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Abstract. In our previous work [17] we have shown that for anyω-algebraic
meet-cpoD, if all higher-order stable function spaces built fromD areω-algebraic,
thenD is finitary. This accomplishes the first of a possible, two-step process in
solving the problem raised in [1, 2]: whether the category ofstable bifinite do-
mains of Amadio-Droste-Göbel [1, 6] is the largest cartesian closed full sub-
category within the category ofω-algebraic meet-cpos with stable functions.
This paper presents results on the second step, which is to show that for any
ω-algebraic meet-cpoD satisfying axiomsM and I to be contained in a carte-
sian closed full sub-category usingω-algebraic meet-cpos with stable functions,
it must not violateMI∞ . We introduce a new class of domains calledweakly dis-
tributive domainsand show that for these domains to be in a cartesian closed cate-
gory usingω-algebraic meet-cpos, propertyMI∞ must not be violated. We further
demonstrate that principally distributive domains (thosefor which each principle
ideal is distributive) form a proper subclass of weakly distributive domains, and
Birkhoff’s M3 andN5 [5] are weakly distributive (but non-distributive). We intro-
duce also the notion of meet-generators in constructing stable functions and show
that if anω-algebraic meet-cpoD contains an infinite number of meet-generators,
then [D → D] fails I. However, the original problem of Amadio and Curien re-
mains open.

1 Introduction

Domains are order-theoretic structures initiated by Dana Scott in the late 1960s for suit-
able mathematical spaces to accommodate denotations of programs. Their rich struc-
tural properties are often manifested collectively as categorical properties such as carte-
sian closedness, with important computational consequences. The interplay between
domain theory and denotational semantics of programming languages is much inspired
by the pursue of “full abstraction” [9]. Full completeness addresses the related problem
of ensuring that mathematical spaces naturally generated by a certain set of base do-
mains (the interpretation of base types) using computationally meaningful categorical
constructs do not contain computationally irrelevant elements.
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program 60496321 and NSFC 60421001.



Stable domain theory was initiated by Berry [3] in the late 1970s as an attempt to
cut down computationally irrelevant elements typically found in function spaces based
on Scott continuity alone. The hallmark of stable domain theory is that an element
realizing finite computation never involves an approximation sequence beyond finitely
many steps.

As with many scientific developments, although stable domain theory itself turned
out not to be the solution to the full abstraction problem that motivated it, it has since
played significant roles in linear logic (Girard [8]), concurrency (Winskel [13]), poly-
morphism in PCF (Coquand [4]), and object-oriented programming (Reddy [11]).

The existence of a variety of cartesian closed categories ofdomains motivated a
systematic investigation of the question of “largest cartesian closed categories of do-
mains”, starting with the work of Smyth [12]. Similar development on stable domains
has occurred only more recently. The second author showed [15] that Berry’s category
of dI-domains is the largest cartesian closed category inside the category of Scott do-
mains (which are bounded complete) with stable functions. In [1, 6], appropriate notions
of stable domains beyond the bounded complete ones were investigated, in an effort to
provide an understanding of how the stable order may be extended to SFP-like do-
mains [10]. An interesting new category calledstable bifinite domainswas introduced
in [1, 6]. An important conceptual question (see Amadio and Curien [2], pages 287–
291) is: whether the category of stable bifinite domains of Amadio-Droste-Göbel [1, 6]
is the largest cartesian closed full sub-category of the category ofω-algebraic meet-cpos
with stable functions.

The paper by Amadio [1] presents a first explicit formulationand serious attack on
this open problem. The main result of [1] is that the finite ascending chain condition
and finite descending chain condition must be maintained in any stable cartesian closed
category composed ofω-algebraic meet-cpos. These conditions account for two of the
three cases for which a principal ideal determined by a compact element may violate
axiomI (i.e., a compact element dominates only finitely many elements). The third case
is the finite antichain condition: any principal ideal determined by a compact element
must not contain an infinite antichain. In recent work [17] wesolved the finite antichain
case which leads to the immediate conclusion that axiomI must be maintained in any
cartesian closed full sub-category composed ofω-algebraic meet-cpos with stable func-
tions. This accomplishes the first of a two step process in solving the problem raised by
Amadio and Curien. This paper presents results on the secondstep, which is to show
that for anyω-algebraic meet-cpoD satisfying axiomsM and I to be contained in a
cartesian closed full sub-category usingω-algebraic meet-cpos with stable functions, it
must not violateMI∞ .

In this paper we introduce a new class of domains calledweakly distributive do-
mainsand show that for these domains to be in a cartesian closed full sub-category
usingω-algebraic meet-cpos with stable functions, it must not violateMI∞ . We further
demonstrate that principally distributive domains (thosefor which each principle ideal
is distributive) form a proper subclass of weakly distributive domains, and Birkhoff’s
M3 andN5 [5] are weakly distributive (but non-distributive). We introduce also the no-
tion of meet-generators in constructing stable functions and show that if anω-algebraic



meet-cpoD contains an infinite number of generators, then [D → D] fails I. However,
the original problem of Amadio and Curien remains open.

2 Preliminaries

We briefly summarize the relevant results in [17] in this section to fix notations and set
the background for this paper.

By convention, we use↓x for the lower set{y | y ⊑ x} and ↑x for the upper set
{y | y ⊒ x}. Also, bya ↑b we mean thata andb are compatible, that is, there exists an
elementzsuch thata ⊑ zandb ⊑ z, anda 6↑b denotesa andb are incompatible.

The basic property of aconditional multiplicative(cm) function is that it preserves
the meet of any pair of compatible elements. Thus bounded meets should exist for
stability to make sense (item (a) below). Meet should also interact smoothly with the
join of any directed set (item (b) below). The stable order then arises naturally from the
minimal requirement that the evaluation map (for cartesianclosure) is stable [3].

Definition 1. Let D be a dcpo (with bottom). It is called a meet-cpo if

(a) for any x, y ∈ D, x⊓ y exists when{x, y} is bounded above (or compatible),

(b) if R⊆ D is a directed set and x is compatible with the join of R, then

x⊓ (
⊔

R) =
⊔

{x⊓ r | r ∈ R}.

Beyond Scott domains and insideω-algebraic domains there are thestable bifinite
domains[1] which also form a cartesian closed category [6, 7]. Stable bifinite domains
areω-algebraic meet-cpos for which the identity function can beexpressed as the join
(under the stable order) of a directed set of stable projections with finite images.

Some notational preparation is needed for the concept of stable bifinite domain. Let
mub(X) be the set of minimal upper bounds (mubs) ofX. Let Z (X) :=

⋃

{mub(Y) |
Y ⊆fin X}, where⊆fin denotes the “finite subset” relation. A set is calledmub-closedif
Z(X) = X. An SFP domain, according to Plotkin, is anω-algebraic cpo with property
M, such that every finite setX of compact elements has a finite mub-closure. Stable
bifinite domains are similar to SFP domains, but a stronger condition holds: for any
finite set of compact elements, there is a finite superset, closed under the combination
of down-closure and mub-closure. More precisely, let (mub, down)(X) := ↓(Z(X)). A
setX is calledmub-down-closedif (mub, down)(X) = X.

Definition 2 (Stable Bifinite Domain).Anω- algebraic meet-cpo is said to have prop-
erty I and called finitary if every compact element dominates a finite number of elements.
It is said to have propertyM if for every finite set X of compact elements,mub(X) is
finite and complete – complete in the sense that each upper bound of X dominates some
member ofmub(X). It is called a stable bifnite domain if every finite set of compact
elements is contained in a finite(mub, down)-closed set. This last property is denoted
asMI∞ .



Fig. 1.Examples from left to right: a domain (not a meet-cpo) satisfying M but is not SFP; a SFP
meet-cpo which is not stable bifinite; a stable bifinite domain.

Definition 3. Let D, E be meet-cpos. A Scott continuous function f from D to Eis
calledstableif it preserves meets of compatible pairs,i.e., for all x, y in D (where↑
stands for compatibility or bounded-above),

x ↑ y⇒ f (x⊓ y) = f (x) ⊓ f (y).

The stable function space[D → E] consists of all stable functions from D to E under
the Berry order: f is stably less than g, written f⊑s g, if for all x, y in D,

x ⊑ y⇒ f (x) = f (y) ⊓ g(x).

In the rest of the paper, we drop the subscript s when stable functions are compared, so
f ⊑ g always means f⊑s g unless stated otherwise.

Let SB be the category of stable bifinite domains with stable functions (under the
Berry order for function space). We have the following [1, 6].

Theorem 1. The categorySB is a cartesian closed category.

We now recall the technical tool of (mub,meet)-closed sets which will be helpful
to the understanding of the development in the rest of the paper.

Definition 4. [17] Let D be anω-algebraic meet-cpo. A set Y of compact elements in
D is said to be a(mub,meet)-closed set if both of the following are true:

(a) it is closed under minimal upper bounds of finite sets,
(b) it is closed under bounded meets of pairs of elements.

Clearly, every (mub, down)-closed set is (mub,meet)-closed. Moreover, for every
X, (mub,meet)(X) ⊆ (mub, down)(X). However, (mub,meet)-closed sets provide a
more flexible and general way for constructing stable functions.



Lemma 1. [17] Suppose D is anω-algebraic meet-cpo with propertyM. Then every
(mub,meet)-closed set A determines a stable functionφA : D→ D, given by

φA := λx.
⊔

( ↓x∩ A).

An immediate consequence of this lemma is that (mub, down)-closed sets determine
stable functions. These are projections, dominated by the identity function under the
stable order.

Lemma 2. [17] Let φA be the stable function determined by a(mub,meet)-closed set
A as given in the previous lemma. Then

(a) A is the set of compact fixed-points ofφA, and
(b) if f ⊑ φA and f(x) = x for each x∈ A, then f = φA, where⊑ denotes the
extensional order.

The next lemma shows how stable functions determined by (mub,meet)-closed sets
can be compared.

Lemma 3. [17] Suppose A, B are (mub,meet)-closed sets. The following are equiva-
lent:

(a) φB ⊑ φA;
(b) ↓B∩ A = B;
(c) B⊆ A and for each bounded{x, y}, if x ∈ B and y∈ A, then x⊓ y ∈ B.

When a setX of compact elements is not already (mub,meet)-closed, we can work
with the (mub,meet)-closed setgeneratedby X, which is the smallest set of compact
elements containingX and closed under minimal upper bounds of finite subsets and
bounded meets. Such a generated set always exists in anω-algebraic meet-cpo with
both propertyM and the property that the meet of two compact elements is compact. In
such case the closure exists and can be defined inductively:

(mub,meet)0(X) := X
(mub,meet)(i+1)(X)

:= (mub,meet)((mub,meet)i(X))
(mub,meet)∗(X) :=

⋃

i≥0 (mub,meet)i(X)

Clearly, (mub,meet)∗(X) is the least (mub,meet)-closed set containingX.

Lemma 4. [17] Let Y be a(mub,meet)-closed set generated by a finite set Y0. Then
the stable functionφY is compact.

With respect to anω-algebraic meet-cpoD, propertyI amounts to three more prim-
itive ones. The most difficult case among the three is whenD satisfies the finite de-
scending chain condition and the finite ascending chain condition, but fails the finite
antichain condition. This was resolved in [17].

Theorem 2. [17] Suppose D is anω-algebraic meet-cpo which satisfies the finite de-
scending chain and finite ascending chain conditions, but fails the finite antichain con-
dition. Then in the stable function space[D → D] there exists a finite set of compact
stable functions with an infinite number of minimal upper bounds.



3 Weak distributivity

Theorem 2 shows that propertyI is maintained in any cartesian closed category within
the space ofω-algebraic meet-cpos. A key technique used in [17] is (mub,meet)-closed
set, which gives a rich class of stable functions to work with. The remaining question
is whether propertyMI∞ is similarly maintained in any cartesian closed category within
the space ofω-algebraic meet-cpos.

PropertyMI∞ states that a finite set of compact elements has a finite (mub, down)-
closure. A reasonable strategy is to show that for anyω-algebraic meet-cpoD satisfying
axiomsM andI (assumed for the rest of the paper), ifD violatesMI∞ , then [D→ D] (or
some even higher-order function space) violates eitherM or I. For this, we explore stable
functions determined by the down-closure of a compact element. Of course, not every
down-closure of a compact element inD determines a stable function in [D → D]. For
a compact elementc ∈ D to give rise to a stable function

λx.
x
⊔

( ↓x ∩ ↓c),

conditional multiplicity requires that for anyx ↑ y,

x
⊔

( ↓x ∩ ↓c) ⊓
y
⊔

( ↓y ∩ ↓c) =
x⊓y
⊔

( ↓(x⊓ y) ∩ ↓c),

and this leads to weak distributivity. To put this in context, recall that distributivity
property states that

x⊓ (y⊔ z) = (x⊓ y) ⊔ (x⊓ z)

holds for all compatible triplesx, y, z. Configurations violating distributivity include
Birkhoff’s famousM3 andN5 posets. We consider a weaker version of distributivity, in
the next definition.

Definition 5 (Weakly distributive domains). Anω-algebraic meet-cpo D with prop-
ertiesM andI is said to be weakly distributive if for any z∈ D0,

x⊓
y
⊔

{d | d ⊑ y & d ⊑ z} =
y
⊔

{d⊓ x | d ⊑ y & d ⊑ z}

for all compatible x, y ∈ D, where D0 is the set of compact elements of D.

Lemma 5. Anω-algebraic meet-cpo D with propertiesM and I is weakly distributive
if and only if for any x, y ∈ D and z∈ D0 with x compatible with y, we have

x⊓
y
⊔

↓y ∩ ↓z=
y
⊔

↓(x⊓ y) ∩ ↓z.

Lemma 6. In reference to Def. 5, weak distributivity law holds for allof the following
configurations: (1) x⊑ z; (2) z⊑ x; (3) y⊑ z; (4) z⊑ y; (5) y⊑ x.

This lemma reduces the non-trivial configurations to check for weak distributivity
to the cases whenx andz are incomparable,y andz are incomparable, andy is not
dominated byx.



Lemma 7. Anω-algebraic meet-cpo D with propertiesM and I is weakly distributive
if and only if for any x⊑ y and z∈ D0, we have

x⊓
y
⊔

↓y ∩ ↓z=
y
⊔

↓x ∩ ↓z.

Proof. It suffices to show that if the condition in the lemma holds, then for any compat-
ible x′, y′ ∈ D and anyz ∈ D0, we have

x′ ⊓
y′
⊔

↓y′ ∩ ↓z=
y′
⊔

↓(x′ ⊓ y′) ∩ ↓z.

This is because

x′ ⊓
y′
⊔

↓y′ ∩ ↓z= x′ ⊓ y′ ⊓
y′
⊔

↓y′ ∩ ↓z,

x′ ⊓ y′ ⊑ y′, and one can takex = x′ ⊓ y′, y = y′ and invoke the given assumption.�

With these in mind, one readily checks thatBirkhoff ’s M3 and N5 are both weakly
distributive. Therefore, weakly distributive domains need not be distributive. On the
other hand, it is easy to see that all distributive domains (i.e.,ω-algebraic meet-cpos
satisfyingM andI and distributivity) are weakly distributive.

It is important to note that there are domains that are not weakly distributive. Here
are some examples.

Example 1.The meet-cpos below are not weakly distributive. Notice that they are all
stable bifinite.

Fig. 2.Examples of stable bifinite domains that are not weakly distributive.

To check the example on the left of Fig.2, note that we have

y
⊔

↓(x⊓ y) ∩ ↓z= a,

but

x⊓
y
⊔

↓y ∩ ↓z= x⊓ y = x.

Similarly one can check that the other two domains are not weakly distributive.

It is interesting to compare weak distributivity withprincipal distributivity, meet-
cpos for which each principal ideal is distributive. We havethe following result.



Lemma 8. Any principally distributive domain is weakly distributive, but not vice versa.

Proof. The second part has been demonstrated by Birkhoff’s M3 andN5 earlier. For the
first, we have

x⊓
y
⊔

↓y ∩ ↓z = (x⊓ y) ⊓
y
⊔

↓y ∩ ↓z

( ↓y distributive)=
y
⊔

{(x⊓ y) ⊓ d | d ∈ ↓y ∩ ↓z}

⊑

y
⊔

↓(x⊓ y) ∩ ↓z. �

The next definition allows us to consider weak distributivity locally, as needed for
constructing stable functions.

Definition 6 (Weakly distributive element, generator).A compact element c∈ D0 is
said to be weakly distributive or called a generator, if for all compatible pairs x, y ∈ D,
we have

x⊓
y
⊔

↓y ∩ ↓c =
y
⊔

↓(x⊓ y) ∩ ↓c.

Weakly distributive elements will be used to generate stable functions. In the actual
applications of the weak distributivity property, we use the following equivalent version:

x⊓
y
⊔

↓(x⊓ y) ∩ ↓z= x⊓
y
⊔

↓y ∩ ↓z.

Definition 7. Let D be anω-algebraic meet-cpo with propertiesM and I and c∈ D a
generator. Defineηc : D→ D as

ηc := λx.
x
⊔

( ↓x ∩ ↓c).

Note that even though↓x ∩ ↓c need not be a directed set, the least upper bound in the
principle ideal ↓x always exists due to the compactness of c and propertiesM and I of
D.

Lemma 9. ηc is a well-defined function. For a mub-down closed set A with c∈ A, we
haveφA ◦ ηc = ηc.

Proof. For the second conclusion, letx ∈ D. Note that{t ∈ D | t ⊑ c & t ⊑ x} ⊆ A,
sincet ⊑ c ∈ A andA is down closed. Therefore,ηc(x) ∈ A, sinceA is moreover finite
mub closed. By Lemma 2, we haveφA(ηc(x)) = ηc(x). �

Lemma 10. For any generator c∈ D, ηc is a compact stable function.

Proof. The monotonicity ofηc is straightforward. For continuity, supposeY is a directed
subset ofD. We have

ηc(
⊔

Y) =

⊔

Y
⊔

( ↓(
⊔

Y) ∩ ↓c)

=

⊔

y∈Y

y
⊔

( ↓y ∩ ↓c)

=

⊔

y∈Y

ηc(y).



To check the stability ofηc, let x, y ∈ D be such thatx ↑ y. SinceD is a meet-cpo,
x⊓ y exists. We need to showηc(x) ⊓ ηc(y) = ηc(x⊓ y), which follows from the weakly
distributive property ofc:

ηc(x⊓ y) =
x⊓y
⊔

( ↓(x⊓ y) ∩ ↓c)

= x⊓ y⊓
x
⊔

( ↓(x⊓ y) ∩ ↓c) ⊓
y
⊔

( ↓(x⊓ y) ∩ ↓c)

= x⊓
y
⊔

( ↓(x⊓ y) ∩ ↓c) ⊓ y⊓
x
⊔

( ↓(x⊓ y) ∩ ↓c)

= x⊓
y
⊔

( ↓y ∩ ↓c) ⊓ y⊓
x
⊔

( ↓x ∩ ↓c)
= ηc(x) ⊓ ηc(y).

To show thatηc is compact, note that↓c is a finite set of compact elements. The
mub-down closureA of ↓c, though not necessarily finite, determines a compact stable
functionφA. We show thatηc is stably belowφA, forcingηc to be a compact element in
the stable function space [D→ D]. For this purpose, letx ⊑ y in D. Then

ηc(y) ⊓ φA(x) ⊑ φA(ηc(y)) ⊓ φA(x)

= φA(x⊓
y
⊔

( ↓y ∩ ↓c))

= φA(x⊓
y
⊔

( ↓(x⊓ y) ∩ ↓c))

= φA(x⊓
y
⊔

( ↓x ∩ ↓c))

= φA(
x
⊔

( ↓x ∩ ↓c))
= φA(ηc(x))
= ηc(x).

�

Theorem 3. Let D be anω-algebraic meet-cpo with propertiesM and I, but notMI∞ .
Let A be the infinite(mub, down)-closure of a finite subset of compact elements of D. If
A contains an infinite number of generators, then[D→ D] fails I.

Proof. SupposeC := {ci | i ≥ 1} is an infinite subset ofA consisting of generators only.
Note first that, for anyc ∈ C, the range ofηc, written asr(ηc), is a finite set. Suppose
without loss of generalityci+1 < r(ηci ) for any i ≥ 1. For any 1< i < j, we have
ηci (c j) , c j = ηc j (c j). Soηci , ηc j . By Lemma 10, allηc are compact elements below
φA, and so [D→ D] fails propertyI. �

If D is a weakly distributive,ω-algebraic meet-cpo with propertiesM and I, but
not MI∞ , then an infiniteA as mentioned in Theorem 3 exists. Moreover, sinceD is a
weakly distributive, every element ofA is a generator. Therefore, we have the following
corollary.

Theorem 4. Let D be a weakly distributive,ω-algebraic meet-cpo with propertiesM
andI, but notMI∞ . Then[D→ D] fails I.



Thus we have shown that a larger class of domains than principally distributive ones
must not violateMI∞ in the categorySBof bifinite domains.

The next lemmas will be useful to work with examples below.

Lemma 11. Let D and E beω-algebraic meet-cpos. Let f, g : D→ E be such that g is
stable, f is continuous, and f(x) = f (y)⊓g(x) for any x⊑ y in D. Then f is also stable.

Lemma 12. [17] Let D, E be meet-cpos and f, g be compatible stable functions in
[D→ E]. We have

(a) if f (x) = g(x), then f(y) = g(y) for any y∈ ↓x,
(b) if a ↑ b then f(a) ⊓ g(b) = f (b) ⊓ g(a).

Remark. The stable function space construction does not preserve the weakly distribu-
tive law. Here is an example. LetD andE be weakly distributive domains as given on
the left of Fig. 3. The stable function space [D→ E] contains the structure on the right
of Fig. 3 (among other things), which is not weakly distributive.

The functions labeled on the right of Fig. 3 are defined as follows:

f (x) =

{

u, if x = c
⊥, otherwise

g(x) =

{

v, if x = c
⊥, otherwise

h(x) =



















z, if x = c
w, if x = a
⊥, otherwise

j(x) =



















z, if x = c
w, if x = b
⊥, otherwise

k(x) =



















z′, if x = c
w, if x = a
⊥, otherwise

Fig. 3. Two weakly distributive domains whose stable function space is not weakly distributive.

We have

1. f , g, h, j, k are compact stable functions.
2. h, j are minimal upper bounds off , g.
3. f ⊏ k ⊏ h andk A g.

Therefore,f , g, h, j, k form a substructure as on the right of Fig. 3.
Checking all of these is a tedious task, but it should be helpful to note the following

when doing so:

– Any upper bound off , g must mapc to z.



– Lemma 12 tells us thath, j are incompatible, sinceh(c) = j(c), buth(a) , j(a).
– To check the order relation holds as in Fig. 3, such asf ⊏ k, note thatf (x)⊓t(y) , ⊥

for t ∈ {h, j, k} only whenx = c andy = c.

Also note that the right side of Fig. 3 does not include all functions in the stable
function space. For example, here are two more stable functions:

α(x) =

{

z, if x = c
⊥, otherwise

β(x) =



















z′, if x = c
w, if x = b
⊥, otherwise

In fact,α is another minimal upper bound off , g, and f ⊏ β ⊏ j.

4 Meet generators

In this section we introduce another technique for generating stable functions.

Definition 8. Let D be anω-algebraic meet-cpo satisfying propertiesM and I. A com-
pact element a∈ D is said to be ameet-generator, if for any d ∈ D, the meet a⊓ d
exists.

Theorem 5. Let D be anω-algebraic meet-cpo with propertiesM and I, but notMI∞ .
Let A be the infinite(mub, down)-closure of a finite subset of compact elements of D. If
A contains an infinite number of meet-generators, then[D→ D] fails propertyI.

Proof. Let B := {ai ∈ A | i ≥ 1} be an infinite subset ofA consisting of meet-generators
only. For eachi ≥ 1, defineϕi : D→ D as

ϕi := λx. ai ⊓ x.

Then

(1) ϕi is a well-defined compact stable function;
(2) ϕi ⊑ ϕA;
(3) ϕi , ϕ j for any distincti, j ≥ 1.

Item (3) is obvious. For (1), we need to show the continuity ofϕi . LetY be a directed
subset ofD. Thenϕi(

⊔

Y) = ai ⊓
⊔

Y =
⊔

y∈Y ai ⊓ y =
⊔

y∈Y ϕi(y), because binary meet
is continuous in both arguments in a meet-cpo. For stabilityof ϕi , let x, y be compatible
elements inD. Thenϕi(x ⊓ y) = ai ⊓ x ⊓ y = (ai ⊓ x) ⊓ (ai ⊓ y) = ϕi(x) ⊓ ϕi(y).
To show compactness ofϕi , let ϕi =

⊔

j∈J f j , where{ f j | j ∈ J} is a directed family of
stable functions. Here, we use equality by the meet-cpo property. We have, in particular,
ai = ϕi(ai) =

⊔

j∈J f j(ai), and soϕi(ai) = fk(ai) = ai for somek ∈ J, by the compactness
of ai . By Lemma 2, item (a) of part I,ϕi(x) = fk(x) for all x ⊑ ai . Thereforeϕi(x) =
ϕi(ϕi(x)) = fk(ϕi(x)) ⊑ fk(x) for any x ∈ D. Sinceϕi and fk are stably compatible,
extensionally equal, we haveϕi = fk, as needed.



For item (2), letx ⊑ y in D. SinceA is down-closed andai ∈ A, z = ϕi(z) = ϕA(z)
for all z⊑ ai. We have,

ϕi(x) = ϕi(y) ⊓ ϕi(ϕi(x))
= ϕi(y) ⊓ ϕA(ϕi(x))
= ϕi(y) ⊓ ϕA(ai ⊓ x)
= ϕi(y) ⊓ ϕA(ai) ⊓ ϕA(x) (sinceϕA is stable)
= ϕi(y) ⊓ ai ⊓ ϕA(x)
= ϕi(y) ⊓ ϕA(x) �

Theorem 6. Let D be anω-algebraic meet-cpo with propertiesM and I, but notMI∞ .
Let A be the infinite(mub, down)-closure of a finite set of compact elements of D. If A
satisfies the condition that the principal ideals are distributive, then[D→ D] fails I.

Proof. For anya ∈ A, defineηa : D→ D as

ηa := λx.
x
⊔

{t | t ⊑ a & t ⊑ x}

Then

(1) ηa is a well-defined compact stable function;
(2) ηa ⊑ ϕA;
(3) there is an infinite subsetB of A such that for any distincta, b ∈ B, ηa , ηb.

Item (3) is obvious, since for anya ∈ A the range ofηa is finite. For item (1), we
need only to show the stability ofηa, let x, y be compatible elements inD. Then

ηa(x) ⊓ ηa(y) =
⊔x{t | t ⊑ a & t ⊑ x} ⊓

⊔y{u | u ⊑ a & u ⊑ y}
=
⊔x⊓y{t ⊓ u | t ⊑ x & t ⊑ a & u ⊑ y & u ⊑ a} (by distributivity)
⊑
⊔x⊓y{v | v ⊑ a & v ⊑ x⊓ y}
= ηa(x⊓ y)

For item (2), letx ⊑ y in D. We have,

ηa(y) ⊓ φA(x) =
⊔y{t | t ⊑ a & t ⊑ y} ⊓

⊔

{u | u ∈ A & u ⊑ x}
=
⊔x{v | v ⊑ a & v ⊑ x}
= ηa(x)

�

5 Conclusion

We introduced a new class of domains called weakly distributive domains within the
category ofω-algebraic meet-cpos. The weak distributivity law allows us to construct
stable functions based on the principal ideal generated by asingle compact element –
a generator. For weakly distributive domains to be includedin any full stable cartesian
closed category composed ofω-algebraic meet-cpos, they must satisfy axiomMI∞ (Thm. 4).



ω-algebraic meet-cpos satisfyingM andI, which do not satisfyMI∞ and are not weakly
distributive, are abundant. The domain in the middle of Fig.1 is one such example.
Interestingly, all non-weakly distributive domains we have seen so far contain exam-
ples in Fig. 2 as substructures. Non-weak distributivity itself does not violateMI∞ ; it is
many of the non-weakly distributive configurations put together that creates a configu-
ration violatingMI∞ . Thus, looking deeper into non-weakly distributive substructures
in the context of configurations violatingMI∞ might lead to additional insight into the
open problem of Amadio-Curien. The available ways to deal with a rich variety of con-
figurations violatingMI∞ so far have helped keeping our bet on an affirmative solution
alive.
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