) =@
whereg; = Ap;s € w. (1,¢i+1) (for1 < i < k)andgr = Apx €
w . (LVIF1@). 1£13)-
T-Applications
DEFINITION 30.

(a) Supposeég € T[oc — 7] andt1 € T[o], wherety =

(co,po), t1 = (c1,p1), and(cr,pr) = po(p1). Thento « ¢t
(co+ec1+ e +3, pr).
(b) Supposéy € T[(o1,...,08) — 7], t1 € T[o1], ..., tx €

Tlow]. Thento x T E'¢o % t1 % - - % tx. (Thex left associates.)

Q
@
o

By Lemma 36(b) belowto x t1 € T[7] whenty € T[o — 7]
andt; € 7 [o]. Supposé (resp.,t1) is the time complexity of a
type{oc — 7) expressionF, (resp., types expressionf;). Then
to x t1 is intended to be the time complexity 6Ey E1). The cost
component of, « ¢; is: (the cost of evaluating’y) + (the cost of
evaluatingE;) + (the cost of applyingEy’s value to E4’s value)

+ 3, where3 is the CEK-overhead of an application. The potential
component is simply the potential of the result of the application.

T-Environments As a companion t@ -application we shall de-
fine an analogue currying i@ . Before doing that we need to in-
troduce7 -environments. Recall that in a call-by-value language,
variables namealues[23], i.e., the end result of a (terminating)

evaluation. Thus, a value does not need to be evaluated again, at

least no more than an input value does. HenceZifenvironment
maps a variable to a typetime complexity(c, p), thenc should
be:1 V p, when~ is a base type, ant when~ is an arrow type.

DEFINITION 31. Suppose andr vary overATR; types and™; A

is anATR; is type context.

@5 A £ {v [l (T;A)(v) = o .

(b) Forp € P[b], val(p) £ (LV p,p).

(c) Forp € Plo — 7], val(p) £ (L, p).

(d) Tao] £ {val(p) : p € Plo] }.

(e) T[I'; A] is the set of all finite maps of the forfiv, —
t1,..., 0 — tg }, where{vi,...,vx } = preimagé¢l’; A) and
t1 € Tl (T; A)(v1))]; - - -, tr € Tl (T'; &) (vi))]-

() For eachp € Vu[I'; A], define|lp|| € T[I;A] by
lloll (v) = ||p(v)||- Such at|p|| is called aroracle environment

We usep as a variable ovef [I'; A]. N.B. Not every7 -envi-
ronment of interest is an oracle environment.

T-currying Here then is our time-complexity analogue to curry-
ing. Recall that7 [I'; A + E: 7] will be (when we get around to
defining it) a function fron [I'; A] to T [].
DEFINITION 32. Suppose thdf; A is aATR; type context with
(T;A)(v;) = o4, fori = 1,...,k; thatT'; A’ is the result
of removingvi: 01 from I'; A; and thatX is a function from
T[r; A] to T7]. ThenA,(vi, X) is the function fronZ [I; A’]
to 7 o1 — 7] given by:
A X) e € (L awePln].(Xg)), (@)
whereo’ € T[I"; A'] andg;, = o' U {v1 — val(p) }. Also, for
k>1, A(vi,ve, .o, X) AL (01, Ay (v, .., 0k, X)),
Note the complementary roles &f, and*: A, shifts the past
(the cost) into the future (the potential) anghifts part of the future

of the notion of the potential of a type-level 1 function and the
definition of the length of functions i§2. One can show that when
f is a type-level 2((f)) is total. (The argument is similar to the
proof of the totality of the type-level 2 notion of length defined by
(3) in §2.) The following unpacks Definition 28.

(the potential) into the past (the cost). This being complexity theory,
there are carrying charges on all this shifting. This is illustrated
by the next lemma that shows haly, and« interact. First, we
introduce:

POPL06 9 2006/1/7

DEFINITION 33. dally(d, (c,p)) &

= (c+d,p) ford € wand
(¢, p), atime complexity.

LEMMA 34 (Almost then-law). Supposel’; A, X, 4, &, and 7
are as in Definition 32. Lef’; A’ be the result of removing
v1:01,...,05: 0 fromT; A, Leto € T[I; A] and leto’ be the
restriction ofp to the domain of definition df’; A’. Then
(As(v1,.. o, 06, X) 0') * 0(v1) % -+ - * o(vk)
dally(5-k+4+ 3% e, Xo),

where(ci,p1) = o(v1), ..., (ck, Dr) = 0(Vk).

®)

Projections The next definition introduces a way of recovering
more conventional bounds from time complexities. Note, by Defi-
nitions 27 and 28, and Lemma 29, wheis a string/numeric con-
stant or a type-1 oracle we can trdaf| as a function ofz|.

DEFINITION 35. Suppose and (o1, ...,0r) — Nr are ATR;
types.

(a) For eacht € T[o], letcos(t) d:efm(t) andpot(t) L (®).
(So,t = (cos(t), pot(t)).)

(b) For eacht € T[N_.], let Cost(t) = cos(t) andPot(t) =

pot(t) and, for eacht € T[(o1,...,0k) — N], let Cost(¢) S

— — def . — — —
Alz| . cos{tx ||z||) andPot(t) = A|z| . pot(t* ||z||), where|z| ab-
B
breviatedz1| € Lwi[o1], ..., |zk| € Lwi[or] and ||z|| abbrevi-
— — —
ates||z1[;. .., [|lzx]l. (So,tx [[z]| = (Cost(t)(|z]), Pot(t)(|2])).)
() For eaclp € P[], letPot(p) = Pot((1,p)).

Suppose€ is the time complexity of an expressidn of type
(¢) — Nr.Then bothCost(¢) andPot(t) are functions of the sizes
—

of possible arguments df. The intent is thaCost(¢)(|z|) is an
upper bound on the time cost of first evaluatiignd then applying
its value to arguments of the specified sizes and floatt) is an
upper bound on the length &f’s value.

LEMMA 36 (The consistency checkpupposer ando — 7 are
ATR; types.

(a) For eachz € Vyi[o], ||lz|| € T[o] andPot(z) = |z|.

(b) For eachty € T[o — 7] andt; € T[o], toxt1 € T[7].

(c) A, is well-defined in the sense that the left-hand side of (7)
isin7[o1 — 7] as asserted in Definition 36

Time-complexity polynomials To complete the basic time-com-
plexity framework, we define an extension of the second-order
polynomials for the simple product types ovierT., T,, ... under

the £-semantics. The restriction of these to the time types under
the Ly+-semantics are thBme-complexity polynomialgirst we
extend the grammar for raw expressions to incluéle: = (P, P)

| 71 (P) | m2(P). Then we add the following typing rules:

XF P:o1 X o2 {Ei-R;:cri}i:Lg {El_PiZO'i}i:LQ
2}—71'1‘(P)10'¢ PO Ps:o E}—(Pl,Pg)Z(HXO'Q
for second-order polynomials, whereo, andos simple product

types overT, T., To,... and® stands for any ok, +, or V.
Next we extend the arithmetic operations to all types by recursively

defining, for eachy and eachr,y € L[7], z © y %

*, ity =0

the usual thing if v is a base type

(mi(z) O mi(y), m2(z) © m2(y)), vy =0x7;

Az € L]o] . (z(2) ©y(2)),
The L-interpretation of the polynomials is just the obvious thing.
Note thatq; of Lemma 29 and the right-hand side of (8) are

ify=0—r

POPL06 10

T[Je=llell T[(ca Eo)l o= (co+2, po +1).
T[v] o = o(v). T[(ta Eo)] 0 = (co +2, 1).
T[(d Eo)] o = (co +2, (po — 1) V 0).
T [(down Ep E1)] ¢ = (co + c1 + po + p1 + 3, min(po,p1)).
T[(M. Ep)] 0 = Ax(v, T[E0]) o
T[(Eo E1)] e = (T[Eo] o) » (T[EA] 0)-
T[(if Eo then E; else E2)] o= (co +2,0) + (c1,p1) V (c2,p2).
Above:cis a constantg € 7[I'; A], and
(cirpi) =T[I;AF Ejio;] ofori =0,1,2.

Figure 11. The7 -interpretation oATR] .

well-typed, time-complexity polynomials. Also note that by Def-
inition 30(a), if ¢1 and ¢ time-complexity polynomials with
IT; Al F qit]lo — 7] and||T; Al| F g2:||o]|, theng: x g2 is

a time-complexity polynomial withT; A|| F g1 * g2: || 7]|.

5.2 The time-complexity interpretation of ATR

We here establish a poly-time boundedness resulAfioR;, the
subsystem oATR; obtained by dropping therec construct. Def-
inition 37 introduces th& -interpretation ofATR; and the proof

of Theorem 41 shows th&TR] -expressions have time complex-
ities that are polynomial bounded and well-behaved in other ways.
All of this turns out to be reasonably straightforwa@bnvention:
Through out this section suppose thato, andr areATR; types
andl'; A is anATR; type context.

DEFINITION 37. Figure 11 provides th&-interpretation for each
ATR; construct.

There are three key things to establish about the time complex-
ities assigned by, that they are: (i) not too big, (ii) not too small,
and (iii) monotone. “Not too big” means that the time complexi-
ties are polynomially bounded in the sense of Definition 38 below.
“Not too small” means thatos{7 [E] ||p||) > CEK-cost(E, p)
andPot(7 [E] ||p||) is at least as large &¥y [E] p|, but no larger
thanCost(7 [E] ||p||)- This “not too small” propertygoundness
is introduced in Definition 39. Finally, “monotone” means that
T[E]o < T[E] ¢ whenp < ¢'* and that wherZ [E] ¢ is a
function, it is point-wise, monotone nondecreasing. Monotonicity
is introduced in Definition 40 and plays an important role in deal-
ing with crec. Theorem 41 establishes that theinterpretation of
ATR] satisfies these three properti€onvention:Below let F
range over programming formalisms (e 4TR] andATR;).

DEFINITION 38 (Constructive polynomial-time boundedness). A
T -interpretation ofF is constructively polynomial-time bounded
when, for each¥-judgmentl’; A + E: o, we can effectively find

a time-complexity polynomial with |I'; A| + g:||o|| such that
TIET llpll < Lwi[al ol for eachp € Vi [I'; A].

DEFINITION 39 (Soundness). Al -interpretation ofF is sound
when, for eactF-judgmentl’; A - E: v and eachp € Vi [T; A],
we haveCEK-cost(E, p) < cos{T[E] ||pl|) and|Vui[E] p| <
Pot(T[E] [lpll) < Cost(TE] [|pll)-

DEFINITION 40 (Monotonicity). A7 -interpretation ofF is mono-
tonewhen, for eact¥-judgmentl’; A + E:~: (i) 7 [E] is a point-
wise, monotone nondecreasing function franfl’; A] to 7 [~],

4 ConventionForg, ¢’ € T[T; A], wewritep < o’ whenp(v) < o (v)
for eachv € preimage(T; A).

2006/1/7

and (ii) if v = (o0, ...,0k) — b, then the functiorl [I’; A] x The proof of this is a direct extension of the proof of Theo-
Tloo] x --- x T[ox] to T[b] given by (o, z0,...,zk) — rem 41 in which we solve the recurrences given by the definition of
((T[E] o) zo - .. xi) is pointwise, monotone nondecreasing. T(crec a (A-f.A))]. The presence of higher-type functions in

)) _ the recurrences is a manageable complication here.
THEOREM41. TheT -interpretation ofATR; is monotone, sound,

and constructively polynomial-time bounded. 5.5 Polynomial-time completeness
The proof is a logical relations argument. Finally, we note that each type-1 and type-2 BFF is computable by
) N] - someATR; program.Terminology:An ATR;-type~ is unhindered
5.3 An affine decomposition of time complexities when~ is a base type or else= (71, ...,y) — Ny, is strict and

When analyzing a program’s run time, one often must decompose Predicative with each: unhindered. By the definition of the-
its time complexity into pieces that may have little to do with the semanticsVuw:[v] = V[shapé~)] exactly wheny is unhindered.
program’s apparent syntactic structure. Theorem 43 below is a gen-))
eral time-complexity decomposition result fATR, expressions. ~ 1HEOREMA4S5. Suppose is a simple type oveN of level 1 or 2.
The ATR typing rules for affinely restricted variables are critical 1 hen the class of type-BFFs = { V[E:~] | o = shap&y)
in ensuring this decomposition. The decomposition is used to ob- @1d" is unhindered-.

tain the recurrences needed to analyze the time complexiyeof

expressiong® To help in the theorem’s statement, we introduce: The C containment follows by straightforward programming.

The D containment follows by Theorem 44.
DEFINITION 42.

@) (c1,p1) W (c2,p2) def (c1 + c2,p1 V p2), where(ci,p1),
(c2,p2) € TH]. (Clearly, (c1, p1) (¢, pna) € T[] 6. Related work | o
(b) For eachATR; -type v, definee, inductively by:en, = € Ramified types based on Bellantoni and Cook'’s ideas, higher types,
ande,—.» = Az . e,. (Clearly, e,: vy and| Vi [e,] po| = lel') and.linear types are common features of work on implicit com-
(C) Given f: (0-1’ ce Uk) — Nz, an expression of the form p|6XIty (See HOfmanr_l’S survey [10]), but most of that work has fo-
(f E1 ... Ey)is called afull applicationof f. cused on guaranteeing complexity of type-level 1 programs. The
ATR; type system is roughly a refinement of the type systems of
THEOREM43 (Affine decomposition)Supposé’; f: v+ E:Npr,, [12, 13] which were constructed to help study higher-type complex-
wherey = (Nz,,...,Ng,) — Nz, € R and TailPogf, E). Let ity classes. Also, the type systems of this paper and [12, 13] were
¢ denote the substitutioff < ¢,]. Then greatly influenced by Leivant’s ramified type systems [17, 16].
7 The time-complexity cost/potential distinction appears in prior
T[E]e < TIECe W (T1f1o)*t), ©) work. A version of this distinction can be found in Sands’ Ph.D. the-
for eacho € T[T; f:~], where(f Ef ... E}),....(f Ef ... sis [26]. Shultis [28] sketched how to use the distinction in order to
Ef) are the full applications off occurring in £ and t; = give time-complexity semantics for reasoning about the run-time
Vi val(T[Ei]) o, forj =1,... k. programs that involve higher types. Van Stone [29] gives a much

more detailed and sophisticated semantics using this distinction.

By Lemma 3 we know that there is at most one use of an affinely Very roughly, Sands’, Shultis’, and Van Stone’s work was targeted
restricted variable in an expression. In terms of costs, (9) says thattoward giving static analyses to extract time-bounds for functional
the cost of evaluating’ can be bounded by the sum of: (i) the cost programs that compute first-order functions. The time-complexity
of evaluatingF ¢, which includes the all of the costs &f except semantics of this paper was developed independently of Shultis’
for the possible application of the value ¢fto the values of its and Van Stone’s work.
arguments, and (igos((Z [f] o) = t), which clearly bounds the
cost of any sucly application. In terms of potentials, (9) says that . .
E is size bounded by the maximum of (i) the size of the value of 7. Possible extensions
E ¢, which covers all the cases whefeis not applied, and (ii) Recursions with type-level 1 parameterdn work extending the

pot((T[f] o) =t), which covers all the cases whefds applied. results of this paper we have a programming formaliairRs, that
If (9) solely concerned CEK costs, the above remarks would extend_sATRl to permit type-le_/el 1 parametersdrec-recursions.
almost constitute a proof. However, (9) is ab@uinterpretations In particular,ATR; is expressive enough to give a continuation-

of expressions and [E] is an approximation to the true time passing-style definition oprn. The proofs of polynomial-size
complexities involved in evaluating. The theorem asserts that ~boundedness and of polynomial-time boundednes#\idr, are
our 7 -interpretation ofATR; is verisimilar enough to capture this ~ more involved than those f&TR1, but not excessively so.

property of time complexities. This later requires a little work.))))
Type checking, type inference, time-bound inferenc&Ve have

5.4 The time-complexity interpretation of ATR; not studied the problem &TR; type checking. But SincATR; is

just an applied simply typed lambda calculus with subtyping, stan-
dard type-checking tools should suffice. Type inference is a much
more interesting problem. We suspect that a useful type inference
algorithm could be based on Frederiksen and Jones’ [7] work on
applying size-change analysis to detect whether programs run in
polynomial time. Another interesting problem would be to start

THEOREM44. TheT -interpretation ofATR; is monotone, sound, ~ With a well-typedATR; program and to then extract reasonably

We are now consider the time complexity propertiesreé expres-
sions. This version of the paper omits the details of this, but the idea
is simply that we use Theorem 43 to defii§(crec a (A f . A))]
interms of7 [(crec (0 a) (A f. A))]. This gives us a recurrence
equation for eachrec expression so that we can now prove:

and constructively polynomial-time bounded. tight size and time bounds.

15The theorem presupposes tHaf - | is defined orcrec expressions. But, Lazy evaluation To handle a call-by-name or a call-by-need ver-
since no affinely restricted variable can occur free in a well-typed- sion of ATRy, one WOl_“d: 0] construct an ab_stract machine for
expression and since the application of the theorem will be within an this lazyATRy, (ii) modify the 7-semantics a bit to accommodate
induction, this presupposition does not add any difficulties. the lazy constructs; and (iii) rework thiE-interpretation ofATR;

POPL06 11 2006/1/7

which would then have to be shown monotone, sound, and con- [6] M. Felleisen and D. Friedmagontrol operators, the SECD-machine,

structively polynomial-time bounded. If our lazyfR; allowed in- and the lambda calculysFormal Descriptions of Programming
finite strings, then th&,,s-semantics would also have to be mod- Concepts Ill, 1987, pp. 193-217.

ified. Note that Sands [26] and Van Stone [29] both consider lazy [7] C. Frederiksen and N. JoneRecognition of polynomial-time
evaluation in their work. programs Tech. Report TOPPS/D-501, DIKU, University of

Copenhagen, 2004.

Lists and streams There are multiple senses of the “size” of a [8] O. Goldreich, Foundations of cryptography, Vol. I: Basic topls

list. Eor example, the run-time oéverseshould depend on just Cambridge University Press, 2001.

a Ilst_s ‘Iength, whereas th(_e run-time of_ a’search depends on both [9] D. J. Gurr, Semantic frameworks for complexigh.D. thesis,

the list's length and the sizes of the list's elements. Any useful University of Edinburgh, 1990.

exte!‘lsmn ofATR, that .mCIUdeS lists needs to account for these [10] M. Hofmann,Programming languages capturing complexity classes
multiple senses of size in both the type system and’the and7 - SIGACT News31 (2000), 31-42.

semantics. If lists are combined with laziness, then we also have the [11]
problem of handling infinite lists. HowevekT R, and its semantics
already handle one flavor of infinite object, i.e., type-level 1 inputs,
so handling a second flavor of infinite object many not be too hard.

, Linear types and non-size increasing polynomial time
computationInformation and Computatiob83(2003), 57-85.

[12] R. Irwin, B. Kapron, and J. Roye®n characterizations of the basic
feasible functional, Part,|Journal of Functional Programmirid.

More general recursions The fact thatATR, can express at least (2001), 117-1583.

some linear continuations is indicative that our basic type system [13] , On characterizations of the basic feasible functional, Part

and semantics can be extended to handle a reasonably general I, unpublished manuscript, 2002.

class of linear recursion schemes. Nonlinear recursions (e.g. tree[14] B. Kapron, Feasible computation in higher typeBh.D. thesis,

recursions) are trickier to handle because there must be independent ~ Department of Computer Science, University of Toronto, 1991.

clocks on each branch of the recursion that together guarantee[15] B. Kapron and S. Cookh new characterization of type 2 feasibility

certain global upper bounds. SIAM Journal on Computing5 (1996), 117-132.

[16] D. Leivant,A foundational delineation of poly-timénformation and
Computationl10(1994), 391-420.

Beyond type-level 2 There are semantic and complexity-theoretic
issues to be resolved in order to extend the semantiég &; to

. N [17] , Ramified recurrence and computational complexity I: Word
type-levels 3 and above. The.key problem is that (3)' our definition recurrence and poly-timeFeasible Mathematics Il (P. Clote and
of the length of a type-2 function, does not generalize to type-level J. Remmel, eds.), Birktuser, 1995, pp. 320-343.
3 because for total, continuous: (N — N) — N) — N and

- / [18] D. Leivant and J.-Y. Marionl.ambda calculus characterizations of
G: (N — N) — N, we can haveup{ |¢(F)| | |F| < |G|} = oo, polytime Fundamentaelnformatidz (1993), 167—184.

even ifG is O.'l valued. To fix t.hls problem one can introduce [19] J. Longley,On the ubiquity of certain total type structures (Extended
difference notion of length that incorporates information about a abstract) Proceedings of the Workshop on Domains VI (M. Eséard

function’s modulus of continuity. It appears thaT R, and the and A. Jung, eds.), Electronic Notes in Theoretical Computer Science,
Vit~ andT-semantlcs extend to this new setting. However, it also vol. 73, Elsevier Science Publishers, 2004, pp. 87-109.
appears that this new notion of length gives us a new notion of 20 , Notions of computability at higher types,Llogic Collo-
higher-type feasibility that goes beyond the BFFs. Sorting out what quium 2000 (R. Cori, A. Razborov, S. Torcevic, and C. Wood, eds.),
is going on here should be fun. Lecture Notes in Logic, vol. 19, A. K. Peters, 2005.

[21] K. Mehlhorn,Polynomial and abstract subrecursive class&surnal
Acknowledgments of Computer and System Scient2(1976), 147-178.

Thanks to Susan Older and Bruce Kapron for repeatedly listening [22] B- Pierce.Types and programming languagé4iT Press, 2002.

to me describe this work along its evolution. Thanks to Neil Jones [23] G. Plotkin,Call-by-name, call-by-value and thecalculus Theoret-
and Luke Ong for inviting me to Oxford for a visit and for some ical Computer Science (1975), 125-159. _
extremely helpful comments on an early draft of this paper. Thanks [24] . LCF considered as a programming languagéeoretical
also to the anonymous POPL referees for many helpful comments. _ Computer Sciencé (1977), 223-255. _ _
Finally many thanks to Peter O’Hearn, Josh Berdine, and the Queen [25] J- Royer and J. Cas8ubrecursive programming systems: Complexity
Mary theory group for hosting my visit in the Autumn of 2005 and & succinctnessBirkhauser, 1994. _

for repeatedly raking my poor type-systems over the coals until [26] D. S_ands,(:alcgll for time analysis of functional programBh.D.
something reasonably simple and civilized survived the ordeals. thesis, University of London, 1990. _

This work was partially supported by EPSRC grant GR/T25156/01 [27] A. Sctbnhage Storage modification machineSIAM Journal on

and NSF grant CCR-0098198. Computing8 (1980), 490-508.
[28] J. Shultis,On the complexity of higher-order prograniech. Report

References CU-CS-288-85, University of Colorado, Boulder, 1985.
. o) [29] K. Van Stone,A denotational approach to measuring complexity
[1] A. Barber and G. PlotkinDual intuitionistic linear logic Tech. in functional programsPh.D. thesis, School of Computer Science,
report, LFCS, Univ of Edinburgh, 1997. Carnegie Mellon University, 2003.

[2] S. Bellantoniand S. Cool§ new recursion-theoretic characterization [30] G. Winskel,Formal semanticsMIT Press, 1993.
of the polytime functionsComputational Complexit? (1992), 97—
110.

[3] S. Bellantoni, K.-H. Niggl, and H. Schwichtenbe@haracterising
polytime through higher type recursipAnnals of Pure and Applied
Logic (2000), 17-30.

[4] A. Cobham,The intrinsic computational difficulty of functions
Proceedings of the International Conference on Logic, Methodology
and Philosophy (Y. Bar Hillel, ed.), North-Holland, 1965, pp. 24-30.

[5] S. Cook and A. Urquhart-unctional interpretations of feasibly
constructive arithmeticAnnals of Pure and Applied Logig3(1993),
103-200.

POPL'06 12 2006/1/7

