A Connectionist Approach to Word Reading and Acquired
Dydlexia: Extension to Sequential Processing

David C. Plaut
Departments of Psychology and Computer Science, Carnegie Mellon University,
and the Center for the Neural Basis of Cognition

September 1998

Cognitive Science, 23, 543-568. Special Issue on Connectionist Models of Human Language Processing: Progress and Prospects.

Abstract

A connectionist approach to word reading, based on the prin-
ciples of distributed representation, graded learning of statistical
structure, and interactivity in processing, has led to the devel-
opment of explicit computational models which account for a
wide range of data on normal skilled reading and on patterns
of reading impairment due to brain damage. There have, how-
ever, been recent empirical challenges to these models, and the
approach in general, relating to the influence of orthographic
length on the naming latencies of both normal and dyslexic read-
ers. The current work presents a simulation which generates se-
quential phonological output in response to written input, and
which can refixate the input when encountering difficulty. The
normal model reads both words and nonwords accurately, and
exhibits an effect of orthographic length and a frequency-by-
consistency interaction in its naming latencies. When subject to
peripheral damage, the model exhibits an increased length effect
which interacts with word frequency, characteristic of letter-by-
letter reading in pure alexia. Although the model is far from a
fully adequate account of all the relevant phenomena, it suggests
how connectionist models may be extended to provide deeper
insight into sequential processes in reading.

I ntroduction

Many researchers assume that the most appropriate way
to express the systematic aspects of language is in terms
of a set of rules. For instance, there is a systematic re-
lationship between the written and spoken forms of most
English words (e.g., GAVE = /gerv/), and this relation-
ship can be expressed in terms of a fairly concise set
of grapheme-phoneme correspondence (GPC) rules (e.g.,
G=/g/, A_LE=Je1/, v=/v/). In addition to being
able to generate accurate pronunciations of so-called reg-
ular words, such rules also provide a straightforward ac-
count of how skilled readers apply their knowledge to
novel items—for example, in pronouncing word-like non-
words (e.g., MAVE = /merv/). Most linguistic domains,
however, are only partially systematic. Thus, there are

many English words whose pronunciations violate the
standard GPC rules (e.g., HAVE = /hav/). Given that
skilled readers can pronounce such exception words cor-
rectly, GPC rules alone are insufficient. More generally,
skilled language performance at every level of analysis—
phonological, morphological, lexical, syntactic—requires
both effective handling of exceptional items and the abil-
ity to generalize to novel forms.

In the domain of reading, there are three broad re-
sponses to this challenge. The first, adopted by “dual-
route” theories (e.g., Coltheart, Curtis, Atkins, & Haller,
1993; Zorzi, Houghton, & Butterworth, 1998), is to add to
the GPC system a separate, lexical system that handles the
exceptions. The second response, adopted by “multiple
levels” theories (e.g., Norris, 1994; Shallice & McCarthy,
1985), is to augment the GPC rules with more specific,
context-sensitive rules, (e.g., 00K = /uk/ as in BOOK),
including rules that apply only to individual exceptions
(e.g., HAVE = /haev/). Both of these approaches retain
the general notion that language knowledge takes the form
of rules (although such rules may be expressed in terms of
connections; see, e.g., Norris, 1994; Reggia, Marsland, &
Berndt, 1988; Zorzi et al., 1998).

The third response to the challenge, adopted by dis-
tributed connectionist theories (Plaut, McClelland, Sei-
denberg, & Patterson, 1996; Seidenberg & McClelland,
1989; Van Orden, Pennington, & Stone, 1990) and elab-
orated in the current paper, is more radical. It eschews
the notion that the knowledge supporting online language
performance takes the form of explicit rules, and thus de-
nies a strict dichotomy between “regular” items which
obey the rules and “exception” items which violate them.
Rather, it is claimed that language knowledge is inher-
ently graded, and the language mechanism is a learning
device that gradually picks up on the statistical struc-
ture among written and spoken words and the contexts
in which they occur. In this way, the emphasis is on the
degree to which the mappings among the spelling, sound,
and meaning of a given word are consistent with those of
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Figure 1. A connectionist framework for lexical pro-
cessing, based on that of Seidenberg and McClelland
(1989). Reprinted from (Plaut, 1997).

other words (Glushko, 1979).

To make this third perspective concrete, consider
the connectionist/parallel distributed processing (PDP)
framework for lexical processing depicted in Figure 1
(based on Seidenberg & McClelland, 1989). As the fig-
ure makes clear, the approach does not entail a complete
lack of structure within the reading system. There is, how-
ever, uniformity in the processing mechanisms by which
representations are generated and interact, and in this re-
spect the approach is quite different from dual-route ac-
counts. Orthographic, phonological, and semantic in-
formation is represented in terms of distributed patterns
of activity over groups of simple neuron-like process-
ing units. Within each domain, similar words are repre-
sented by similar patterns of activity. Lexical tasks in-
volve transformations between these representations—for
example, reading aloud requires the orthographic pattern
for a word to generate the appropriate phonological pat-
tern. Such transformations are accomplished via the co-
operative and competitive interactions among units, in-
cluding additional hidden units that mediate between the
orthographic, phonological, and semantic units. In pro-
cessing an input, units interact until the network as a
whole settles into a stable pattern of activity—termed an
attractor—corresponding to its interpretation of the in-
put. Unit interactions are governed by weighted connec-
tions between them, which collectively encode the sys-
tem’s knowledge about how the different types of infor-
mation are related. Weights that give rise to the appro-
priate transformations are learned on the basis of the sys-
tem’s exposure to written words, spoken words, and their
meanings.

At a general level, the distributed connectionist ap-
proach to word reading is based on three general com-
putational principles:

Distributed representation: Orthography, phonology,
and semantics are represented by distributed patterns
of activity such that similar words are represented
by similar patterns.

Gradual learning of statistical structure: Knowledge
of the relationships among orthography, phonology,
and semantics is encoded across connection weights
that are learned gradually through repeated expe-
rience with words in a way that is sensitive to the
statistical structure of each mapping.

Interactivity in processing: Mapping among orthogra-
phy, phonology, and semantics is accomplished
through the simultaneous interaction of many units,
such that familiar patterns form stable attractors.

Although these principles are general, the challenge is
to demonstrate that, when instantiated in a particular
domain—single word reading—these principles provide
important insights into the patterns of normal and im-
paired cognitive behavior. The current article reviews a
series of computational simulations of word reading based
on the framework depicted in Figure 1. It then presents
new simulation work that address some limitations of this
work, relating to sequential processing and effects of or-
thographic length.

Background
Skilled Oral Reading

The distributed connectionist framework for word reading
depicted in Figure 1 reflects a radical departure from tradi-
tional theorizing about lexical processing, particularly in
two ways. First, there is nothing in the structure of the sys-
tem that corresponds to individual words per se, such as
a lexical entry, localist word unit (McClelland & Rumel-
hart, 1981) or “logogen” (Morton, 1969). Rather, words
are distinguished from nonwords only by functional prop-
erties of the system—the way in which particular ortho-
graphic, phonological, and semantic patterns of activity
interact (also see Plaut, 1997; Van Orden et al., 1990).
Second, there are no separate mechanisms for lexical and
sublexical processing (cf. Coltheart et al., 1993). Rather,
all parts of the system participate in processing all types
of input, although, of course, the contributions of different
parts may be more or less important for different inputs.
In support of the general framework, Seidenberg and
McClelland (1989) trained a connectionist network to
map from the orthography of about 3000 monosyllabic
English words—both regular and exception—to their
phonology. The network corresponded to the bottom por-
tion of the framework in Figure 1 (referred to as the
phonological pathway). After training, the network pro-
nounced nearly all of the words correctly, including most
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exception words. It also exhibited the standard empir-
ical pattern of an interaction of frequency and consis-
tency in naming latency (see, e.g., Taraban & McClelland,
1987) when its real-valued accuracy in generating a re-
sponse was taken as a proxy for response time. However,
the model was much worse than skilled readers at pro-
nouncing orthographically legal nonwords (Besner, Twil-
ley, McCann, & Seergobin, 1990) and at lexical deci-
sion under some conditions (Besner et al., 1990; Fera &
Besner, 1992). Thus, the model failed to refute tradi-
tional claims that localist, word-specific representations
and separate mechanisms are necessary to account for
skilled reading.

More recently, Plaut, McClelland, Seidenberg, and Pat-
terson (1996, also see Seidenberg, Plaut, Petersen, Mc-
Clelland, & McRae, 1994) have shown that the limitations
of the Seidenberg and McClelland model in pronouncing
nonwords stem not from any general limitation in the abil-
ities of connectionist networks in quasi-regular domains
(as suggested by, e.g., Coltheart et al., 1993), but from
its use of poorly structured orthographic and phonolog-
ical representations. The original simulation used rep-
resentations based on context-sensitive triples of letters
or phonemic features. When more appropriately struc-
tured representations are used—based on graphemes and
phonemes and embodying phonotactic and graphotactic
constraints—network implementations of the phonolog-
ical pathway can learn to pronounce regular words, ex-
ception words, and nonwords as well as skilled readers.
Moreover, the networks exhibit the empirical frequency-
by-consistency interaction pattern when trained on actual
word frequencies. This remains true if naming latencies
are modeled directly by the settling time of a recurrent,
attractor network (see Figure 2).

Plaut et al. (1996) also offered a mathematical analy-
sis of the critical factors that govern why the networks
(and, by hypothesis, subjects) behave as they do. Stated
generally, factors that increase the summed input to units
(e.g., word frequency, spelling-sound consistency) gener-
ally improve performance, but their contributions are sub-
ject to “diminishing returns” due to the asymptotic na-
ture of the sigmoidal activation function. As a result,
performance on stimuli that are strong in one factor is
relatively insensitive to variation in other factors. Thus,
regular words show little effect of frequency, and high-
frequency words show little effect of consistency, giv-
ing rise to the standard pattern of interaction between
frequency and consistency, in which the naming of low-
frequency exception words is disproportionately slow or
inaccurate.

Surface Dyslexia

Although implementations of the phonological pathway
on its own can learn to pronounce words and nonwords
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Figure 2. The frequency-by-consistency interaction ex-
hibited in the settling time of an attractor network imple-
mentation of the phonological pathway in pronouncing
words of varying frequency and spelling-sound consis-
tency. Reprinted from (Plaut, McClelland, Seidenberg, &
Patterson, 1996).

as well as skilled readers, a central aspect of Plaut et al.’s
(1996) general theory is that skilled reading more typi-
cally requires the combined support of both the seman-
tic and phonological pathways, and that individuals may
differ in the relative competence of each pathway. A
consideration of semantics is particularly important in
the context of accounting for a pattern of reading im-
pairment known as surface dyslexia (see Patterson, Colt-
heart, & Marshall, 1985), which typically arises from
damage to the left temporal lobe. Surface dyslexic pa-
tients read nonwords and regular words with normal ac-
curacy and latency, but exhibit an interaction of frequency
and consistency in word reading accuracy, such that low-
frequency exception words are pronounced disproportion-
ately poorly, often eliciting a pronunciation consistent
with more standard spelling-sound correspondences (e.g.,
SEW read as “sue,” termed a regularization error).

The framework for lexical processing depicted in Fig-
ure 1 (and the associated computational principles) pro-
vides an account of surface dyslexia based on the rela-
tive contributions of the semantic and phonological path-
ways in oral reading. To the extent that the semantic path-
way reduces performance error during training by con-
tributing to the correct pronunciation of words, the phono-
logical pathway will experience less pressure to learn to
pronounce all of the words by itself. Rather, this path-
way will tend to learn best those words high in frequency
and/or consistency; on its own it may never master low-
frequency exception words completely. On this account,
the combination of the semantic and phonological path-
ways is fully competent in normal readers, but brain dam-
age that impairs the semantic pathway reveals the latent
limitations of an intact but isolated phonological pathway,
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giving rise to surface dyslexia.

Plaut et al. (1996) explored the viability of this ac-
count by extending their simulations of the phonological
pathway to include influences from a putative semantic
pathway. They approximated the contribution that a se-
mantic pathway would make to oral reading by providing
the output (phoneme) units of the phonological pathway
with external input that pushed the activations of these
units towards the correct pronunciation of each word dur-
ing training. Plaut and colleagues found that, indeed, a
phonological pathway trained in the context of support
from semantics exhibited the central phenomena of sur-
face dyslexia when the contribution of semantics was re-
moved. Moreover, individual differences in the severity of
surface dyslexia could arise, not only from differences in
the amount of semantic damage, but also from premorbid
differences in the division of labor between the seman-
tic and phonological pathways (Plaut, 1997). Thus, the
few patients exhibiting mild to moderate semantic impair-
ments without concomitant regularization errors (DRN,
Cipolotti & Warrington, 1995; DC, Lambon Ralph, EI-
lis, & Franklin, 1995) may have, for various reasons, read-
ing systems with relatively weak reliance on the semantic
pathway.

Deep and Phonological Dyslexia

Patients with deep dyslexia (see Coltheart, Patterson, &
Marshall, 1980) have reading impairments that are in
many ways opposite to those with surface dyslexia, in
that they appear to read almost entirely via semantics.
Deep dyslexic patients are thought to have severe dam-
age to the phonological pathway, as evidenced by their
virtual inability to read even the simplest of pronounce-
able nonwords. They also have impairments in reading
words that suggest additional partial damage to the se-
mantic pathway. In particular, the hallmark symptom
of deep dyslexia is the occurrence of semantic errors
in oral reading (e.g., reading CAT as “dog”). Interest-
ingly, these semantic errors co-occur with pure visual er-
rors (e.g., CAT = “cot”), mixed visual-and-semantic er-
rors (e.g., CAT = “rat”), and even mediated visual-then-
semantic errors (e.g., SYMPATHY = “orchestra”, presum-
ably via symphony). Furthermore, correct performance
depends on part-of-speech (nouns > adjectives > verbs
> function words) and concreteness or imageability (con-
crete, imageable words > abstract, less imageable words).
Finally, differences across patients in written and spoken
comprehension, and in the distribution of error types, sug-
gests that the secondary damage to the semantic pathway
may occur before, within, or after semantics (Shallice &
Warrington, 1980).

Deep dyslexia is closely related to another type of ac-
quired dyslexia—so-called phonological dyslexia (Beau-
vois & Derouesné, 1979), involving a selective impair-
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Figure 3. A depiction of the attractor landscape for a
network that maps orthography to semantics, and how
damage to the network can distort the attractors (dashed
oval) in a way that gives rise to both semantic errors (e.g.,
CAT = “dog™) and visual errors (e.g., BOG = “dog”).
Adapted from Plaut and Shallice (1993).

ment in reading nonwords compared with words (with-
out concomitant semantic errors). Indeed, some authors
(Friedman, 1996; Glosser & Friedman, 1990) have argued
that deep dyslexia is only the most severe form of phono-
logical dyslexia.

Hinton and Shallice (1991) reproduced the co-
occurrence of visual, semantic, and mixed visual-and-
semantic errors in deep dyslexia by damaging a connec-
tionist network that mapped orthography to semantics.
During training, the network learned to form attractors
for 40 word meanings across five categories, such that
patterns of semantic features that were similar to a known
word meaning were pulled to that exact meaning over the
course of settling. When the network was damaged, the
initial semantic activity caused by an input would occa-
sionally fall within a neighboring attractor basin, giving
rise to an error response. These errors were often seman-
tically related to the stimulus because words with simi-
lar meanings correspond to nearby attractors in semantic
space. The damaged network also produced visual errors
due to its inherent bias towards similarity: visually simi-
lar words tend to produce similar initial semantic patterns,
which can lead to a visual error if the basins are distorted
by damage (see Figure 3).

Plaut and Shallice (1993) extended these initial find-
ings in a number of ways. They established the gener-
ality of the co-occurrence of error types across a wide
range of simulations, showing that it does not depend on
specific characteristics of the network architecture, the
learning procedure, or the way responses are generated
from semantic activity. Plaut and Shallice also carried
out additional simulations to address the influence of con-
creteness on the reading performance of deep dyslexic
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patients. An implementation of the full semantic path-
way was trained to pronounce a new set of words consist-
ing of both concrete and abstract words. Concrete words
were assigned far more semantic features than were ab-
stract words, under the assumption that the semantic rep-
resentations of concrete words are less dependent on the
contexts in which they occur (Jones, 1985; Saffran, Bo-
gyo, Schwartz, & Marin, 1980). As a result, the net-
work developed stronger attractors for concrete than ab-
stract words during training, giving rise to better perfor-
mance in reading concrete words compared with abstract
words under most types of damage, as observed in deep
dyslexia. Surprisingly, severe damage to connections im-
plementing the attractors at the semantic level produced
the opposite pattern, in which the network read concrete
words more poorly than abstract words. This latter pattern
of performance corresponds to that of CAV, the single,
enigmatic patient with concrete word dyslexia (Warring-
ton, 1981). Taken together, CAV and the deep dyslexic
patients constitute a double dissociation between reading
concrete versus abstract words, which has typically been
interpreted as implying that there are separate modules
within the cognitive system for these word classes (see,
e.g., Morton & Patterson, 1980). The Plaut and Shal-
lice simulation demonstrates that such a radical interpre-
tation is unnecessary: the double dissociation can arise
from damage to different parts of a distributed network, in
which parts process both types of items but develop some-
what different functional specializations through learning
(see Bullinaria & Chater, 1993; Plaut, 1995, for further
results and discussion).

Taken together, the modeling work described above
provides strong support for a connectionist approach to
normal and impaired word reading, embodying the com-
putational principles outlined in the Introduction: dis-
tributed representation, gradual learning of statistical
structure, and interactivity in processing. There have,
however, been recent empirical challenges to the specific
models in particular, and the framework in general, which
ultimately need to be addressed if the approach is to re-
main viable as an account of human performance. A num-
ber of these relate to the influence of orthographic length
on the naming latencies of both normal and dyslexic read-
ers.

Current Challenges. Length Effects

An aspect of the Seidenberg and McClelland (1989) and
Plaut et al. (1996) models that has contributed substan-
tially to their theoretical impact is that, because they were
trained on a sufficiently extensive corpus of words, their
performance can be compared directly with that of human
subjects on the very same stimuli. These comparisons
have largely been successfully at the level of accounting

for the effects of factorial manipulations (e.g., word fre-
quency, spelling-sound consistency). More recently, how-
ever, the models have been found to be lacking when com-
pared with human performance on an item-by-item ba-
sis. For instance, Spieler and Balota (1997) correlated the
mean naming latencies of 31 subjects naming 2820 words
with the models’ latencies for the same words, and found
that the models accounted for only about 3-10% of the
variance associated with individual items. By contrast, the
combination of the traditional measures of log frequency,
orthographic length, and orthographic neighborhood size
(Coltheart’s N) collectively accounted for 21.7% of the
variance; including an encoding of phonetic properties of
the onset phoneme increased this figure to 43.1%.

In response, Seidenberg and Plaut (1998) carried out
additional analyses with the Spieler and Balota (1997)
dataset as well as another large naming dataset (Seiden-
berg & Waters, 1989). They found that the models did
not account well for effects of orthographic length, but
when the model measures and length were entered first in
a stepwise regression, there was little remaining variance
accounted for by log frequency and orthographic neigh-
borhood. Specificaly, each traditional variable accounted
for less than 1.7% of the remaining variance in all condi-
tions, except that log frequency still accounted for 4.8%
of the variance in the Spieler and Balota dataset (but only
0.25% in the other dataset) after length and the Plaut et al.
(1996) RTs were partialed out. Thus the models provide a
reasonably good (as well as mechanistic) account of the
influence of these traditional factors on naming perfor-
mance. With regard to orthographic length, Seidenberg
and Plaut argued that the effects of this factor were due
largely to visual and articulatory factors outside the do-
main of the existing models.*

More recently, Chris Kello (personal communication,
January 1998) has provided some support for this claim.
He hypothesized that some of the observed length effect
might be due to the fact that longer monosyllabic words
are more likely to have complex onset consonant clusters
(e.g., /pr/, Istr/), and the reduced acoustic amplitude at the
beginning of such clusters introduces delay in tripping a
standard voice key. For example, a voice key might reg-
ister the /r/ in both RING and STRING, yielding an overly
long RT in the latter case (extended by roughly the du-
ration of the /st/). Kello repeated the Spieler and Balota
(1997) stepwise regression analysis but used a more so-
phisticated encoding of the phonetic properties of word

LIn their reply to Seidenberg and Plaut (1998), Balota and Spieler
(1998) question whether length effects fall outside the scope of the mod-
els given that Plaut et al. (1996, p. 85) actually demonstrated a small
but reliable effect of length on the settling times of their attractor model.
However, the fact that the model shows some sensitivity to length does
not entail that it should be expected to account for all or even most of the
effects of length on performance; the underlying theory may still ascribe
length effects to other (unimplemented) parts of the reading system.
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onsets, including the presence of certain consonant clus-
ters. He found that, compared with the use of Spieler and
Balota’s encoding, the new encoding reduced the amount
of residual variance accounted for by orthographic length
by well over half, from 7.5% to 3.3%. These results in-
dicate that a sizable amount of the effects of orthographic
length can be accounted for by articulatory onset charac-
teristics.

Although articulatory factors may contribute substan-
tially to length effects, they cannot be the whole story.
Recently, Weekes (1997) has demonstrated differential ef-
fects of length for words versus nonwords matched for
onset characteristics. Specifically, using 3-6 letter words
and nonwords, Weekes found reliable length effects for
nonwords and for low- but not high-frequency words.
When he partialed out orthographic neighborhood size,
the length effect was eliminated for words but not for non-
words. Weekes argued that these findings pose problems
for any account in which words and nonwords are pro-
cessed by a single mechanism.

Finally, length effects also play a prominent role in the
analysis of acquired reading impairments, particularly in
the context of the letter-by-letter (LBL) reading of pure
alexic patients (Dejerine, 1892) and some nonfluent sur-
face dyslexic patients (e.g., Patterson & Kay, 1982). Al-
though the accuracy of these patients can be quite high,
their naming latencies show an abnormally large word
length effect, sometimes on the order of 1-3 seconds per
letter (cf. 5-50 msec/letter for normal readers; Hender-
son, 1982). One account of such patients (Patterson &
Kay, 1982) is that they have a peripheral deficit that pre-
vents adequate activation of letter representations in par-
allel; they thus must resort to a compensatory strategy of
recognizing letters sequentially.

There is, in fact, considerable independent evidence for
peripheral impairments in LBL readers (see Behrmann,
Nelson, & Sekuler, in press, for review). On the other
hand, there is also evidence for the influence of lexi-
cal/semantic factors on LBL reading performance. There
are two forms of this latter influence. First, when pre-
sented with words too briefly to allow overt naming, some
LBL readers can nonetheless perform lexical decision and
semantic categorizations tasks above chance (Coslett &
Saffran, 1989; Shallice & Saffran, 1986). Quite apart
from this type of “covert” reading, LBL readers also show
lexical effects on their letter-by-letter reading latencies.
For example, Behrmann, Plaut, and Nelson (1998) present
data on seven LBL readers of varying severity, showing
that the magnitudes of their length effects interacted both
with frequency and with imageability. Moreover, these in-
teractions were modulated by severity of the impairment,
such that the most severe patients showed the strongest
lexical/semantic effects. Behrmann and colleagues argue
that these higher-level effects in LBL reading are consis-

tent with a peripheral impairment given the interactive na-
ture of processing with the reading system: weakened (se-
quential) letter activation supports partial lexical/semantic
activation that accumulates over time and feeds back to
facilitate subsequent letter processing. They also propose
that the sequential processing in LBL reading is not an
abnormal strategy employed only following brain dam-
age, but is the manifestation of the normal reading strat-
egy of making additional fixations when encountering dif-
ficulty in reading text (Just & Carpenter, 1987; Reichle,
Pollatsek, & Rayner, 1998). For example, in order to en-
hance stimulus quality, normal subjects make more fixa-
tions within long compared with short words. LBL read-
ers also fixate more frequently; in fact, given the very poor
quality of the visual input, they fixate almost every letter
(Behrmann, Barton, Shomstein, & Black, in preparation).

In summary, the effects of orthographic length on nam-
ing latency, both in normal and brain-damaged subjects,
place important constraints on theories of word reading,
and existing distributed models do not provide an ade-
quate account of these effects. A fully adequate model of
length effects in reading would need to incorporate con-
siderably detailed perceptual and articulatory processes in
addition to the more central processes relating orthogra-
phy, phonology, and semantics. The intent of the simula-
tion described in the following section is not so much to
attempt such a comprehensive account, but rather to begin
an exploration of the kinds of networks and processes that
might provide deeper insight into length effects.

Simulation
M ethod

A simple recurrent network (Elman, 1990) was trained to
produce a sequence of phonemes as output when given
a string of position-specific letters as input. The training
corpus consisted of the 2998 monosyllabic words in the
Plaut et al. (1996) corpus. The architecture of the net-
work is shown in Figure 4. There are 26 letter units and
a “blank” unit at each of 10 positions. The third position
from the left, indicated by the dark rectangle in the figure,
corresponds to the point of fixation. These 270 letter units
are fully connected to 100 hidden units which, in turn, are
fully connected to 36 phoneme units.? The hidden units
also receive input from the previous states of phoneme
units. In addition, there is a fourth group of position units,
with connections both to and from the hidden units, that
the network uses to keep track of where it is in the let-
ter string as it is producing the appropriate sequence of
phonemes, analogous to a focus of attention. Two copies

2The encoding of words and nonwords as sequences of phonemes
was based on the phonological representation employed by Plaut and
McClelland (1993), which differs slightly from that used by Plaut et al.
(1996).
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of the position units and the phoneme units are shown in
the figure simply to illustrate their behavior over time. Fi-
nally, there is a “done” output unit that the network uses to
indicate that a pronunciation is complete. Including bias
connections (equivalent to connections from an additional
unit with a fixed state of 1), the network had a total of
45,945 connections that were randomized uniformly be-
tween +1.0 before training.3

In understanding how the network was trained, it will
help to consider first its operation after it has achieved a
reasonable level of proficiency at its task. First, a word
is selected from the training corpus according to a loga-
rithmic function of its frequency of occurrence (Kucera &
Francis, 1967). Its string of letters is presented with the
first letter at fixation,* by activating the appropriate let-
ter unit at each corresponding position, and the blank unit
at all other positions. Position information for internal
letters is assumed to be somewhat inaccurate (see, e.g.,
Mozer, 1983), so that the same letter units at neighboring
internal positions are also activated slightly (to 0.3). In
Figure 4, the grey regions for letter units indicate the ac-
tivations for the word BAY when fixating the B. Initially,
the position unit corresponding to fixation (numbered 0
by convention) is active and all others are inactive, and all
phoneme units are inactive. (In the figure, the states of
position and phoneme units show the network attempting
AY =-/A/ after having generated B =-/b/.) Hidden unit
states are initialized to 0.2 at the beginning of processing
the word.

The network then computes new states for the hidden
units, phoneme units, and position units. The network has
two tasks: 1) to activate the phoneme corresponding to
the current grapheme, and 2) to activate the position of
the next grapheme in the string (or, if the end of the string
is reached, the position of the adjacent blank). For exam-
ple, when attending to the letter B at fixation in BAY, the
network must activate the /b/ unit and position unit 1 (the
position of Ay in the input). Specifically, the target activa-
tions for the phoneme units consist of a one for the correct
current phoneme and zeros elsewhere, and the targets for
the position units consist of a one for the position of the
next grapheme/blank in the string and zeros elsewhere. To
the extent that the activations over the phoneme and posi-
tion units are inaccurate (i.e., not within 0.2 of their target
values), error is injected and back-propagated through the

3Given the composition of the training corpus and all possible re-
fixations, 62 of the letter units would never be activated during train-
ing. Therefore, to reduce the computational demands of the simulation
slightly, all 6200 outgoing connections from these units were removed,
leaving an actual total of 39,745 connections in the network.

4A more empirically accurate positioning would have placed the
string so that fixation falls at or just to the left of the center of the word,
corresponding to the “optimal™ or “convenient” viewing position (see
O’Regan, 1981). This distinction has no functional consequences for
the current model, however, as it does not incorporate variation in visual
acuity with eccentricity.

network. Performance error was measured by the cross-
entropy (see Hinton, 1989) between the correct and target
activations.

Assuming that the network succeeds at generating the
correct phoneme and position, this information is then
used to guide the production of the next phoneme and po-
sition. For this purpose, the correct phoneme unit had to
be activated above 0.7 and all others had to be below 0.3,
and the correct position unit had to be more active than
any other position unit. (During testing, this criterion ap-
plies to the most active phoneme unit rather than to the
“correct” unit.) As shown in Figure 4 for BAY, position
unit 1 and the phoneme /b/ are now active, the letter input
remains the same, and the network must activate /A/, the
phoneme corresponding to the indicated grapheme AY);
position unit 3, corresponding to the blank following the
string; and the “done” unit, indicating a complete pronun-
ciation. In general, when pronouncing a letter string, the
network is trained to activate the sequence of phonemes
corresponding to its pronunciation, while simultaneously
keeping track of the position of the grapheme it is cur-
rently working on.

If, in pronouncing a letter string, every phoneme and
position is generated correctly, the activations over the let-
ter units remain fixed. If, however, the network fails at
generating the correct phoneme or next position at some
point, it refixates the input string and tries again. It does
this by making the equivalent of a rightward saccade to
fixate the problematic grapheme, using the position units
as a specification of its position relative to fixation. This
position information was generated over the position units
on the previous time step, and thus is available to guide the
appropriate saccade.® The actual saccade is implemented
by shifting the input activation of the letter units to the
left by the specified amount, and resetting position unit
0 to be active. Following this, the network tries again to
pronounce the (now fixated) grapheme, and then the re-
mainder of the input string.

In general, the network pronounces as much of the
static input as it can until it runs into trouble, then sac-
cades to that part of the input and continues. Note that,
early on in training, the network repeatedly fails at gener-
ating correct output, and so is constantly refixating. This
means that essentially all of its training experience con-
sists of pronouncing graphemes (in context) at fixation.
As the network learns to pronounce these correctly, it be-
gins to attempt to pronounce the graphemes in the near
(right) periphery without refixating. If it fails, it will make

51f the network fails on the first grapheme of a string, or immediately
after refixating, the target for the position units is used during training
as the location of the next fixation; during testing, the most active po-
sition unit is used. Also note that the network’s rightward saccades are
different than the regressive (leftward) saccades that subjects sometimes
make when encountering difficult text (see Just & Carpenter, 1987). The
current network cannot make regressive saccades.
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Figure 4. The network architecture for the refixation network. The arrows indicated full connectivity between groups
of units. The recurrent connections among the hidden units only convey information about the last time step. The grey
areas in the input and output units are intended to depict their activities at an intermediate point in processing the word
BAY, after the B = /b/ has been pronounced (with no refixation) and the Ay = /A/ is being attempted.

a saccade and use its more extensive experience at fixa-
tion. Gradually, however, it will learn to pronounce these
adjacent graphemes correctly, and will go on to attempt
even more peripheral ones. In this way, the network’s
competence extends gradually from fixation rightward to
larger and larger portions of input strings, making fewer
and fewer fixations per word as a result. However, the
network can always fall back on its more extensive ex-
perience at fixation whenever it encounters difficulty. It
is perhaps worth noting in this context that, although the
network was trained only on monosyllabic words for con-
venience, it would be entirely straightforward to apply it
to pronouncing polysyllabic words of arbitrary length.

To summarize, as the network is trained to produce the
appropriate sequence of phonemes for a letter string, it
is also trained to maintain a representation of its current
position within the string. The network uses this position
signal to refixate a peripheral portion of the input when it
finds that portion difficult to pronounce. This repositions
the input string so that the peripheral portion now falls
at the point of fixation, where the network has had more
experience in generating pronunciations. In this way, the
network can apply the knowledge tied to the units at the
point of fixation to any portion of the string that is difficult
for the network to read.

Results and Discussion

Normal Performance. The network was trained on
400,000 word presentations with a learning rate of 0.01,
momentum of 0.9, and weight decay of 0.000001. The
learning rate was then reduced to 0.001 and the network
was trained on an additional 50,000 word presentations,
in order to minimize the noise in the final weight values
due to sampling error among training examples. The to-
tal number of presentations per word ranged from about
40 to 600, with a median of 130. Figure 5 shows, over
the course of training, both the overall level of accuracy
in pronouncing words as well as the mean number of fix-
ations required. At the end of training, the network read
2978/2998 (99.3%) of the words correctly (where homo-
graphs were considered correct if they elicited either ap-
propriate pronunciation). The network made an average
of 1.32 fixations per word in generating correct pronunci-
ations, with 2290 (76.9%) involving a single fixation. Just
under half (8/20) of the errors were regularizations of low-
frequency exception words (e.g., BROOCH = “brewch”,
SIEVE = “seeve”).

Given that the network essentially has a feedforward ar-
chitecture and outputs only a single phoneme at a time, it
is not entirely clear what an appropriate measure of nam-
ing latency should be. The most natural analogue to the
onset of acoustic energy that would trip a voice key in a
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Figure 5. Percentage of words pronounced correctly by
the network (top curve; left axis) and the mean number of
fixations required (bottom curve, right axis) as a function
of the number of words presented during training. The
improvement in performance from 400,000 to 450,000 is
due to a reduction in learning rate (see text).

standard empirical study would be the real-valued error
on the first phoneme. This measure, however, fails to take
into account the coarticulatory constraints on executing a
fluent pronunciation that apply for subjects but not for the
model. A more appropriate, albeit coarse measure in the
current context is simply the number of fixations required
to generate a correct pronunciation. This measure directly
reflects the degree of difficulty that the system experiences
in constructing a complete pronunciation.®

Figure 6 shows the mean number of fixations made by
the model in generating correct pronunciations for words
in the training corpus as a function of their length in let-
ters. Using this measure as an analogue to naming latency,
the model shows no latencies differences between 3- and
4-letter words (F < 1), but a steady increase in latency
for 4—6 letter words and an overall length effect (F3 2932 =
76.7, p < .001) with a slope of 0.18 fixations per letter.

The network was tested for its ability to account for two
sets of recent findings concerning length effects in normal
readers. First, as mentioned earlier, Weekes (1997) found
reliable effects of orthographic length in the naming laten-
cies for both words and nonwords, but only the nonword
effect remained reliable when orthographic neighborhood
size was partialed out. In applying the current model to
Weekes’ stimuli, 24 of the words had to be eliminated be-
cause they are not in the model’s training corpus; most of
these are inflected forms (e.g., BOARDS, CALLED). Of the
remaining items, the model correctly pronounced 86/86

6There is emerging evidence that subjects can initiate their articula-
tion prior to computing the entire pronunciation of a word (Kawamoto,
Kello, Jones, & Bame, 1998). Note, however, that the most difficult
aspect of mapping orthography to phonology in English relates to in-
consistency in vowel pronunciations, and the fixation measure used in
the current simulation is sufficiently sensitive to reflect this property.
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Figure 6. Mean number of fixations made by the net-
work in pronouncing 3-6 letter words. The y-axis scale is
the same as that in Figure 9 for ease of comparison.

of the high-frequency words, 89/90 of the low-frequency
words, and 90/100 of the nonwords (where 4 of the 10
errors were on pseudo-inflected forms; e.g., BRANKS,
LOAKED). A nonword pronunciation was scored as cor-
rect if it matched the pronunciation of some word in the
training corpus (e.g., GROOK pronounced to rhyme with
BOOK; see Plaut et al., 1996, for details).

Comparing 4- versus 6-letter stimuli, there was a reli-
able length effect in the mean number of fixations made by
the model in correctly pronouncing high-frequency words
(1.00 vs. 1.25; F134 = 7.56, p < .01), low-frequency
words (1.38 vs. 1.79; F141 = 1.82, p < .05), and non-
words (1.61 vs. 2.38; F1 42 = 6.55, p < .01). When or-
thographic neighborhood size (calculated over the train-
ing corpus) was first partialed out of the data, the length
effects for both high- and low-frequency words were elim-
inated (F134 < 1 and Fya1 = 1.43, p > .2, respectively)
whereas the length effect for nonwords remained reliable
(F142 = 6.43, p < .05). The only discrepancy between
these finding and those of Weekes (1997) is that the small
length effect for high-frequency words was reliable for the
model but not for the human subjects.

The second length effect to which the model was ap-
plied was the recent finding of Rastle and Coltheart (1998)
that, among 5-letter nonwords, those with 3-phoneme
pronunciations (e.g., FOOPH) produce longer naming la-
tencies than those with 5-phoneme pronunciations (e.g.,
FROLP); note that this is an effect of phonological rather
than orthographic length. Certain aspects of Rastle and
Coltheat’s stimuli are problematic in the current context—
namely, 5 of the 24 5-phoneme nonwords are pseudo-
inflected (e.g., FRULS). If these and the matched 3-
phoneme nonwords are removed from the analysis, the
mean number of fixations made by the model in pronounc-
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1992) as a function of their frequency and spelling-sound
consistency.

ing the 3-phoneme nonwords is numerically larger than
that for the 5-phoneme nonwords, but the difference is
not reliable (2.95 vs. 2.79, respectively; paired t17 < 1).
The null result may stem in part from the small number of
comparisons but also from the fact that, under the model’s
phonological encoding, the stimuli that Rastle and Colt-
heart considered to have 3 phonemes actually had a mean
phonological length of 3.58, as a number of the nonwords
have 4 or even 5 phonemes (e.g., BARCH = /bartS/).

The network was also tested for the standard effects
of word frequency and spelling-sound consistency in its
number of fixations, using a list of 126 matched pairs of
regular and exception words falling into three frequency
bands (Patterson & Hodges, 1992). The network mispro-
nounced five of the words, producing regularization er-
rors to four low-frequency exception words—BROOCH,
SIEVE, SOOT, and SUEDE—and an irregularization er-
ror to a low-frequency regular word—souRr to rhyme
with POUR (see Patterson, Plaut, McClelland, Seidenberg,
Behrmann, & Hodges, 1996, for empirical evidence sup-
porting the occasional occurrence of such errors). Fig-
ure 7 shows the mean number of fixations required to cor-
rectly pronounce the remaining words, as a function of
their frequency and consistency. Overall, there was a main
effect of frequency (means: high 1.04, medium 1.35, low
1.62; Fp041 = 22.4, p < .001) and a main effect of con-
sistency (means: regular 1.14, exception 1.52; Fy241 =
27.5, p < .001), as well as a frequency-by-consistency
interaction, with low-frequency exception words requir-
ing disproportionately more fixations (F2,241 = 7.67, p <
.001). These results are in accord with the relevant empir-
ical findings on the naming latencies of skilled readers.

At the item level, the numbers of fixations made by
the model was regressed against the mean naming laten-
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cies of Spieler and Balota’s (1997) 31 subjects. Over the
2812/2820 words that the model pronounced correctly, its
number of fixations accounted for 8.8% of the variance
in the latency data (tg10 = 16.5, p < .001). This value
is much better than that of the Plaut et al. (1996) model
(3.3%) but not quite as good as the Seidenberg and Mc-
Clelland (1989) model (10.1%).

Finally, the network was tested for its accuracy in
pronouncing three sets of nonwords from two empiri-
cal studies: 1) 43 nonwords derived from regular words
(Glushko, 1979); 2) 43 nonwords derived from excep-
tion words (Glushko, 1979); and 3) 80 nonwords used
as controls for a set of pseudohomophones (McCann &
Besner, 1987). As before, a nonword pronunciation was
considered correct if it was consistent with some word in
the training corpus. Figure 8 shows the performance of
the network on this criterion, as well as the correspond-
ing data for human subjects. The network was correct on
40/43 (93.0%) of the regular nonwords, 41/43 (95.3%) of
the exception nonwords, and 73/80 (91.3%) of the con-
trol nonwords. By comparison, the corresponding levels
of performance reported for human subjects were 93.8%
on regular nonwords and 95.9% on exception honwords
(Glushko, 1979), and 88.6% on the control nonwords
(McCann & Besner, 1987). Moreover, in pronouncing
these nonwords, the mean number of fixations produced
by the network for correct pronunciations was 1.63 for the
regular nonwords, 2.27 for the exception nonwords, and
1.92 for the control nonwords. The overall mean for non-
words, 1.94, is comparable to the value for low-frequency
exception words (2.00; see Figure 7). Thus, the network’s
nonword reading accuracy and latency is comparable to
that of skilled readers.

Performance Under a Peripheral Impairment. In
order to model a peripheral deficit in letter perception
of the sort postulated by Behrmann, Plaut, and Nelson
(1998) to produce LBL reading, input letter activations
were corrupted by Gaussian noise (SD = 0.055). When
this was done, correct performance dropped from 99.3%
to 90.0% correct (averaged across 10 runs through the
training corpus). Using a median split on frequency, ac-
curacy was greater on high- versus low-frequency words
(91.7% vs. 88.7%, respectively; F1 2983 = 18.0, p < .001)
and on short versus long words (e.g., 91.6% for 4-letter
words vs. 86.8% for 6-letter words; Fy 1503 = 14.1, p <
.001).

It was argued above that number of fixations can be
used as a coarse approximation to naming latency for
skilled readers because this measure reflects the degree
of difficulty in constructing a coherent articulatory out-
put. The situation is rather different in the context of LBL
reading because, in this case, it is more literally true that
a pronunciation is constructed incrementally. For this rea-
son, number of fixations in the model can be taken as a
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and of human subjects in pronouncing three sets of non-
words: regular and exception nonwords (N = 43 each)
from Glushko (1979), and control nonwords (N = 80)
from McCann and Besner (1987).

more direct analogue of the naming latency of LBL read-
ers. Another plausible measure—the total number of pro-
cessing steps required by the model in generating a pro-
nunciation, including initial attempts and attempts after
refixations—gives qualitatively equivalent results.

Among words pronounced correctly, the average num-
ber of fixations per word increased from 1.32 to 2.20 as
a result of the introduction of input noise. Not surpris-
ingly, this measure was strongly influenced by the length
of the word. For example, the impaired model made an
average of 2.00 fixations on 4-letter words but 2.97 fixa-
tions on 6-letter words (Fy 1520 = 380.1, p < .001), corre-
sponding to a slope of 0.49 fixations per letter. The model
also made fewer fixations on high- versus low-frequency
words (means 2.10 vs. 2.30, respectively; F1 2973 = 50.5,
p < .001). Finally, and most important for the Behrmann,
Plaut, and Nelson (1998) account of LBL reading, there
was a clear interaction of frequency and length. This
was established by comparing performance on sets of 4-
and 6-letter words matched for frequency (N = 100 for
each cell). The average number of fixations per word
for these stimuli is shown in Figure 9. In addition to
main effects of frequency (F1396 = 7.13, p < .01) and
length (F1 306 = 186.6, p < .001), frequency interacted
with length such that the effect of frequency was larger
for 6- than for 4-letter words (Fy396 = 4.96, p < .05).
Thus, under peripheral damage, the network exhibited the
hallmark word length effect characteristic of LBL read-
ing, combined with the appropriate higher-level effects: a
word frequency effect which was greater for long com-
pared with short words.”

“Given that the network contains no semantic representations, it can-
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in pronouncing 4- and 6-letter words as a function of their
frequency.

In summary, a simple recurrent network was presented
with words as letter strings over position-specific units
and was trained to generate the pronunciation of the word
in the form of a sequence of phonemes. The model had the
ability to refixate the input string when encountering dif-
ficulty. The network learned to pronounce correctly virtu-
ally all of the 2998-word training corpus, including both
regular and exception words, and also was capable of pro-
nouncing nonwords as well as skilled readers. Moreover,
if mean number of fixations was taken as an analogue of
skilled naming latency, the model exhibited a length effect
as well as the standard frequency-by-consistency inter-
action observed in empirical studies. Finally, peripheral
damage to the model, in the form of corrupted letter acti-
vations, gave rise to the hallmark characteristics of letter-
by-letter reading, including an increased length effect that
interacts with lexical variables (e.g., word frequency).

General Discussion

Connectionist modeling has made important contributions
to a wide range of domains within cognitive science.
Word reading, in particular, has received considerable at-
tention because it is a highly learned skill that involves the
rapid, online interaction of a number of sources of infor-
mation in an integrated fashion. There is also a wealth of
detailed empirical data on normal reading acquisition and
skilled performance, as well as patterns of reading impair-
ments in developmental and acquired dyslexia, that play
an essential role in evaluating and constraining explicit
computational models. The current article contributes

not be used to account for the effects of imageability on LBL reading,
nor the relatively preserved lexical decision and semantic categorization
performance of these patients.
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to the development of a connectionist theory of normal
and impaired word reading based on three general com-
putational principles: distributed representation, gradual
learning of statistical structure, and interactivity in pro-
cessing. This endeavor has led to a number of important
insights concerning the nature of the reading system, both
in normal operation and when impaired by brain damage.
These insights do not typically follow from alternative
theoretical frameworks, although versions of them can be
incorporated into these frameworks in a post hoc manner.
Moreover, many of the insights have implications which
extend beyond the specific domain of word reading. Four
of these are enumerated and discussed below.

1. The apparent dichotomy between “regular” ver-
sus “exception” items is a false one; rather,
items vary along a continuum of consistency
(Glushko, 1979), and a single mechanism can
learn to process all types of items and yet also
generalize effectively to novel items.

This point was made first by Rumelhart and McClelland
(1986) in the domain of inflectional morphology, and later
by Seidenberg and McClelland (1989) in the domain of
word reading. The impact of these early models was,
however, undermined to a certain extent by limitations in
the models’ performance, particularly with respect to gen-
eralization. In the domain of word reading, these limita-
tions were addressed in subsequent modeling work (Plaut
et al., 1996) by incorporating more appropriately struc-
tured orthographic and phonological representations.

Apart from issues of parsimony, the importance of a
single-mechanism account is that it provides insight into
why there is so much shared structure between so-called
regular and exception items. For instance, the exception
word PINT has regular correspondences for the P, N, and
T, and even the exceptional | receives a pronunciation that
it adopts in many other words (e.g., PINE, DIE). Moreover,
nonword pronunciation is influenced by exception as well
as regular neighbors (Glushko, 1979). Accounts which
invoke separate mechanisms for the regular versus excep-
tional aspects of language fail to explain or capitalize on
this shared structure.

2. Skilled performance is supported by the inte-
gration of multiple sources of information; im-
paired performance following brain damage can
reflect the underlying division-of-labor among
these sources in the premorbid system.

Patients with fluent surface dyslexia exhibit relatively
normal reading of regular words and nonwords but pro-
duce “regularization” errors to many exception words,
particularly those of low frequency. Dual-route theories
explain surface dyslexia as partial damage to the lex-
ical (non-semantic) route that impairs low- more than
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high-frequency words, with the spared regular and non-
word reading supported by the undamaged nonlexical
route. There is, however, no explanation for why the lex-
ical damage is always partial—the architecture provides
equally well for complete elimination of the lexical route
with complete sparing of the nonlexical route. This would
yield an inability to pronounce any exception words with
complete sparing of regular words and nonwords—a pat-
tern that has never been observed empirically. As excep-
tion word reading becomes very severely impaired, regu-
lar word (and nonword) reading invariably begins to suffer
(see Patterson et al., 1996).

By contrast, on the Plaut et al. (1996) account, normal
reading performance is supported by the combination of
both the phonological and semantic pathways, such that
the phonological pathway retains competence on high-
frequency exception words. Thus, the only way to com-
pletely eliminate exception word reading is to damage
both pathways to some extent, but this also impairs regu-
lar word and nonword reading (as observed empirically).

3. The co-occurrence of different types of errors
can arise from single lesions within a distributed
system that learns to map among the different
types of information.

The error patterns of brain-damaged patients can place
strong constraints on theoretical accounts of cognitive
processes. The traditional account of the co-occurrence
of visual and semantic errors in deep dyslexia (Morton &
Patterson, 1980) assumes an impairment to visual access
of (abstract) semantics to explain the visual errors, and
a second impairment to semantic access of phonology to
explain the semantic errors. The problem is that this ac-
count explains the occurrence of visual errors and of se-
mantic errors, but not their co-occurrence: it is perfectly
feasible within the framework to introduce only one of the
lesions—say, the second—and predict patients who pro-
duce only semantic errors. While such cases have been
reported (e.g., KE; Hillis, Rapp, Romani, & Caramazza,
1990), the vast majority of deep dyslexic patients make
both visual and semantic errors (see Coltheart, Patter-
son, & Marshall, 1987), and the traditional account fails to
explain this. An appeal to chance anatomic proximity of
the related brain structures fails because the co-occurrence
is not symmetric; many dyslexic patients make visual er-
rors but no semantic errors.

On the connectionist account (Hinton & Shallice, 1991;
Plaut & Shallice, 1993), the co-occurrence of visual er-
rors with semantic errors is a natural consequence of the
nature of learning within a distributed attractor network
that maps orthography to semantics. Essentially, the lay-
out of attractor basins must be sensitive to both visual and
semantic similarity, and so these metrics are reflected in
the types of errors that occur as a result of damage.
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4. A double dissociation in performing two tasks
does not implicate separate modules dedicated
to performing each of the tasks, but can arise
from graded functional specialization with a dis-
tributed system that performs both tasks.

Cognitive neuropsychologists have traditionally as-
sumed that if each of two tasks can be selectively impaired
by brain damage while leaving the other relatively intact,
they must be subserved by separate mechanisms. For ex-
ample, the double dissociation in reading concrete ver-
sus abstract words prompted Warrington and others (e.g.,
Morton & Patterson, 1980) to assume that the semantics
for abstract words was represented separately from those
for concrete words. Plaut and Shallice (1993; Plaut, 1995)
showed, however, that this pattern can arise within a net-
work without separate modules for concrete and abstract
words. Rather, different parts of the system develop a
degree of functional specialization through learning as a
result of differences in the statistical properties of word
meaning (e.g., numbers of distinctive features). Thus,
the double dissociation does reveal something important
about the underlying organization of the system, but this
organization does not correspond directly to the empiri-
cally manipulated stimulus dimension (concreteness).

The above four points illustrate ways in which a dis-
tributed connectionist approach has provided new insights
both normal and impaired word reading. It must be
acknowledged, however, that the existing implemented
models have a number of basic limitations that ultimately
prevent them from collectively constituting a comprehen-
sive account of the domain. These limitations stem largely
from the fact that all of them have very restricted temporal
behavior: Single static monosyllabic words are presented
as input, and a single, static semantic and/or phonological
pattern is generated as output. Naturalistic reading is, of
course, a far more fluid and temporally complex activity,
involving sequences of attentional shifts and eye move-
ments over lines of text as input, sequences of articulatory
gestures as spoken output, and interactions among mul-
tiple levels of linguistic structure in both comprehension
and production (see Just & Carpenter, 1987).

The current article presents a simulation which can be
seen as a first step towards incorporating some of these
complexities into connectionist models of reading. The
model is still applied only to single monosyllabic words,
but this limitation reflects more the choice of training cor-
pus than any intrinsic limitation of the architecture. The
network generates sequences of phonemes as output in re-
sponse to letter strings as input. Critically, it maintains
a focus of attention within the word as it is being pro-
nounced; this focus is used to refixate the input string
when the network encounters difficulty in generating a
pronunciation. The model learned to pronounce virtu-
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ally all of the 2998-word training corpus, and pronounced
nonwords as well as skilled readers. It also exhibited
a length effect and the standard interaction of word fre-
quency and spelling-sound consistency if the number of
fixations it makes in pronouncing a word was taken to re-
flect its naming latency.

Consideration of sequential processing for both visual
input and articulatory output is critical for a full account
of a number of empirical phenomena, particularly those
related to the effects of the length of the input string. The
current model is applied only to a small subset of these ef-
fects, relating to differential effects for words versus non-
words (Weekes, 1997), and the exaggerated length effect
of letter-by-letter readers and its interaction with lexical
variables (Behrmann et al., 1998). In the latter case, the
empirical adequacy of the model is somewhat limited in
that the magnitude of the length effects, relative to nor-
mal performance, are much smaller than for most letter-
by-letter readers. Nonetheless, the model illustrates how
letter-by-letter reading can be interpreted as reflecting the
operation of the normal reading system following periph-
eral damage (see Behrmann, Plaut, & Nelson, 1998, for
discussion).

Given that the current model is, in many respects, very
different from previous models (Plaut et al., 1996; Sei-
denberg & McClelland, 1989), it is important to consider
how they are related. With regard to the orthographic in-
put, the models are relatively similar in that all of them are
presented with an entire word as input. The current model
differs in the use of position-specific letter units and a re-
fixation mechanism. However, most words are processed
in a single fixation in skilled performance, which corre-
sponds to the static presentation of input in the previous
models. In this way, even though the current model pro-
duces a single phoneme at a time, the fact that it does
so based on the entire orthographic input at every step
makes it fully consistent with evidence suggesting a con-
siderable degree of parallel visual processing during word
reading (see, e.g., Reichle et al., 1998). This property also
distinguishes it from other sequential models in which
the orthographic input is shifted leftward one letter each
time a phoneme is generated (e.g., Bullinaria, 1997; Se-
jnowski & Rosenberg, 1987; see Christiansen & Chater,
this issue, for discussion). In fact, these models are very
similar to the current model when it is refixating every
grapheme.

The more substantial difference between the model
and the previous parallel ones concerns the generation
of phonological output. The previous models generated
a static representation of the pronunciation of an entire
(monosyllabic) word, whereas the current model gener-
ates a pronunciation phoneme-by-phoneme. An interme-
diate case would be a model which derived a representa-
tion of an entire word (or at least a syllable) and then used
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this representation as input to generate sequential articu-
latory output. Plaut and Kello (in press) describe such a
system in the context of modeling phonological develop-
ment, although the phonological representation is gener-
ated from acoustic rather than orthographic input. A read-
ing model which adopted the current model’s treatment of
orthographic input but Plaut and Kello’s treatment of ar-
ticulatory output would combine the strengths of the cur-
rent sequential model and previous parallel models, and
should be able to model effects on naming latencies, in-
cluding those relating to orthographic length, directly in
its temporal behavior. While such an approach appears
promising for addressing the full range of empirical phe-
nomena in normal and impaired word reading, it remains
for future work to bring it to fruition.
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