
The concept of behavioural control is intimately
tied to the valuation of resources and choices. For
example, a creature that moves left instead of
right may forgoe the food and other resources
that it could have obtained had it chosen right.

Such stark, yet simple economic realities select for creatures
that evaluate the world quickly and choose appropriate
behaviour based on those valuations. From the point of
view of selection, the most effective valuations are those that
improve reproductive success. This prescription for valuation
yields a formula for desires or goals: an organism should
desire those things deemed most valuable to it. All mobile
organisms possess such discriminatory capacities and can
rank numerous dimensions in their world along axes that
extend from good to bad. A kind of facile biological wisdom
is built into these simple observations and we should expect
valuation mechanisms to be built into our nervous sys-
tems at every level, from the single neuron to the decision
algorithms used in complex social settings.

These ideas have recently been upgraded from provocative
biological musings to real computational models of how the
nervous system sets goals, computes values of particular
resources or options, and uses both to guide sequences of
behavioural choices. Such models have cast as important
players our midbrain’s dopamine neurons, whose actions
define ‘rewards’ — our goals or desires — that should be
sought. These neurons have a central role in guiding our
behaviour and thoughts. They are hijacked by every addic-
tive drug; they malfunction in mental illness; and they are
lost in dramatically impairing illnesses such as Parkinson’s
disease. If dopamine systems are overstimulated, we may
hear voices, experience elaborate bizarre cognitive distor-
tions, or engage excessively in dangerous goal-directed
behaviour. Dopamine function is also central to the way that
we value our world, including the way that we value money
and other human beings.

The full story of behavioural control requires vastly
more than simple models of dopaminergic function. But
here we show how one branch of computational theory —
reinforcement learning — has informed both the design
and interpretation of experiments that probe how the
dopamine system influences sequences of choices made
about rewards. These models are maturing rapidly and
may even guide our understanding of other neuromod-
ulatory systems in the brain, although such applications
are still in their infancy. 

Reinforcement signals define an agent’s goals
Reinforcement learning theories seek to explain how organ-
isms learn to organize their behaviour under the influence of
rewards1. ‘Reward’ is an old psychological term defined by
Merriam Webster’s dictionary as “a stimulus administered to
an organism following a correct or desired response that
increases the probability of occurrence of the response”. Here,
we show that current theories of reinforcement learning pro-
vide a formal framework for connecting the physiological
actions of specific neuromodulatory systems to behavioural
control. We focus on dopaminergic systems primarily because
they have been most extensively modelled and because they
play a major role in decision-making, motor output, executive
control and reward-dependent learning2–5. We show how the
dopaminergic models provide a way to understand neuro-
imaging experiments on reward expectancy and cognitive
control in human subjects. Finally, we suggest that this same
class of model has matured sufficiently for it to be used to
address important disturbances in neuromodulation
associated with many psychiatric disorders. 

Despite its name, reinforcement learning is not simply a
modern recapitulation of stimulus–response learning,
familiar from the classical and instrumental conditioning
literature6. Traditional stimulus–response models focused on
how direct associations can be learned between stimuli and
responses, overlooking the possibility that numerous internal
states intervene between the stimulus and its associated
response. However, animals clearly have covert internal states
that affect overt, measurable behaviour. Reinforcement learn-
ing theory explicitly models such intervening states, assumes
that some are more desirable than others, and asks how do
animals learn to achieve desired states and avoid undesirable
ones as efficiently as possible? The answer to this question
shows how reinforcement signals define an agent’s goals. For
simplicity, we focus only on rewards. However, the same story
can be told using negative reinforcers (punishments). 

We refer to the state engendered by a reward as a ‘goal’.
Goals can exist at numerous levels and direct behaviour over
many timescales. Goals for humans range from the most basic
(for example, procuring something to eat in the next minute)
to the most abstract and complex (such as planning a career).
In reinforcement learning, it is assumed that the fundamental
goal of the agent (learner) is to learn to take actions that are
most likely to lead to the greatest accrual of rewards in the
future. This goal is achieved under the guidance of simple
scalar quantities called reinforcement signals. These signals
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serve to criticize specific actions or contemplated actions with respect
to how effectively they serve the agent’s goals. In reinforcement learning,
one common goal is the maximization of total future reward6.

Every reinforcement learning system possesses three explicitly
implemented components: (1) a ‘reinforcement signal’ that assigns a
numerical quantity to every state of the agent. Reinforcement signals
can be negative or positive. They define the agent’s immediate goals
by reporting on what is good or bad ‘right now’; (2) a stored ‘value
function’ that formalizes the idea of longer-term judgments by
assigning a ‘value’ to the current state of the agent (see Box 1); (3) a
‘policy function’ that maps the agent’s states to its actions. Policies are
typically stochastic: they assign a probability to each possible action
that can be taken from the current state, with the probability
weighted by the value of the next state produced by that action.

A more concrete description reads as iterations of the following
recipe: (1) organism is in state X and receives reward information; (2)
organism queries stored value of state X; (3) organism updates stored
value of state X based on current reward information; (4) organism
selects action based on stored policy; and (5) organism transitions to
state Y and receives reward information.

In one form of reinforcement learning called temporal-difference
learning, a critical signal is the reward-prediction error (also called
the temporal-difference, or TD error) 7–9. Unlike the well-known
psychological learning rule proposed by Rescorla and Wagner10 in
1972, this error function is not simply a difference between the received

reward and predicted reward; instead, it incorporates information
about the next prediction made by the reward-prediction system11. In
words: current TD error�current reward��·next prediction�
current prediction. Here, the words ‘current’ and ‘next’ refer respec-
tively to the present state and to the subsequent state of the learner; �
is a factor between 0 and 1 that weights the relative influence of the next
prediction. By using this reward-prediction error to refine predictions
of reward for each state, the system can improve its estimation of the
value of each state, and improve its policy function’s ability to choose
actions that lead to more reward. 

The reward-prediction-error hypothesis
Over the past decade, experimental work by Wolfram Schultz and
colleagues has shown that dopaminergic neurons of the ventral
tegmental area and substantia nigra show phasic changes in spike
activity that correlate with the history of reward delivery12–16. It was
proposed that these phasic activity changes encode a ‘prediction
error about summed future reward’ (as described above): this
hypothesis has been tested successfully against a range of physiological
data2–3. The ‘pause’ and ‘burst’ responses of dopamine neurons that
support a reward-prediction-error hypothesis are shown in Fig. 1.
The bursts signal a positive reward-prediction error (‘things are better
than expected’), and the pauses signal a negative prediction error
(‘things are worse than expected’). Activity that remains close to the
baseline signals that ‘things are just as expected’. However, this verbal
interpretation of dopaminergic activity belies the sophistication of
the underlying neural computations1 (Box 1). 

Value binding and incentive salience
We have presented theoretical evidence that phasic bursts and pauses
in midbrain dopaminergic activity are consistent with the formal
construct of a reward-prediction error used by reinforcement learning
systems (Fig. 1; Box 1). This interpretation is consistent with a long
history of physiological and pharmacological data showing that
dopamine is involved in appetitive approach behaviour17–19, and is a
key component in the pathologies of behavioural control associated
with drug addiction20–21.

One finding offered as a challenge to the models discussed so far is
that antagonism of dopamine receptors does not change the appetitive
value of food rewards but does prevent the treated animal from initi-
ating actions that allow it to obtain the food reward17,22 . In these
experiments, animals treated with dopamine-receptor blockers are
virtually unable to link sequences of actions to obtain a food reward,
but they will consume the same amount as untreated animals if they
are moved close to the food rewards by the experimenter (Fig. 2). This
conclusion also holds for the inhibition of dopamine neuron firing by
gamma-aminobutyric acid (GABA) injected directly into the ventral
tegmental area (Fig. 2). These data suggest that interfering with
dopamine transmission does not alter the internal evaluation of
rewards, but simply the ability to act on those valuations. Addressing
these data at a conceptual level, Berridge and Robinson have pro-
posed that dopamine mediates the ‘binding’ between the hedonic
evaluation of stimuli and the assignment of these values to objects or
acts17. They call this idea ‘incentive salience’. Although competing
psychological explanations differ with respect to the specific claims
of incentive salience19,23,24, they all agree that dopamine release and
binding is a necessary link between the evaluation of potential future
rewards and the policy (sequence of actions) that acquires the
rewards. Here, we refer to this link as value binding and distinguish
three components: (1) the value computation; (2) the link to a policy
(value binding); and (3) execution of the policy.

Incentive salience and actor–critic models
There is a class of reinforcement learning model, called the
actor–critic that is closely related to the Berridge and Robinson
model for the role of dopamine in value and action learning1,9. In
these models, the ‘critic’ carries the reward-prediction error associated
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Figure 1 TD prediction-error signal encoded in dopamine neuron firing.
Electrophysiological recordings from a single dopamine neuron in a monkey during
reward-dependent discrimination task. The animal presses a key, two pictures are
presented, the animal releases the key and hits the lever under the rewarded
picture. If a correct choice is made, juice is delivered after a fixed delay. Juice
delivery is marked by vertical bars; neuron spikes by dots. Early on, the juice delivery
causes a burst response (top blue arrowhead). This ‘surprise’ response diminishes
to zero by the end of learning (bottom blue arrowhead). A ‘catch trial’ using a
(surprising) delayed reward time exposes the typical pause (red arrowhead) and
burst (top green arrowhead) response. The pause signals that ‘things are worse
than expected’ and the burst signals that ‘things are better than expected’. In the
second catch trial, the reward is again surprising, but early rather than late. The
burst response for the new delivery time is apparent (lower green arrowhead), but
the pause response is less certain (red question mark). Adapted from ref. 13. 
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The value function
In the simplest TD models of dopamine systems, the reward-prediction
error depends on a value function that equates the value V of the
current state s at time t with the average sum of future rewards
received up until the end of a learning trial. 

V(st)�average sum of future rewards delivered from state st until 
the end of a learning trial

�average [rt�rt�1+rt�2+ …�r (trial’s end)]

�E� �
��Trial

r(�)� (1)

E is the expected value operator. There are two sources of
randomness over which the above averaging occurs. First, the
rewards in a trial [rt�rt�1+rt�2+...+r (trial’s end)] are random variables
indexed by the time t. For example, rt�2 is a sample of the distribution
of rewards received two timesteps into the trial. The idea is that the
animal can learn the average value of these rewards by repeating
learning trials, and by revisiting state st sufficiently frequently for its
nervous system to be able to estimate the average value of each of the
rewards received from state st until the end of the trial. The second
source of randomness is the probabilistic transition from one state at
time t to a succeeding state st�1 at a later time t�1. The value
function, stored within the nervous system of the creature, provides an
assessment of the likely future rewards for each state of the creature;
that is, the value must somehow be associated with the state.
However, as written in equation (1), it would be virtually impossible to
make good estimates of the ideal V(st) as it is now defined. This is
because the creature would have to wait until all rewards were
received within a trial before deciding on the value of its state at the
beginning of the trial. By that time, it is too late for such a computation
to be useful. This problem becomes worse in real-world settings.
Fortunately, equation (1) provides a way out of this dilemma because it
obeys a recursion relation through time: 

V(st)�E [rt]+V(st�1) (2)

This recursion relation shows that information about the value of a
state st is available using only the value V(st) of the current state st and

the value of its successor state st � 1. Until this point, we have been
discussing the ideal case for V. However, as indicated above, V
cannot be known exactly in the real world. Instead, an estimate V̂ of V
must be formed within the nervous system. The TD algorithm learns
an approximation V̂ of the value function V. It uses a prediction-error
signal: 

�(t)�prediction error (t)�E [rt]�V̂ (st�1)�V̂ (st)
�current reward�next prediction�current prediction (3)

This TD error signal reproduces the phasic burst and pause
responses measured in dopamine neurons recorded in alert monkeys
during learning tasks. The next value of each adaptable weight w(t�1)
used to estimate V is incremented or decremented in proportion to the
product of the current prediction error �(t) and the current
representation s(t) of the stimulus responsible for the prediction.

w(t�1)�w(t)��s(t)	�(t) (4)

Here, � is a learning rate.

Exponential discounting of future rewards
The artificial truncation at the end of a trial (equation (1)) can be
handled theoretically in several ways. One popular formalization is to
weight the near future more than the distant future. In this case, the
analogue to equation (1) takes the form:

Vd (�(t))�average sum of discounted future rewards
�average [�0r(t)��1r(t�1)��2r(t�2)�…] for 0
�
1

�E���≥t
���tr(� )�

Using this weighted version of the value function, the learning
episodes for a creature do not have to be artificially divided into ‘trials’.
An analogous reward-prediction-error signal can be formed and used
in the same manner as above:

�(t)�prediction error (t)�E[rt]��	V̂ (st+1)�V̂ (st)
�current reward��	next prediction�current prediction (5)

Box 1 
Value functions and prediction errors

Figure 2 Equating incentive salience with the actor–critic model. a, Rats are
trained to run a maze to acquire sugary water. If dopaminergic spiking is blocked
(left histograms) in the VTA, then rats will generally not run down the maze to get a
reward and are less active. However, if the experimenter moves them to the sugary
water, the rats drink exactly the same amount as untreated rats. This suggests that
the (hedonic) value of the sugary water has been computed but that the capacity to

bind this value to actions required to obtain the water fails to function. The same
effect results if dopamine’s interaction with its receptor is blocked in an important
downstream target of dopamine projections (right histograms). Adapted from refs 
22 and 25. b, Actor–critic models use dopamine-encoded prediction-error signal in
two roles: (1) to learn stimulus–reward associations, and (2) to assess actions or
contemplated actions (notations are as in Box 1). Adapted from refs 2, 25, 83.
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with the states of the organism. The ‘actor’ uses this signal, or a closely
related one, to learn stimulus–action associations, so that actions
associated with higher rewards are more likely to be chosen. Together,
these two components capture many features of the way that animals
learn basic contingencies between their actions and the rewards
associated with those actions. The original hypothesis concerning
the role of dopamine in reinforcement learning proposed just such a
dual use of the reward-prediction-error signal2,25. McClure and
colleagues recently extended this original learning hypothesis to
address the Berridge and Robinson model26. This work suggests a
formal relationship between the incentive-salience ideas of Berridge
and Robinson and actor–critic models in which incentive salience is
equivalent to the idea of expected future value formalized in re-
inforcement learning models (Fig. 2). 

Actor–critic models are now being used to address detailed issues
concerning stimulus–action learning8. For example, extensions to
actor–critic models have addressed the difference between learning
goal-directed approach behaviour and learning automatic actions
(habits), such as licking. There are several behavioural settings that
support the contention that habit learning is handled by different
neural systems from those involved in goal-directed learning27,28.
Dayan and Balleine have recently offered a computational extension
to actor–critic models to take account of this fact29. 

Rewards, critics and actors in the human brain
Recent functional magnetic resonance imaging (fMRI) experiments
have used reward expectancy and conditioning tasks to identify brain
responses that correlate directly with rewards, reward-prediction-
error signals (critic), and signals related to reward-dependent actions
(actor). Many of these experiments have used reinforcement learning
models as a way to understand the resulting brain responses, to
choose design details of the experiment, or to locate brain responses
associated with specific model components30–34. 

Human reward responses
Responses to rewarding stimuli have been observed consistently
from the same set of subcortical regions in human brains, suggesting
that neurons in these regions respond to a wide spectrum of triggers.
In a series of elegant papers, Breiter and colleagues used fMRI to
record brain responses to beautiful visual images35 and drugs that
induce euphoria (cocaine)36. The brain structures they identified
included the orbitofrontal cortex (OFC), amygdala (Amyg), nucleus
accumbens (NAc; part of the ventral striatum), sublenticular
extended amygdala (SLEA; part of the basal forebrain), ventral

tegmental area (VTA), and hypothalamus (Hyp). All these regions
have topographically organized reciprocal connections with the 
VTA — one of the primary dopaminergic nuclei in the brainstem. 

Particularly strong reward responses have been observed in the
ventral striatum where numerous studies have shown that even
abstract proxies for reward (money) cause activations that scale in
proportion to reward amount or deviation from an expected pay-
off37–39. Similar results have been found by a variety of groups using
both passive and active games with monetary payoffs40–42 . A prominent
activation response to monetary payoff was observed by Knutson and
colleagues in the NAc and is shown in Fig. 3. The NAc, like the OFC
and other parts of the prefrontal cortex (PFC), is densely innervated
by dopaminergic fibres originating from neurons housed in the mid-
brain. Other work has shown that simply changing the predictability
of a stimulus will activate the NAc and surrounding structures in the
ventral parts of the striatum30. The picture emerging from this work
is that responses in this region may reflect an encoding of rewards
along a common valuation scale43. 

Human critic responses
One of the most important contributions of reinforcement learning
theory has been to distinguish between the signalling of the reward
itself, and the computation of the reward-prediction error. Using
passive tasks with a juice reward, reward-prediction errors have been
shown to activate structures in the ventral striatum30,44. Recently, two
independent groups used passive learning paradigms to visualize
reward-prediction-error signals in overlapping regions of the ventral
putamen32,33 (Fig. 4). The cingulate cortex is another area that has
been associated with reinforcement learning signals that seem to be
reward-prediction errors. The error-related negativity (ERN) is a
scalp-recorded event-related potential (ERP), believed to originate
from the anterior cingulate cortex, that is consistently observed
about 100 msec following the commission of an error45,46. Similar
potentials have been observed following negative feedback or un-
expected losses in gambling tasks47–49. Holroyd and Coles have pro-
posed that these potentials reflect a negative reward-prediction-error
signal, and this idea has been tested under a variety of conditions50–52.
Recently, fMRI evidence has suggested that a region of anterior
cingulate cortex responds under many of the same conditions as the
ERN: activity is affected by both errors and negative feedback53.

Human actor responses
One implication of reinforcement theory for behaviour concerns the
relationship between reward-prediction errors (critic signals) and
action selection (actor signals). As discussed in Box 1, the critic signal
can be used for reward learning and to adjust the future selection of
reward-yielding actions. Success in the use of fMRI to detect reward-
prediction-error signals inspired O’Doherty and colleagues to carry
out a clever, but simple experiment designed to relate critic signals to
action selection34. The experiment used a conditioning paradigm
that was carried out in two modes. The first required an action to
obtain a juice reward and the second did not. This experiment showed
that activity in the dorsal striatum correlated with the prediction-
error signal only when an action was needed to acquire the juice reward
(Fig. 4c). There was no similar activity in this area when the juice was
passively delivered. This finding is important because the dorsal
striatum is involved in the selection and sequencing of actions. 

Neuromodulation and cognitive control 
Our consideration of reinforcement learning theory so far has
focused on simple situations, involving the association of a stimulus
with a reward, or with the selection of an action that leads to an
immediate reward. In the real world, however, accrual of reward may
require an extended sequence of actions. Furthermore, we have
considered only a highly abstracted definition of the goal of the
organism — the maximization of cumulative future rewards. How-
ever, many different forms of reward (and associated actions) may be
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Figure 3 Scaled responses to a monetary reward in the ventral striatum. Action is
required to receive a reward. The haemodynamic response is modulated by the
amount of money received. In both cases, positive deviations in expectations make
the responses bigger. Adapted from ref. 38. 
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valued by an organism (for example, the procurement of nutrition,
provision of safety, reproduction). This suggests that the construct of a
goal needs to be refined to describe the variety of goal-directed behav-
iour in which humans engage. The guidance of behaviour in the
service of internally represented goals or intentions, is often referred
to as the capacity for cognitive control. Recent theories of cognitive
control have elaborated on basic reinforcement learning mechanisms
to develop models that specifically address the two challenges sug-
gested above: (1) the need to learn and control sequences of actions
required to achieve a goal; and (2) the need to represent the variety of
goals that an organism may value. Here, we focus on the first of these
challenges, but seerefs 54 and 55 for a discussion of the latter.

Prefrontal goals
Pursuit of a goal (for example, going to the car, driving to the grocery
store, or locating the refrigerated section to buy milk), can often

require an extended sequence of actions. Theories of cognitive
control consistently implicate the PFC as a site where representations
of goals are actively maintained and used to select goal-directed
behaviours54. The involvement of the PFC is motivated by three
diverse classes of observations: (1) the PFC can support sustained
activity in the face of distracting information56,57; (2) damage to the
PFC produces deficits in goal-directed behaviour58,59; and (3) the
PFC is selectively engaged by tasks that rely heavily on the active rep-
resentation of goal information60.

Dopamine gating hypothesis
One problem with the simple hypothesis that the PFC actively main-
tains goal representations is that this does not indicate how or when
this information should be updated. Failure to appropriately update
goal representations will lead to perseverative behaviour, whereas
failure to adequately maintain them will result in distractability.
Indeed, disturbances of the PFC are known to be associated with dis-
tractability, perseveration, or both61. What is required is a mechanism
that can signal when the goal representation should be updated.
Recently, it has been proposed that dopaminergic signals from the
VTA implement this mechanism, by controlling the ‘gating’ of
afferent information into the PFC55,62 (Fig. 5). According to this gating
hypothesis, the PFC is resistant to the influence of afferent signals in
the absence of phasic dopamine release, allowing it to preserve the
currently maintained goal representation against impinging sources
of interference. However, stimuli that signal the need to update the
goal representation elicit a phasic dopamine response that ‘opens the
gate’ and allows afferent signals to establish a new goal representation
in the PFC.

Reinforcement learning and working memory
How does the dopamine system know which stimuli should elicit a gat-
ing signal and which should not? One plausible answer to this question
comes directly from the reinforcement learning theory of dopamine
function. A gating signal is required to update the PFC when a stimulus
occurs in the environment which indicates that a more valuable goal can
be achieved if behaviour is redirected towards that goal (for example, a
light signalling that a reward can be acquired by going to some new
location). In reinforcement learning terms, this corresponds to a
positive reward-prediction error: the value of the current state is better
than expected. According to the reinforcement learning theory of
dopamine function, this is associated with a phasic burst in dopamine
activity. In other words, reinforcement learning theory predicts that
phasic dopamine responses will occur precisely when needed to pro-
duce a gating signal. Furthermore, insofar as the phasic dopamine
response acts as a learning signal, it will strengthen the association of the
current predictor, for example, the light, with the goal representation in
the PFC. It will also strengthen the tendency of the light to elicit a phasic
dopamine response when it recurs in the future. The learning here is
analogous to the simple ‘light-predicts-juice’ experiments described
earlier, except that now ‘light predicts goal representation in the PFC’,
which in turn leads to the accrual of reward. This proposal shows how a
prefrontal representation that plays a causal role in the acquisition of
some later reward comes to be selected and reinforced. 

Assuming that dopamine generates both learning and gating
effects, the dopamine system provides a mechanism for learning
which stimuli should elicit a gating signal to update goal
representations in the PFC. Consistent with this hypothesis, the
parameter used to implement the learning effects of dopamine in
formal models of reinforcement learning2,8,30,63 bears a remarkable
similarity to the parameter used to implement gating effects in
models of dopamine-based gating signals in the PFC63. Recent com-
putational modelling work has demonstrated that implementing
concurrent effects of dopamine phasic signals on reinforcement
learning and gating allows a system to associate stimuli with the
gating signals that predict reward, and so learn how to update
representations appropriately in the PFC62,64,65 .
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Figure 4 Detecting actor and critic signals in the human brain using fMRI. a, A
simple conditioning task reveals a TD-like prediction-error response (critic signal) in
the human brain. A cue is followed by the passive delivery of pleasant-tasting juice
while subjects are scanned. The highlighted activation is located in the ventral part
of the striatum (the putamen) — a region known to respond to a range of rewards.
The activation represents the brain response that correlates with a continuous TD-
like error signal. Adapted from ref. 30. b, A similar experimental design, but in this
case a single prediction error of each polarity (positive and negative) can be seen in
the ventral putamen during a surprising catch trial. Predictive sensory cue (green
arrowhead); normal reward-delivery time (blue arrowhead); delayed reward time on
catch trials (red arrowhead). Average BOLD (blood oxygenation level dependent)
response in normal trials (solid line) and delay trials (dashed line). Adapted from ref.
32. c, Identification of actor response in dorsal striatum. A conditioning task is
carried out in two modes requiring: (1) a button press (an action); and (2) no action
at all. The dorsal striatum — a region involved in action selection — responds only
during the mode where action is required and shows no response when action is not
required. This is the first demonstration of an actor response detected in the human
brain. Adapted from ref. 33.
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Recent work has begun to explore the hypothesis that the basal
ganglia provide a mechanism for selective updating of goal represen-
tations within the PFC. This proposes that an important component
of dopaminergic gating takes place in the basal ganglia, acting selec-
tively on recurrent pathways that run from the PFC through the basal
ganglia and back to the PFC. Computational models of the basal
ganglia have shown how this system can learn tasks that require
hierarchical updating of goal representations.

Neuromodulation and pathologies of cognitive control 
Reinforcement learning theory provides a formal framework within
which to explore quantitatively the effects that alterations in
dopamine function may have on behaviour. We consider here two
disorders in which it has long been recognized that dopamine plays a
major role: drug addiction and schizophrenia.

Disturbances of dopamine in addiction
Perhaps the best understood pathology of dopamine excess is drug
addiction, which is defined as compulsive drug use despite serious
negative consequences. Once a pattern of compulsion is established,
it often proves remarkably persistent. Even when addicted individuals
have been drug-free for extended periods, drug-associated cues can
readily lead to relapse. Addictive drugs such as cocaine, amphet-
amine and heroin all increase dopamine concentrations in the NAc
and other forebrain structures by diverse mechanisms20,66 and are
highly reinforcing.

A new way to conceptualize the process of addiction is in the
terms described above21,67. If dopamine plays a central role in both

stimulus–reward learning and stimulus–action learning, and addictive
drugs result in greater and longer-lasting synaptic dopamine con-
centrations than any natural reward, several predictions follow. Cues
that predict drug availability would take on enormous incentive
salience, by means of dopamine actions in the NAc and PFC, and
complex drug-seeking behavioural repertoires would be powerfully
consolidated by dopamine actions in the dorsal striatum21. In addition,
dopamine effects in the PFC may impair the ability of the addicted
person to suppress prepotent drug-seeking behaviour17. Given that
certain risk-associated behaviour produces phasic dopamine release,
and given the similarities between the development of drug addiction
and pathologic gambling, it is interesting that early human neuro-
imaging results suggest that similar brain circuits may be involved68. 

Collectively, these results point to a hijacking of dopamine signals
in PFC and limbic structures by addictive drugs. Because these drugs
directly engage dopamine-mediated reinforcement learning signals,
they generate a feedback loop that reinforces behaviour leading to
drug consumption, establishing a vicious cycle of action and learning
that explains the compulsive nature of drug addiction. The degree to
which these drugs disrupt both phasic and tonic dopamine signals is
not yet clear. However, the reinforcement learning models described
above provide a framework for considering possible effects. For the
learning effects, over-training with cues that predict drug delivery is a
natural consequence of the role of phasic dopamine in learning. The
PFC gating signal would also be unnaturally disrupted by selecting
and over-learning grossly maladaptive prefrontal representations.
These two effects would conspire to yield a representation of the
world that is grossly biased towards drug-related cues. In addition,
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Figure 5 The flow and transformation of signals carried by the dopaminergic
system. This system is now thought to be one part of a large, sophisticated
neural system for valuation. (1) Dopamine neurons encode reward-prediction-
error signals as modulations in their baseline firing rate; (2) transformation �
characterizes the way in which modulation of firing rate changes dopamine
delivery (� is known to be non-linear)72; (3) movement of dopamine through the
extracellular space carries prediction-error information away from the synapse;

(4) dopamine delivery to target structures controls a range of functions including
the gating of working memory and the selection of specific actions; (5) any
multiplicative learning rule that depends on the dopamine-encoded prediction
error is able to store predictions, a vast improvement over simple storage of
correlations familiar from hebbian learning; (6) changes in target structures act
to adjust predictions, which are delivered back to dopamine neurons through
long-range connections.
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repeated selection of maladaptive prefrontal representations would
catastrophically rearrange the way in which normal functions were
categorized within the PFC. In this framework, the addicted person’s
PFC can no longer even categorize decision problems correctly,
much less regain control over the choices that their nervous systems
deem valuable. The advantage now is that the reinforcement learning
models provide a parameterized view of these problems and may well
yield new directions in future work.

Disturbances of dopamine in schizophrenia
Disturbances of dopamine function are also known to have a central
role in schizophrenia. This was first suggested by the discovery of the
neuroleptic drugs that are effective in ameliorating the hallucinations
and delusions associated with this illness. The clinical efficacy of these
drugs correlates directly with their potency in blocking dopaminergic
neurotransmission69. Conversely, dopamine agonists (for example, L-
dopa and amphetamines) reproduce some of the same symptoms of
schizophrenia. Taken together, these results led to the hypothesis that
schizophrenia is associated with a hyper-dopaminergic state.
However, almost half a century of research has failed to provide solid
support for this simple idea. Although neuroleptics treat some of the
more dramatic symptoms of schizophrenia, they fail to treat the
persistent and equally debilitating symptoms of the disease, including
cognitive disorganization and avolition.

The failure of the classic dopamine hypothesis is perhaps not
surprising, given our lack of understanding of the role that dopamine
has in system-level function. The development of the formal models
of dopamine function discussed above, and its interaction with other
brain systems, offers hope for a more sophisticated understanding of
how dopamine disturbances produce the patterns of clinical psycho-
pathology observed in schizophrenia. For example, along with
evidence of dopamine disturbances, it has long been recognized that
schizophrenia is associated with disturbances of frontal lobe function.
This was originally suggested by comparing disturbances in executive
function observed in schizophrenia (for example, distractability, and
cognitive disorganization) with those observed in patients with
frontal lobe damage. More recently, neuro-imaging studies have
produced more direct evidence of deficits in frontal lobe function,
and several investigators have begun to link these deficits with distur-
bances of dopamine function.

Specifically, schizophrenia may be associated with reduced
dopamine activity in frontal cortex coupled with excess dopamine
activity in subcortical structures, such as the striatum70. Early modelling
work showed how a reduction of dopaminergic gain modulation in
the PFC can simulate the behavioural deficits observed in patients
with schizophrenia71. The learning and gating functions of dopamine
reviewed here suggest ways in which this theory could be elaborated
to include specific neuropharmacological findings. 

Perspective
Despite our growing knowledge about some of the biological distur-
bances associated with schizophrenia, as yet there is no biological
assay that can be used to diagnose this disease definitively. This
reflects the deep limitations in our understanding of the relationship
between biological disturbances and their clinical expression as
perturbed mental or emotional function. We are entering a time
where the formal synthesis of experimental data, both behavioural
and physiological, will be needed to address the many open questions
surrounding mental illness and behavioural decision-making. ■■
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