
Abstract

 A substantial amount of research on routing in sensor
networks has focused upon methods for constructing the best
route, or routes, from data source to sink before sending the
data. We propose an algorithm that works with this chosen
route to increase the probability of data reaching the sink node
in the presence of communication failures. This is done using
an algorithm that watches radio activity to detect when faults
occur and then takes actions at the point of failure to re-route
the data through a different node without starting over on an
alternative path from the source. We show that we are able to
increase the percentage of data received at the source node
without increasing the energy consumption of the network
beyond a reasonable level.

1. Introduction
In recent years companies and researchers have taken

great strides towards getting to the point where we can
deploy cheap, reliable and energy efficient sensor
networks. One of the enablers of this progress was the
advent of TinyOS [1] which presents a small yet
powerful platform for developers to build sensor
applications.

We propose to create a set of middleware tools to
assist developers in building applications for TinyOS.
Developers will supply an input file specifying which
middleware services they would like and provide values
for parameters that certain services will need. Some
examples of services that we have worked with to this
point are an RC5 based encryption solution, a message
parser that reduces power usage due to header overhead
and finally a fault tolerant scheme to increase the
probability of successful radio transmissions in multi-hop
wireless sensor networks.
 In this paper we present the algorithm for fault tolerant
message re-routing based on work with the TinyOS
environment. The TinyOS distribution comes packaged
with a multi-hop router which we refer to as “Route” as it
is located in the /lib/Route/ directory of the distribution.
Route establishes a tree-based network and informs each
node where it stands in this network depth wise. Our
algorithm, which has been written as TinyOS nesC [2]
modules and tested in small mote deployments, works on
top of Route in the routing layer to increase the reliability

of the network. The algorithm was designed to work in
an entirely distributed fashion, each node makes its
decisions based solely on information it gathers by
passively monitoring radio traffic around it, no feedback
or direct communication with other nodes is involved.
This allows configurations where some nodes run the
algorithm with different parameters without interfering
with other nodes.

We show here through results received from our
algorithm running on the TinyViz [3] graphical
simulation tool that we are able to greatly increase
network reliability even in the face of high error rates in
the radio environment.

2. Related Research
The issues that become prevalent when trying to use

small and low-powered radios to form multi-hop sensor
networks are well known. Not only do we have to deal
with limited hardware and energy resources, but in many
cases harsh environments. Many proposed deployments
of sensor networks [4, 5] exhibit additional problems due
to the nodes being outdoors with varying weather
conditions, ground effects to nodes being close to the
earth or floor and even animals destroying nodes.

A number of suggested protocols to try and deal with
some of these problems exist in the literature. Some
protocols have been designed specifically for usage in
sensor networks and others more generally for mobile ad-
hoc networks. One popular method for deciding which
route to take to the sink or base station (BS) is directed
diffusion (DD) [6] which begins by flooding the network
and then reinforcing certain paths for later use. Other
proposals have focused around Dynamic Source Routing
(DSR) [7] in which the source of a data event is in charge
of all the routing decisions at the time it sends its
message to the sink. Another approach using light
flooding when first finding the path is Distance Vector
Routing (DVR) [8]. DVR is a bit different than the DSR
and DD protocols as it does not attempt to find a path
between source and sink until it is actually needed,
saving power by not discovering unused paths. Other
simpler protocols include shortest-path-first and pure
flooding methods.

What these protocols have in common is that they try
to form a network structure in which they determine their

 UMass Amherst UMass Amherst
 mgregoir@ecs.umass.edu koren@ecs.umass.edu

 Michael Gregoire Israel Koren

An Adaptive Algorithm for Fault Tolerant Re-Routing in
Wireless Sensor Networks

idea of the best path from source to sink before sending
the message data. Multiple paths [9], disjoint or
otherwise, are often constructed for use in case of a
failure on the primary path. What we propose is an
algorithm to run on top of and in conjunction with these
protocols in the routing layer to help increase the
percentage of data that makes it from source to sink. In
our algorithm we take as given that some protocol has
chosen a path it wants to use to the sink and in the case of
successful routing we do not interfere with this process.
However, if we notice that the next hop along the ideal
path is not forwarding on the message because of either
radio link or hardware issues our algorithm will attempt
to find a new way to the sink from the point of failure. If
we succeed we not only increase the success rate of data
reaching the sink but also in many cases save power
because we prevent the source node from having to try
one of its pre-determined secondary paths. In this paper
we demonstrate our algorithm running on top of the
TinyOS Route router but it could easily be used with
other path finding methods.

It is also important to discuss MAC layer protocols and
their affect on the routing layer. Two popular examples
of MAC layer protocols include S-MAC [10] and B-
MAC [11]. S-MAC saves power by duty cycling the
node’s radio and waking up neighbors at the same time.
It does not allow the node to listen on the radio channel
or to perform retransmissions on its own. S-MAC has
little interface with the routing layer. On the other side of
the spectrum is B-MAC which saves power using low
powered listening modes that allow nodes snoop radio
traffic in the channel. B-MAC interfaces with the routing
layer and depends on the routing layer to retransmit
packets even if explicit ACKs are enabled. The problem
is that S-MAC and B-MAC are very different in what
they require from the routing layer, protocols written for
one may not work for the other. For our purposes we
will prefer a B-MAC or similar MAC implementation
that allows the routing layer to control retransmissions.
Most MAC layer protocols have some mechanism for
fault tolerant retransmissions, however we believe we can
increase success rates using the extra information at the
routing layer.

3. Algorithm Description
The algorithm has been written such that any mote

hardware that is supported by TinyOS is able to add the
fault tolerance scheme to their TinyOS application with
very little modification to their existing code. It was
designed specifically for motes and hence as light-weight
as possible. We also attempted to make the algorithm
flexible and tunable to different application needs. While
at this time we discuss TinyOS because it is the system
we have implemented the algorithm for, it could certainly

be easily ported to future systems.
Route broadcasts some query packets to other nodes to

form a directed tree graph of nodes with the root at the
BS. This tree is formed using a simple shortest-path-first
methodology. Whoever a given node’s parent is in the
tree will forward its data on in the network until it
reaches the BS. Problems can arise in this scheme when
for some reason the parent is unable to forward the
message. It could be that the parent node experiences a
transient or even permanent failure. It could also be that
another radio broadcast in the network collides with the
message or just occasional data loss on a generally good
radio link. In any of these cases the BS will never
receive what the node had been sending its way.

(Step 1)
Is there Data to

Send?

(Step 2)
-Queue Message

-Send to Parent Node
-Start a Timer

(Step 6)
-Send to Next Best Neighbor

-Start a Timer

(Step 4)
Have the Retry

Attempts Expired?

(Step 3)
Was the

Rebroadcast Heard?

(Step 5)
Run “Next Best”

Decision Scheme

YES

YES

YES

NO

NO

Timer Expires

Timer Expires

Neighbor Chosen

NO
(Step 7)

Clear Message from
the Queue

In building a fault tolerance scheme on top of Route

we are given two very important pieces of information;
who the node’s parent is and what the depth (number of
hops to the BS) of the node is within the network. By
paying attention to the radio transmissions that a node
can hear going on around it we can also determine who
the neighbors (nodes within radio range) of the node are.
We use these three pieces of information in developing
the algorithm.

We have based the algorithm on what we term pseudo-
ACKs. The idea is that if node A sends a message to an
intermediate node B which is within close radio range,
node A should be able to hear when node B sends the
message to the next node C on route to the final
destination (the BS). Up until the point when node A
hears node B forward its message node A would continue
to hold the message in queue. If enough time goes by

Figure 1. A flowchart of the important steps in the
fault tolerant algorithm.

without node A hearing a rebroadcast it will assume that
there is a problem with node B and broadcast again
asking a different neighbor to forward its message along.
In this scheme we are using node B’s rebroadcast as a
pseudo-ACK. While there is no dedicated ACK packet
which would affect battery life we are able to get
functionality close to this by listening to the rebroadcast
message that would have been sent anyways and hence
add no further energy usage to the system on successful
transmissions. The exception to this rule is when the
messages gets one hop away from the BS, since the BS
does not need to rebroadcast the message their will be no
packet to use as a pseudo-ACK. In order to prevent
messages that have made it all through the network from
failing on their last hop we have the BS and only the BS
send ACK packets for data that it receives. We do not
believe this should be an issue for energy-efficiency as
the BS is often a less energy limited node than the other
nodes in the network. It is important to mention that
pseudo-ACKs will not function in a system that uses
asymmetric links. If this was the case it would be
necessary to use explicit ACK packets. While we discuss
the algorithm using pseudo-ACKs it could easily be
simplified to work with explicit ACKs, so long as the
MAC layer allows the routing layer to handle
retransmissions.

In Figure 1 a full view of the algorithm is presented.
Notice (step 1) that when a node has something to send it
adds the message to a message queue. The length of this
queue is a parameter that can be changed for different
applications. If the application happens to cause a lot of
traffic it might need a larger queue length. Developers
may also wish to give a larger queue to nodes that are
more likely to have high traffic such as those closer to the
BS. A node will be able to confirm rebroadcasts of every
message so long as the queue is not overrun. In the event
of a queue overrun, messages that are sent while the
queue is full will still be sent but will not be monitored
by the fault tolerant software.

Next (step 2) the message is added to the queue and
the node sends the message to its parent node
(determined by Route) and starts a timer. The value of
this timer is another parameter that can be set by
developers and has a number of implications. If the timer
length is set very high it will delay messages that require
re-routing during their trip to the BS. A high timer value
also means it takes longer for messages to leave the
queue increasing the chance of the queue becoming full.
There is also a danger in setting the timer value too small
and causing retransmissions that are unnecessary. This
could happen if the next-hop node is fault free and was
going to retransmit the message but was busy for the

timer duration. Reasons for a node remaining busy could
be blocks of code that disable interrupts or a long radio
queue causing the message to wait for awhile in the
queue.

After the timer is started the fault tolerant software will
be idle until the timer expires. During the time that the
timer is running radio messages that are heard are
checked against any of those in the queue checking for a
match. When the timer expires the node checks (step 3)
if there was a match for the message signifying that the
parent received the message and is attempting to send it
to the next node, this means the node needs to take no
further action for this message which is then removed
from the queue (step 7).

If, when the timer expires, there is no match then we
check to see if there are any retry attempts left (step 4).
The number of retry attempts that a node will make is the
third and final tunable parameter of the algorithm.
Increasing the number of retry attempts will increase the

chance of
messages

getting
through but
it will also
increase the

overall
energy

usage of the
network.

We leave
this as a

parameter
because

some
applications

will care
more about
every event
than others

will.
Similar to

the queue length parameter it could be that nodes in
certain parts of the network would be programmed with a
different value for retry attempts. If all of the retry
attempts have been used up, the node gives up on the
message, removes it from the queue and goes back to
waiting for its next message (step 7). However, if there
are still retry attempts available, the node will run a “next
best neighbor” selection algorithm (step 5) in order to
determine which neighbor it should ask to forward the
message for it. Once this scheme has chosen a node to

Figure 2. Example of the two
neighbor selection algorithms. The
circled node is the node running the
algorithm trying to choose which
neighbor to send to. The dashed lines
separate nodes of different depth in
the network. For illustration we
assume the sending node can reach
and hear every node shown aside from
the BS.

re-route through it will broadcast the message to the
selected neighbor and again start a timer (step 6). If the
node that is asked to re-route hears the request and does
forward the message on, it will do it along its own best
path to the sink node as determined by Route. Just as
before, the original node will monitor messages heard
while the timer is running to look for a match. If a match
is heard then we are done, if a match is not heard the
cycle (step 4, step 5 and step 6) of checking the retry
attempts, running the next best neighbor decision scheme
and sending to that neighbor is repeated until a
rebroadcast is finally heard or all of the retry attempts are
used up.

4. Next Best Neighbor Selection Scheme
The next best neighbor selection scheme is an

independent algorithm within the larger fault tolerant
algorithm. Changing this scheme will not affect the rest
of the software’s operation. This is convenient because it
allows us to easily test certain methods against others and
allows us to use different algorithms in different
applications. In this paper we examine two next best
neighbor selection schemes. It is important to note that
they both use the fact that nodes know the depth of their
neighbors in the network through a four bit field that we
have added to the header of any outgoing messages that
uses our fault tolerance software. The field is loaded
with the node’s current depth in the network at the time
of transmission. When others nodes hear the message,
even if they are not the destination, they can see which
node sent it and its current network depth and update it in
their local table of neighbors.

4.1 Choose the Neighbor Closest to the BS

The simplest way to pick the next best neighbor is to

look at the list of known neighbors and rank them based
on their distance from the BS. This means that if node A
has three neighbors, two of depth two and one of depth
one then it will choose to send to the neighbor of depth
one. If it happens that there are multiple neighbors that
have the same depth a random number is generated to
choose among these neighbors. To make sure that we are
not wasting all of our tries on a node that has failed
entirely we never send to the same node on two
consecutive retries unless the sending node has exactly
one neighbor. An example of this ranking behavior is
shown on the left side of Figure 2.

4.2 Choose the Neighbor Closest to the Node

A safer way to pick the next best neighbor is to choose
a node that is close by in the network. Since we would

like whenever possible to move closer to the BS with
each hop, the nodes look for neighbors that are one step
closer to the BS than it is. If there is no node one step
closer to the base then it looks for a node that is two steps
closer to the base, continuing this until finding a node.
Similar to the previous algorithm we never send to the
same node on consecutive tries and break ties using a
random number. An example of this ranking approach is
shown on the right side of Figure 2.

The idea behind the two different schemes is that while
we think that being conservative and using the neighbor
closest to the node should almost always give equivalent
or better rates of data transmission success we believe
that in more benign environments the neighbor closest to
the base method could provide similar success rates for
less energy.

5. Results
As previously mentioned we have done small scale

hardware experiments to test the validity of the
algorithm. These experiments involved deploying motes
with light sensors throughout a building with a BS mote
attached to a laptop in one corner of the building. While
we only used 12 motes this was enough to have a few
nodes at depths of 1, 2, 3 and 4. When a light in a motes
area was toggled on or off it would send a message to the
BS laptop which had a java program listening on the
serial port and would report which area of the building
the light had toggled in. Using this setup we could inject
faults by physically disabling motes right before toggling
a light. When we ran the tests without the fault tolerance
software it would often take two or three light toggles
before we would actually see it at the BS, even without
us injecting faults into the network. With the fault
tolerant software enabled we would see it at the laptop on
the first light toggle the vast majority of the time. In
most cases we were also able to turn off the node’s parent
and see it successfully re-route the message.

In order to test our design more thoroughly we needed
to employ a test bed that would allow us to produce
results at a reasonable pace while still providing accuracy
towards our goal of a solution that works on real mote
hardware. Due to the time it takes to deploy even a small
mote network we decided to gather our results using the
TinyOS simulator TOSSIM [3] and its accompanying
Graphical User Interface (GUI) TinyViz. This simulator
gives us a good approximation of real world TinyOS
applications and allows us the flexibility we need to run
many different types of tests.

The simulation runs that were performed consisted of a
set number of fifty nodes. We chose the number fifty
because it produced results very close to those from runs

with hundreds of nodes but allowed the simulator to run
much faster. In all the runs nodes had a 3% chance of
suffering a transient failure and becoming unresponsive
for a short time. In our tests there are a number of
different parameters that we set. The first two parameters
are from the algorithm which was discussed previously;
the number of times to retry and which of the two
algorithms to use for choosing the next best neighbor.
The simulator also allows us to have a simulation
parameter of the network layout. The final parameter to
our simulation runs is what is known as the Distance
Scaling Factor (DSF). The empirical radio model that we
use for our tests was created from data acquired through
real mote radio tests. The model works by taking the
distance between two motes and computing a bit-level
error rate for a transmission between the two based on the
hardware tests [3]. What this means is that by increasing
the DSF we are able to keep our layout exactly the same
but increase or decrease the error rate of radio
transmission between nodes. We chose to use an
application where every node has the same amount of
data to send so that we can get a good sampling of the
success rates from different depths and geographical
locations in the network.

Success Rate Vs. Transmission Error Rate

43.50
565762.50

85.888.193.1394.30

93.409495.1195.21

0

20

40

60

80

100

0.75 1.00 1.25 1.50
Distance Scaling Factor

Closest to Node

Closest to Base Station

No Fault Tolerance

D
at

a
R

ec
ei

ve
d

(%
) a

t
B

as
e

S
ta

tio
n

The first set of tests that we present involves

increasing the DSF and likewise the radio error rate while
keeping the layout and number of retries the same. For
these tests we use 4 maximum retries and a “grid
random” layout which distributes the nodes randomly
about a set area. From these tests we calculate both the
percentage of data that successfully arrives at the BS and
the average number of radio transmissions for each
message generated by a node as a measure for the energy.
The results of these runs can be seen in Figures 3 and 4.
We can see from these graphs that while the basic multi-
hop router gives a 62.5% success rate at the lowest DSF
it goes down as low as 43.5% at higher error rates. We
can also see that the fault tolerant scheme provides a
substantial benefit even at low error rates and becomes

Energy Vs. Transmission Error Rate

5.34
6.02 6.22 6.64

7.26 7.31
6.39

5.50

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0.75 1.00 1.25 1.50
Distance Scaling Factor

Closest to Node

Closest to Base Station

A
ve

ra
ge

 N
um

be
r o

f
Tr

an
sm

is
si

on
s

pe
r D

at
a

M
es

sa
ge

even more advantageous at higher error rates. The fault
tolerant scheme will eventually break down when the
DSF starts to exceed 2.0; we do not show this on the
graphs as at this point the success rate without fault
tolerance is close to zero. It would appear that the
Closest to Node method of choosing neighbors is better
than the Closest to BS method until we look at the power
graph (Figure 4). This reveals that the Closest to BS
method generally uses less power.

The fault tolerant scheme is providing much more than
the higher global success rate shown in Figure 3.
Another benefit it provides is that its success rate holds
fairly constant throughout the network. For example, the
total message success rate for the data in Figure 5 without
fault tolerance is 60.5%. However this is not a constant
60.5% for every node in the network, at a depth of one
70% of messages succeed while at depth four it drops to
as low as 20%. This shows that while the total success
rate is not so bad the BS actually barely knows anything
about the half of the network that is further from it and as
the size of the network expands this problem will only
grow worse. We can see that with fault tolerance this
problem is avoided and we have a fairly constant success
rate for all depths. Figure 5 also confirms that the further
out from the BS the less energy a node requires. Nodes
of depth 1 use twice as much energy as nodes of depth 3.
In order to deal with this the density of nodes should
increase as they get closer to the BS.
 The next parameter that we examine is what happens
when we change the maximum retry threshold. In order
to do this we again keep the layout constant throughout
the tests using a random distribution within a specified
area. This time we also hold the DSF (and hence the
transmission error rate) constant at 1.50 and test only
using the Closest to Node neighbor selection algorithm.
Here we are interested in both the effect on the success
rate of data reaching the BS and the energy used by the
algorithm. The results are shown in Figure 6. Examining

Figure 4. A graph depicting the average number of
radio transmissions sent per data message generated.
This allows us to see compare energy usage between
different parameter sets.

Figure 3. A graph depicting the percentage of data
that reaches the BS as the DSF or radio error rate
changes.

Node Depth Comparison - DSF .75 - 2 Retries

0

1.2
0%1.5

7%2.3
0%3.20

%

0

20

40

60

80

100

 1 2 3 4
Depth of Nodes In Network

No Fault Tolerance With Fault Tolerance % Total Power per Node

D
at

a
R

ec
ei

ve
d

(%
) a

t
B

as
e

St
at

io
n

the graph we see that while there is a notable difference
between 1 and 2 retry attempts, adding more retries gives
diminishing returns.
 In Figure 6 we present the percentage of the total
network energy that is spent sending re-routing packets.
This is interesting for two reasons. First, it shows that as
the retry attempts go up past 2, more of the energy is
being spent on re-routing messages but the overall
success rate is not seeing much benefit. Second, this
shows that even in a harsh environment, using 2 retries,
the re-routing packets only constitute 47% of the energy
in an environment where each message has a 60% chance
of at least one error. This may sound like a large number
however it is important to recall that we only send re-
routing packets after a message failure has occurred.
This energy usage is similar to the energy used in a
multi-path scenario that takes two paths before reaching
the BS.

Energy And Success Rate Vs. the # of Retries

77.68
89.00 93.40 95.00

41
47

55.5 56

0

20

40

60

80

100

1 2 4 6
Number of Retries

0

20

40

60

80

100

Energy

Success Rate

D
at

a
R

ec
ei

ve
d

(%
) a

t
B

as
e

St
at

io
n

En
er

gy
 U

se
d

(%
) f

or
 R

e-
R

ou
tin

g
R

eq
ue

st
s

6. Conclusions
We have presented a distributed algorithm for re-

routing messages in the face of transmission failure in
wireless sensor networks. Results were obtained from a
TinyOS based mote hardware test and a number of

TOSSIM simulation runs. We have seen that we can use
parameters, such as the number of retries, to tune the
algorithm to provide a high success rate while still being
energy-efficient in both benign and hostile environments.
We compared the affect on energy and success rate due
to increasing the DSF. We provided results based on
node depth to show that the algorithm benefits nodes
further out in the network, where it is more needed, as
much as those near the BS.

7. References
[1] TinyOS Community Forum - http://www.tinyos.net
[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,

and D. Culler. “The nesC language: A holistic approach to
networked embedded systems,” Proc. Programming
Language Design and Implementation (PLDI) pp. 1-11,
June 2003.

[3] P. Levis, N. Lee, M. Welsh, and D. Culler. “TOSSIM:
Accurate and scalable simulation of entire tinyos
applications,” Proc. First ACM Conference on Embedded
Networked Sensor Systems, ACM Press, pp. 126-137,
November 2003.

[4] A Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson. “Wireless Sensor Networks for Habitat
Monitoring,” Proc. ACM International Workshop on
Wireless Sensor Networks and Applications, pp. 88-97,
September 2002.

[5] P. Juang, H. Oki, Y. Wang, M. Maronosi, L. Peh, D.
Rubenstein, “Energy-Efficient Computing for Wildlife
Tracking: Design Tradeoffs and Earth Experiences with
ZebraNet,” Proc. ASPLOS, pp. 97-107, Oct 2002.

[6] C. Intanagonwiwat, R. Govindan and D. Estrin. “Directed
diffusion: A scalable and robust communication paradigm
for sensor networks,” Proc. 9th Conf. on ASPLOS , pp. 93-
104, Nov 2000.

[7] D. Johnson and D. Maltz. “Dynamic source routing in ad
hoc wireless networks,” T. Imielinski and H. Korth,
editors, Mobile Computing, pp. 153-181. Kluwer
Academic Publishing, 1996.

[8] C. Perkins and E. Royer, “Ad-hoc On-Demand Distance
Vector Routing,” Proc. 2nd IEEE Workshop on Mobile
Computer Sytems and Applications, P. 90, February 25-26
1999.

[9] D. Ganesan, R. Govindan, S. Shenker and D. Estrin,
“Highly-Resilient, energy-efficient multipath routing in
wireless sensor networks,” Proc. 5th annual ACM/IEEE
international conference on Mobile computing and
networking, pp. 263-270, August 1999.

[10] Y. Wei, J. Heidemann, D. Estrin, "An energy-efficient
MAC protocol for wireless sensor networks," INFOCOM
vol.3, pp. 1567- 1576, 2002.

[11] J. Polastre, J. Hill, and D. Culler, "Versatile low power
media access for wireless sensor networks," SenSys'04,
2004.

Figure 5. A graph showing the success rates
dependant on the nodes depth in the network, the
dashed columns represent that percentage of overall
network energy that nodes of this depth use.

Figure 6. A graph showing the affects of the retry
threshold (left axis, solid line) on the data success
rate and the percentage of energy used by the
system re-routing algorithm(right axis, dashed line).

