
Abstract 
 
    A substantial amount of research on routing in sensor 
networks has focused upon methods for constructing the best 
route, or routes, from data source to sink before sending the 
data. We propose an algorithm that works with this chosen 
route to increase the probability of data reaching the sink node 
in the presence of communication failures.  This is done using 
an algorithm that watches radio activity to detect when faults 
occur and then takes actions at the point of failure to re-route 
the data through a different node without starting over on an 
alternative path from the source.  We show that we are able to 
increase the percentage of data received at the source node 
without increasing the energy consumption of the network 
beyond a reasonable level. 

1. Introduction 
In recent years companies and researchers have taken 

great strides towards getting to the point where we can 
deploy cheap, reliable and energy efficient sensor 
networks.  One of the enablers of this progress was the 
advent of TinyOS [1] which presents a small yet 
powerful platform for developers to build sensor 
applications.  

We propose to create a set of middleware tools to 
assist developers in building applications for TinyOS.  
Developers will supply an input file specifying which 
middleware services they would like and provide values 
for parameters that certain services will need.  Some 
examples of services that we have worked with to this 
point are an RC5 based encryption solution, a message 
parser that reduces power usage due to header overhead 
and finally a fault tolerant scheme to increase the 
probability of successful radio transmissions in multi-hop 
wireless sensor networks. 
 In this paper we present the algorithm for fault tolerant 
message re-routing based on work with the TinyOS 
environment.  The TinyOS distribution comes packaged 
with a multi-hop router which we refer to as “Route” as it 
is located in the /lib/Route/ directory of the distribution. 
Route establishes a tree-based network and informs each 
node where it stands in this network depth wise.  Our 
algorithm, which has been written as TinyOS nesC [2] 
modules and tested in small mote deployments, works on 
top of Route in the routing layer to increase the reliability 

of the network.   The algorithm was designed to work in 
an entirely distributed fashion, each node makes its 
decisions based solely on information it gathers by 
passively monitoring radio traffic around it, no feedback 
or direct communication with other nodes is involved. 
This allows configurations where some nodes run the 
algorithm with different parameters without interfering 
with other nodes.  

We show here through results received from our 
algorithm running on the TinyViz [3] graphical 
simulation tool that we are able to greatly increase 
network reliability even in the face of high error rates in 
the  radio environment.  

2. Related Research 
The issues that become prevalent when trying to use 

small and low-powered radios to form multi-hop sensor 
networks are well known.  Not only do we have to deal 
with limited hardware and energy resources, but in many 
cases harsh environments.  Many proposed deployments 
of sensor networks [4, 5] exhibit additional problems due 
to the nodes being outdoors with varying weather 
conditions, ground effects to nodes being close to the 
earth or floor and even animals destroying nodes. 

A number of suggested protocols to try and deal with 
some of these problems exist in the literature.  Some 
protocols have been designed specifically for usage in 
sensor networks and others more generally for mobile ad-
hoc networks.  One popular method for deciding which 
route to take to the sink or base station (BS) is directed 
diffusion (DD) [6] which begins by flooding the network 
and then reinforcing certain paths for later use.  Other 
proposals have focused around Dynamic Source Routing 
(DSR) [7] in which the source of a data event is in charge 
of all the routing decisions at the time it sends its 
message to the sink.  Another approach using light 
flooding when first finding the path is Distance Vector 
Routing (DVR) [8]. DVR is a bit different than the DSR 
and DD protocols as it does not attempt to find a path 
between source and sink until it is actually needed, 
saving power by not discovering unused paths.  Other 
simpler protocols include shortest-path-first and pure 
flooding methods. 

What these protocols have in common is that they try 
to form a network structure in which they determine their 
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idea of the best path from source to sink before sending 
the message data.  Multiple paths [9], disjoint or 
otherwise, are often constructed for use in case of a 
failure on the primary path.  What we propose is an 
algorithm to run on top of and in conjunction with these 
protocols in the routing layer to help increase the 
percentage of data that makes it from source to sink.  In 
our algorithm we take as given that some protocol has 
chosen a path it wants to use to the sink and in the case of 
successful routing we do not interfere with this process.  
However, if we notice that the next hop along the ideal 
path is not forwarding on the message because of either 
radio link or hardware issues our algorithm will attempt 
to find a new way to the sink from the point of failure.  If 
we succeed we not only increase the success rate of data 
reaching the sink but also in many cases save power 
because we prevent the source node from having to try 
one of its pre-determined secondary paths.  In this paper 
we demonstrate our algorithm running on top of the 
TinyOS Route router but it could easily be used with 
other path finding methods. 

It is also important to discuss MAC layer protocols and 
their affect on the routing layer.  Two popular examples 
of MAC layer protocols include S-MAC [10] and B-
MAC [11].  S-MAC saves power by duty cycling the 
node’s radio and waking up neighbors at the same time.  
It does not allow the node to listen on the radio channel 
or to perform retransmissions on its own.  S-MAC has 
little interface with the routing layer.  On the other side of 
the spectrum is B-MAC which saves power using low 
powered listening modes that allow nodes snoop radio 
traffic in the channel.  B-MAC interfaces with the routing 
layer and depends on the routing layer to retransmit 
packets even if explicit ACKs are enabled.  The problem 
is that S-MAC and B-MAC are very different in what 
they require from the routing layer, protocols written for 
one may not work for the other.  For our purposes we 
will prefer a B-MAC or similar MAC implementation 
that allows the routing layer to control retransmissions.  
Most MAC layer protocols have some mechanism for 
fault tolerant retransmissions, however we believe we can 
increase success rates using the extra information at the 
routing layer. 

3. Algorithm Description 
The algorithm has been written such that any mote 

hardware that is supported by TinyOS is able to add the 
fault tolerance scheme to their TinyOS application with 
very little modification to their existing code.  It was 
designed specifically for motes and hence as light-weight 
as possible.  We also attempted to make the algorithm 
flexible and tunable to different application needs.  While 
at this time we discuss TinyOS because it is the system 
we have implemented the algorithm for, it could certainly 

be easily ported to future systems.  
Route broadcasts some query packets to other nodes to 

form a directed tree graph of nodes with the root at the 
BS.  This tree is formed using a simple shortest-path-first 
methodology.  Whoever a given node’s parent is in the 
tree will forward its data on in the network until it 
reaches the BS.  Problems can arise in this scheme when 
for some reason the parent is unable to forward the 
message.  It could be that the parent node experiences a 
transient or even permanent failure.  It could also be that 
another radio broadcast in the network collides with the 
message or just occasional data loss on a generally good 
radio link.  In any of these cases the BS will never 
receive what the node had been sending its way. 
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In building a fault tolerance scheme on top of Route 

we are given two very important pieces of information; 
who the node’s parent is and what the depth (number of 
hops to the BS) of the node is within the network.  By 
paying attention to the radio transmissions that a node 
can hear going on around it we can also determine who 
the neighbors (nodes within radio range) of the node are.  
We use these three pieces of information in developing 
the algorithm. 

We have based the algorithm on what we term pseudo-
ACKs.  The idea is that if node A sends a message to an 
intermediate node B which is within close radio range, 
node A should be able to hear when node B sends the 
message to the next node C on route to the final 
destination (the BS).  Up until the point when node A 
hears node B forward its message node A would continue 
to hold the message in queue. If enough time goes by 

Figure 1.  A flowchart of the important steps in the 
fault tolerant algorithm. 



 

without node A hearing a rebroadcast it will assume that 
there is a problem with node B and broadcast again 
asking a different neighbor to forward its message along.  
In this scheme we are using node B’s rebroadcast as a 
pseudo-ACK.  While there is no dedicated ACK packet 
which would affect battery life we are able to get 
functionality close to this by listening to the rebroadcast 
message that would have been sent anyways and hence 
add no further energy usage to the system on successful 
transmissions.  The exception to this rule is when the 
messages gets one hop away from the BS, since the BS 
does not need to rebroadcast the message their will be no 
packet to use as a pseudo-ACK.  In order to prevent 
messages that have made it all through the network from 
failing on their last hop we have the BS and only the BS 
send ACK packets for data that it receives.  We do not 
believe this should be an issue for energy-efficiency as 
the BS is often a less energy limited node than the other 
nodes in the network.  It is important to mention that 
pseudo-ACKs will not function in a system that uses 
asymmetric links.  If this was the case it would be 
necessary to use explicit ACK packets.  While we discuss 
the algorithm using pseudo-ACKs it could easily be 
simplified to work with explicit ACKs, so long as the 
MAC layer allows the routing layer to handle 
retransmissions. 

In Figure 1 a full view of the algorithm is presented.  
Notice (step 1) that when a node has something to send it 
adds the message to a message queue.  The length of this 
queue is a parameter that can be changed for different 
applications.  If the application happens to cause a lot of 
traffic it might need a larger queue length.  Developers 
may also wish to give a larger queue to nodes that are 
more likely to have high traffic such as those closer to the 
BS.  A node will be able to confirm rebroadcasts of every 
message so long as the queue is not overrun.  In the event 
of a queue overrun, messages that are sent while the 
queue is full will still be sent but will not be monitored 
by the fault tolerant software.  

Next (step 2) the message is added to the queue and 
the node sends the message to its parent node 
(determined by Route) and starts a timer.  The value of 
this timer is another parameter that can be set by 
developers and has a number of implications.  If the timer 
length is set very high it will delay messages that require 
re-routing during their trip to the BS.  A high timer value 
also means it takes longer for messages to leave the 
queue increasing the chance of the queue becoming full. 
There is also a danger in setting the timer value too small 
and causing retransmissions that are unnecessary.  This 
could happen if the next-hop node is fault free and was 
going to retransmit the message but was busy for the 

timer duration.  Reasons for a node remaining busy could 
be blocks of code that disable interrupts or a long radio 
queue causing the message to wait for awhile in the 
queue. 

After the timer is started the fault tolerant software will 
be idle until the timer expires.  During the time that the 
timer is running radio messages that are heard are 
checked against any of those in the queue checking for a 
match.    When the timer expires the node checks (step 3) 
if there was a match for the message signifying that the 
parent received the message and is attempting to send it 
to the next node, this means the node needs to take no 
further action for this message which is then removed 
from the queue (step 7). 

If, when the timer expires, there is no match then we 
check to see if there are any retry attempts left (step 4).  
The number of retry attempts that a node will make is the 
third and final tunable parameter of the algorithm.  
Increasing the number of retry attempts will increase the 

chance of 
messages 

getting 
through but 
it will also 
increase the 

overall 
energy 

usage of the 
network.  

We leave 
this as a 

parameter 
because 

some 
applications 

will care 
more about 
every event 
than others 

will.  
Similar to 

the queue length parameter it could be that nodes in 
certain parts of the network would be programmed with a 
different value for retry attempts.  If all of the retry 
attempts have been used up, the node gives up on the 
message, removes it from the queue and goes back to 
waiting for its next message (step 7).  However, if there 
are still retry attempts available, the node will run a “next 
best neighbor” selection algorithm (step 5) in order to 
determine which neighbor it should ask to forward the 
message for it.  Once this scheme has chosen a node to 

Figure 2.  Example of the two 
neighbor selection algorithms.  The 
circled node is the node running the 
algorithm trying to choose which 
neighbor to send to. The dashed lines 
separate nodes of different depth in 
the network. For illustration we 
assume the sending node can reach 
and hear every node shown aside from 
the BS. 



 

re-route through it will broadcast the message to the 
selected neighbor and again start a timer (step 6).  If the 
node that is asked to re-route hears the request and does 
forward the message on, it will do it along its own best 
path to the sink node as determined by Route. Just as 
before, the original node will monitor messages heard 
while the timer is running to look for a match.  If a match 
is heard then we are done, if a match is not heard the 
cycle (step 4, step 5 and step 6) of checking the retry 
attempts, running the next best neighbor decision scheme 
and sending to that neighbor is repeated until a 
rebroadcast is finally heard or all of the retry attempts are 
used up. 

4. Next Best Neighbor Selection Scheme 
The next best neighbor selection scheme is an 

independent algorithm within the larger fault tolerant 
algorithm.  Changing this scheme will not affect the rest 
of the software’s operation.  This is convenient because it 
allows us to easily test certain methods against others and 
allows us to use different algorithms in different 
applications.  In this paper we examine two next best 
neighbor selection schemes.  It is important to note that 
they both use the fact that nodes know the depth of their 
neighbors in the network through a four bit field that we 
have added to the header of any outgoing messages that 
uses our fault tolerance software.  The field is loaded 
with the node’s current depth in the network at the time 
of transmission.  When others nodes hear the message, 
even if they are not the destination, they can see which 
node sent it and its current network depth and update it in 
their local table of neighbors. 

 
4.1 Choose the Neighbor Closest to the BS 

 
The simplest way to pick the next best neighbor is to 

look at the list of known neighbors and rank them based 
on their distance from the BS.  This means that if node A 
has three neighbors, two of depth two and one of depth 
one then it will choose to send to the neighbor of depth 
one.  If it happens that there are multiple neighbors that 
have the same depth a random number is generated to 
choose among these neighbors.  To make sure that we are 
not wasting all of our tries on a node that has failed 
entirely we never send to the same node on two 
consecutive retries unless the sending node has exactly 
one neighbor.  An example of this ranking behavior is 
shown on the left side of Figure 2. 
 
4.2 Choose the Neighbor Closest to the Node 

A safer way to pick the next best neighbor is to choose 
a node that is close by in the network.  Since we would 

like whenever possible to move closer to the BS with 
each hop, the nodes look for neighbors that are one step 
closer to the BS than it is.  If there is no node one step 
closer to the base then it looks for a node that is two steps 
closer to the base, continuing this until finding a node.  
Similar to the previous algorithm we never send to the 
same node on consecutive tries and break ties using a 
random number. An example of this ranking approach is 
shown on the right side of Figure 2.  

The idea behind the two different schemes is that while 
we think that being conservative and using the neighbor 
closest to the node should almost always give equivalent 
or better rates of data transmission success we believe 
that in more benign environments the neighbor closest to 
the base method could provide similar success rates for 
less energy.  

5. Results 
As previously mentioned we have done small scale 

hardware experiments to test the validity of the 
algorithm.  These experiments involved deploying motes 
with light sensors throughout a building with a BS mote 
attached to a laptop in one   corner of the building.  While 
we only used 12 motes this was enough to have a few 
nodes at depths of 1, 2, 3 and 4.  When a light in a motes 
area was toggled on or off it would send a message to the 
BS laptop which had a java program listening on the 
serial port and would report which area of the building 
the light had toggled in.  Using this setup we could inject 
faults by physically disabling motes right before toggling 
a light.  When we ran the tests without the fault tolerance 
software it would often take two or three light toggles 
before we would actually see it at the BS, even without 
us injecting faults into the network.  With the fault 
tolerant software enabled we would see it at the laptop on 
the first light toggle the vast majority of the time.  In 
most cases we were also able to turn off the node’s parent 
and see it successfully re-route the message. 

In order to test our design more thoroughly we needed 
to employ a test bed that would allow us to produce 
results at a reasonable pace while still providing accuracy 
towards our goal of a solution that works on real mote 
hardware.  Due to the time it takes to deploy even a small 
mote network we decided to gather our results using the 
TinyOS simulator TOSSIM [3] and its accompanying 
Graphical User Interface (GUI) TinyViz.  This simulator 
gives us a good approximation of real world TinyOS 
applications and allows us the flexibility we need to run 
many different types of tests. 

The simulation runs that were performed consisted of a 
set number of fifty nodes.  We chose the number fifty 
because it produced results very close to those from runs 



 

with hundreds of nodes but allowed the simulator to run 
much faster.  In all the runs nodes had a 3% chance of 
suffering a transient failure and becoming unresponsive 
for a short time.  In our tests there are a number of 
different parameters that we set.  The first two parameters 
are from the algorithm which was discussed previously; 
the number of times to retry and which of the two 
algorithms to use for choosing the next best neighbor.  
The simulator also allows us to have a simulation 
parameter of the network layout.  The final parameter to 
our simulation runs is what is known as the Distance 
Scaling Factor (DSF).  The empirical radio model that we 
use for our tests was created from data acquired through 
real mote radio tests.  The model works by taking the 
distance between two motes and computing a bit-level 
error rate for a transmission between the two based on the 
hardware tests [3]. What this means is that by increasing 
the DSF we are able to keep our layout exactly the same 
but increase or decrease the error rate of radio 
transmission between nodes.   We chose to use an 
application where every node has the same amount of 
data to send so that we can get a good sampling of the 
success rates from different depths and geographical 
locations in the network. 
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The first set of tests that we present involves 

increasing the DSF and likewise the radio error rate while 
keeping the layout and number of retries the same.  For 
these tests we use 4 maximum retries and a “grid 
random” layout which distributes the nodes randomly 
about a set area.  From these tests we calculate both the 
percentage of data that successfully arrives at the BS and 
the average number of radio transmissions for each 
message generated by a node as a measure for the energy.  
The results of these runs can be seen in Figures 3 and 4.  
We can see from these graphs that while the basic multi-
hop router gives a 62.5% success rate at the lowest DSF 
it goes down as low as 43.5% at higher error rates.  We 
can also see that the fault tolerant scheme provides a 
substantial benefit even at low error rates and becomes 
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even more advantageous at higher error rates.  The fault 
tolerant scheme will eventually break down when the 
DSF starts to exceed 2.0; we do not show this on the 
graphs as at this point the success rate without fault 
tolerance is close to zero.   It would appear that the 
Closest to Node method of choosing neighbors is better 
than the Closest to BS method until we look at the power 
graph (Figure 4).  This reveals that the Closest to BS 
method generally uses less power. 

The fault tolerant scheme is providing much more than 
the higher global success rate shown in Figure 3.  
Another benefit it provides is that its success rate holds 
fairly constant throughout the network.  For example, the 
total message success rate for the data in Figure 5 without 
fault tolerance is 60.5%.  However this is not a constant 
60.5% for every node in the network, at a depth of one 
70% of messages succeed while at depth four it drops to 
as low as 20%.  This shows that while the total success 
rate is not so bad the BS actually barely knows anything 
about the half of the network that is further from it and as 
the size of the network expands this problem will only 
grow worse.  We can see that with fault tolerance this 
problem is avoided and we have a fairly constant success 
rate for all depths.  Figure 5 also confirms that the further 
out from the BS the less energy a node requires.  Nodes 
of depth 1 use twice as much energy as nodes of depth 3.  
In order to deal with this the density of nodes should 
increase as they get closer to the BS. 
 The next parameter that we examine is what happens 
when we change the maximum retry threshold.  In order 
to do this we again keep the layout constant throughout 
the tests using a  random distribution within a specified 
area.  This time we also hold the DSF (and hence the 
transmission error rate) constant at 1.50 and test only 
using the Closest to Node neighbor selection algorithm.  
Here we are interested in both the effect on the success 
rate of data reaching the BS and the energy used by the 
algorithm.  The results are shown in Figure 6.  Examining 

Figure 4.  A graph depicting the average number of 
radio transmissions sent per data message generated. 
This allows us to see compare energy usage between 
different parameter sets. 

Figure 3.  A graph depicting the percentage of data 
that reaches the BS as the DSF or radio error rate 
changes. 
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the graph we see that while there is a notable difference 
between 1 and 2 retry attempts, adding more retries gives 
diminishing returns. 
 In Figure 6 we present the percentage of the total 
network energy that is spent sending re-routing packets.  
This is interesting for two reasons.  First, it shows that as 
the retry attempts go up past 2, more of the energy is 
being spent on re-routing messages but the overall 
success rate is not seeing much benefit.  Second, this 
shows that even in a harsh environment, using 2 retries, 
the re-routing packets only constitute 47% of the energy 
in an environment where each message has a 60% chance 
of at least one error.  This may sound like a large number 
however it is important to recall that we only send re-
routing packets after a message failure has occurred.  
This energy usage is similar to the energy used in a 
multi-path scenario that takes two paths before reaching 
the BS. 

Energy And Success Rate Vs. the # of Retries

77.68
89.00 93.40 95.00

41
47

55.5 56

0

20

40

60

80

100

1 2 4 6
Number of Retries

0

20

40

60

80

100

Energy

Success Rate

D
at

a 
R

ec
ei

ve
d 

(%
) a

t 
B

as
e 

St
at

io
n

En
er

gy
 U

se
d 

(%
) f

or
 R

e-
R

ou
tin

g 
R

eq
ue

st
s

 

6. Conclusions 
We have presented a distributed algorithm for re-

routing messages in the face of transmission failure in 
wireless sensor networks.  Results were obtained from a 
TinyOS based mote hardware test and a number of 

TOSSIM simulation runs.   We have seen that we can use 
parameters, such as the number of retries, to tune the 
algorithm to provide a high success rate while still being 
energy-efficient in both benign and hostile environments.  
We compared the affect on energy and success rate due 
to increasing the DSF.  We provided results based on 
node depth to show that the algorithm benefits nodes 
further out in the network, where it is more needed, as 
much as those near the BS.  
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Figure 5.  A graph showing the success rates 
dependant on the nodes depth in the network, the 
dashed columns represent that percentage of overall 
network energy that nodes of this depth use. 

Figure 6.  A graph showing the affects of the retry 
threshold (left axis, solid line) on the data success 
rate and the percentage of  energy used by the 
system re-routing algorithm(right axis, dashed line).


