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Abstract

Using a geographic information system (GIS), digital maps of environmental variables including geology,
topography and calculated clear-sky solar radiation, were weighted and overlaid to,predict  the distribution
of coast live oak (Quercus agrifolia) forest in a 72 km2 region near Lompoc, California. The predicted distri-
bution of oak forest was overlaid on a map of actual oak forest distribution produced from remotely sensed
data, and residuals were analyzed to distinguish prediction errors dueto  alteration of the vegetation cover
from those due to defects of the statistical predictive model and due to cartographic errors.

Vegetation pattern in the study area was associated most strongly with geologic substrate. Vegetation pat-
tern was also significantly associated with slope, exposure and calculated monthly solar radiation. The
proportion of observed oak forest occurring on predicted oak forest sites was 4O(rlo overall, but varied sub-
stantially between substrates and also depended strongly on forest patch size, with a much higher rate of suc-
cess for larger forest patches. Only 21% of predicted oak forest sites supported oak forest, and proportions
of observed vegetation on predicted oak forest sites varied significantly between substrates. The non-random
patterns of disagreement between maps of predicted and observed forest indicated additional variables that
could be included to improve the predictive model, as well as the possible magnitude of forest loss due to
disturbances in different parts of the landscape.

Introduction predicting actual vegetation patterns because of the
complexity and dynamic behavior of plant commu-

Regional vegetation analyses are conducted rou- nities across a range of spatial and temporal scales
tinely by landscape ecologists, geographers and (Rowe and Sheard 1981). Ground samples inevita-
resource managers in order to describe the distribu- bly comprise a very small fraction of the mapped
tion of plant species and to relate observed distribu- region, raising the question of how representative
tion patterns to biotic and abiotic  site factors resulting models are for unsampled areas. Samples
(Causton 1988). Typically, vegetation and site are of predetermined area deemed suitable for
measurements from scattered samples are analyzed describing vegetation stands, fixing somewhat ar-
to develop empirical equations relating vegetation bitrarily the spatial scale of the analysis (Noy-Meir
composition to measured site variables. Even in and Anderson 1971). Also, samples are usually lo-
relatively undisturbed’ areas, such equations or cated  subjectively in homogeneous stands selected
vegetation ‘site models’ meet with mixed success in to be representative of idealized types (e.g., associa-
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tions, wildlife habitat types, etc.), leading to selec-
tive sampling of only some components of actual
vegetation cover. As a result, a site model may
predict a vegetation pattern very different from the
actual pattern over the study region. These predic-
tive errors may have practical consequences when
site models are used to project the historical extent
of vegetation types, for example to locate restora-
tion projects or natural preserves.

A site model can be tested through additional
field sampling; however, there are limits to the
amount of field data that can be collected. When
maps of site model variables (e.g., geology, topog-
raphy and soils) exist, a predictive vegetation map
can be produced by map weighting and overlaying
using a Geographic Information System’ (GE).
Given a map of actual vegetation distribution, one
can overlay the maps to compare predicted to ob-
served vegetation patterns to analyze spatial pat-
terns of disagreement (cf. Thomas 1960).

A number of studies have used GIS capabilities
of map weighting and overlay for modeling vegeta-
tion pattern based on mapped environmental varia-
bles (e.g., Box 1981). Most recently, predictive
vegetation maps have been used in remote sensing
applications to improve land cover classifications
based on digital satellite data (e.g., Strahler 1981;
Morissey and Strong 1986; Cibula and Niquist
1987). In these studies, predictive models were de-
veloped from ground samples and the GIS was used
to extrapolate across unsampled areas. Our re-
search approach is similar, except that we are
concerned with comparing predicted vegetation
patterns to independently derived maps of actual
vegetation (e.g., Hill and Kelly 1987).

In principle, the interpretation of residual pat-

edge of the data sources and the region under inves-
tigation, supplying much information not obtaina-
ble from simple goodness-of-fit statistics or ad-
ditional field sampling. For example, patterns in
residuals may reveal model biases, ecological sub-
regions or ecological variables not previously recog-
nized. Furthermore, knowing how a vegetation
model performs in different parts of the study
region can temper its application to management
and planning decisions.

We have used digital maps of site variables (i.e.,
geology, topography and calculated clear-sky solar
radiation) and GIS capabilities to map the predict-
ed distribution of natural vegetation types in
coastal California whose actual distributions were
mapped using Thematic Mapper Simulator (TMS)
data. We compared the actual distribution of one
vegetation type, coast live oak (Quercus  agrifolia
NeC)  forest, to the distribution predicted by a quan-
titative site model, to answer the following ques-
tions:

- What is the total area and patch size distribution
of observed oak forest?

- What is the total area and patch size distribution
of predicted oak forest?

- For areas of observed oak forest, what is the
amount and patch size distribution of predicted
vegetation types?

- For areas of predicted oak forest, what is the
amount and patch size distribution of observed
vegetation types?

- How are areas where predicted and observed
maps disagree distributed with respect to geolo-
gy and topography?

terns from a comparison of observed and predicted
vegetation maps is extremely complicated, because
predictive errors can originate both from errors in
maps of site variables and actual vegetation, and
from inadequacies of the site model. We have
found in practice, however, that residual patterns
may be interpretable based on the analysts’ knowl-

I Burrough (1986, p. 6) defines a GIS as ‘a set of tools for col-
letting, storing, retrieving at will, transforming, and displaying
spatial data from the real world for a particular set of purposes.’

Our overriding objectives in this paper are to test
the power of mapped site variables for predicting
the distribution of natural vegetation in coastal
California, to demonstrate the utility of high reso-
lution satellite data and GIS capabilities in regional
vegetation analyses, and to call attention to some
methodological issues of data scale and data quality
that must be addressed in applying these technolo-
gies to regional vegetation modeling.
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Study area

We modeled natural vegetation pattern over a 72
km2 area northeast of Lompoc, California (lati-
tude 34”42’  N, longitude 120”27’W).  The climate
here is mediterranean, with relatively cool summers
and mild winters. Over 90% of the 36 cm average
annual precipitation falls between November and
April.

Two distinct physiographic regions occur in the
study area; Burton Mesa and the Purisima Hills.
Burton Mesa is a marine terrace underlain by ma-
rine sedimentary rocks that are covered with Orcutt
sandstone, 0.5-40 meters of weakly cemented
Quaternary aeolian sands (Diblee 1950). Level up-
land expanses from lOO-  120 m above sea level are
separated by wide valleys filled with Quaternary al-
luvium.

Most vegetated areas are covered by maritime
chaparral, which is dominated by evergreen shrub
species including Adenostoma fasciculatum, Cea-
nothus  ramulosus, Arctostaphylos rudis and A.
purisima (Davis et al. 1988) .~  Multi-stemmed coast
live oaks 3-6 m in height are interspersed through-
out the chaparral, attaining 40-70010  crown cover
in areas not recently disturbed by burning or clear-
ing. Coastal sage scrub and annual grassland occur
on formerly cleared sites and on south-facing
slopes. Coast live oak forest is most extensive on
steep north-facing slopes and in riparian corridors.

The Purisima Hills are a northwest-southeast
trending anticline of marine sedimentary rocks.
Elevations range from 225 to 450 m, and topogra-
phy consists of rolling hills with short steep slopes.
Important geologic formations in the study area in-
clude the Sisquoc diatomite and shale, the Careaga
sandstone and the Paso Robles conglomerate.
Predominant vegetation types in the Purisima Hills
include coastal sage scrub, chaparral, bishop pine
(Pinus muricata) forest, coast live oak woodland
and coast live oak forest. Vegetation pattern is as-
sociated strongly with geology and topography.
Cole (1980) documented the association of bishop
pine forest with the diatomaceous member of the
Sisquoc Formation, coast live oak forest with north
facing slopes of the Careaga sandstone and Sisquoc
shale, and coastal sage scrub or chaparral with

steep south facing slopes of the Purisima Hills.
Natural vegetation in the study area is fragment-

ed by roads, residential areas, agriculture and other
developments. Remaining vegetation has expe-
rienced a complex disturbance history over the past
century or more that includes wildfire, grazing and
clearing. These disturbances exert a strong and
persistent effect on vegetation composition and
weaken the association between actual vegetation
and mapped site variables (e.g., Wells 1962; Davis
et al. 1988). We applied predictive mapping only
within areas where actual vegetation was dominat-
ed by native shrub or tree species. We excluded an-
nual grasslands, nearly all of which were either ac-
tively grazed or recently burned or cultivated (see
below).

Although we modeled the distribution of 5 vege-
tation types (Table l), we focused on the actual and
predicted distribution of coast live oak (Quercus
agrifolia NeC)  forest, which we define as vegetation
where the species attains at least 60% canopy cover.
Because coast live oak is the only dominant broad-
leaf evergreen tree in the study area, vegetation c.on-
taining the species has a distinctive reflectance and
can be mapped reliably with high resolution satel-
lite data and aerial photography (Davis 1987). Fur-
thermore, because coast live oak is relatively less
adapted to drought than other mediterranean plant
species, oak forests are generally restricted to mesic
substrates and sites such as steep north-facing
slopes and riparian corridors (Wells 1962; Griffin
1973; Cole 1980). The documented association of
the species with mapped surficial geology and
topography makes it especially suited for testing the
potential of GIS-based predictive mapping.

Methods

A vegetation map for the study area was produced
using Thematic Mapper simulator data (28 m re- .
sampled to 30 m resolution) collected in July 1984
(Davis 1987). Natural vegetation classes were
mapped with 89% accuracy overall (accuracy deter-
mined following Card (1982); see Davis (1987) for
details). All classes were mapped with greater than
85% accuracy except for oak forest, which was
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Table I. Classification system used to map dominant natural vegetation types in the study region. For logistic regression analysis, oak
woodland and chaparral were merged into a ‘woodland/chaparral’ category. Grassland and Willow woodland were excluded from the
analysis. Map accuracy for each class is the proportion of samples classified correctly in the TMS-derived vegetation map, based on
141  test sites (see Davis (1987) for details).

C l a s s ‘J/o  O a k  c o v e r Dominant species Map accuracy (070)

Coast live oak forest >60 Quercus agrifolia ‘ 7 9
Toxicodendron diversilobum

Coast live 20-60 Quercus agrtfolia 8 6
oak woodland

Adenostdma fasciculatum

.‘lb Arctostaphylos  spp.

Wrral O-20 Quercus agrifolia 8 9
Adenostoma fasciculatum
Ceanothus ramulosus
C. impressus
Arctostaphylos rudis
A. purisima

Coastal Scrub O-20 Salvia  mellifera 8 6
Baccharis pilularis
Ericameria ericoides
Artemisia californica

Conifer Forest O-30 Pinus  muricata 9 2
Quercus agrifolia
Heteromeles arbutifolia

Grassland O-20 Bromus spp. 8 9
Vulpia  spp.
Avena barbata
Brassica spp.

Willow woodland O - 2 0 Salix  spp . 100

mapped with 79% accuracy (Table 1). Oak forest stone, and Sisquoc diatomaeeous shale. Although
was most frequently confused with dense oak soil maps exist for the study area, we did not use
woodland. This is not a severe mapping error, given them because the soil maps for the Purisima Hills
that.one class grades into the other. were less detailed than the geologic map and had

The vegetation map was co-registered in Univer- less predictive value.
sal Transverse Mercator (UTM) projection to a Topographic variables including elevation, slope
geologic map of the study area (Dibblee 1950) that angle and slope aspect, clear-sky solar radiation
we digitized using Earth Resources Data Analysis and drainage area were derived from the U.S.Geo-
System (ERDAS) software (Fig. 1). Dibblee origi- logical Survey 30 m digital elevation model (DEM)
nally mapped 19 geologic series at 1:50,000  scale. for the Lompoc quadrangle using software deve-
We did not attempt to quantify the accuracy of the loped at the UCSB Department of Geography
map. To simplify the analysis of association be- (Frew and Dozier 1986). Unsmoothed elevations
tween vegetation and geology, recent Quaternary possessed 1 m vertical and 30 m horizontal resolu-
deposits, including terraces, alluvium and Orcutt tion, with a nominal root mean square error of 3.0
sandstone, were merged into a single class (Orcutt m in ‘both vertical .and horizontal dimensions.
sand comprised 86% of this class). All three series Based on transit surveys of several hillslope profiles
were characterized by deep sandy soils. We anal- on eastern Burton Mesa, there was good agreement
yzed three other widespread lithologic units, includ- between actual and mapped elevations (3 = 0.93),
ing the Paso Robles conglomerate, Careaga sand- but only fair agreement between actual and mapped



Fig.  1. Surficial geology of the study area (simplified from Dib-
blee 1950).

slope angle (r2  = 0.41) and slope aspect (r2  = 0.38)
(Goetz 1987). This is partly because errors in eleva-
tion data were amplified by the local differencing
operations used to calculate slopes and exposures.
Errors were concentrated in areas of rapidly chang-
ing slope and exposure such as ridges and ravines,
and included both resolution errors (i.e., under-
sampling in areas of rapid change) and stereo-
model errors (e.g., overestimating surface elevation
in riparian corridors filled with tall, continuous tree
canopy).

Incident radiation on a slope was calculated us-
ing maps of slope angle and slope aspect as well as
a horizon file which provided, for each cell in the
elevation model, the angle to the local horizon for
8 different azimuth sectors (i.e., north, northeast,
. . . ) (Dozier 1980; Dozier et al. 1981). Terms for
diffuse irradiance and reflected radiation from sur-
rounding terrain were estimated under specified
conditions of atmospheric scattering and transmit-
tance and surface albedo. The range in elevations
was small enough that the atmosphere was treated
as the same at all locations.

To produce maps of monthly solar radiation for
the months of December through June, we calculat-
ed instantaneous radiation at hourly intervals for
three days in each month, and integrated these

Fig. 2. Distribution of integrated January insolation calculated
from digital elevation data. Image brightness is proportional to
total insolation. Image orientation and area are the same as in
Fig. 1.

Fig. 3. Distribution of coast live oak forest mapped using July,
1984 TMS data, shaded to indicate predicted vegetation types on

observed oak forest. Black areas are non-forested areas.
Colored areas are existing oak forest that were predicted by the

logit regression model to be oak forest (red), oak woodland
(blue), coastal scrub (green) or conifer forest (white). Image
orientation and area are as in Fig. 1.
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values over the entire month. Because we could substrates, so separate logit regression models were
only roughly estimate seasonal atmospheric proper- developed for each geologic class. Topographic
ties, the calculated insolation values were treated as. variables analyzed, included elevation, slope, ex-
relative and scaled from 0 to,255 (Fii.  2). i 3 posure, monthly and seasonal solar radiation and

Variation in soil moisture’related to drainage ba- drainage basin position. Regression coefficients
sin position (e.g., upper slope versus lower slope) were estimated by ordinary least squares. Model
was modeled by calculating, for each cell, the num- performance was evaluated using the RHO-squared
ber of cells in the basin .which  were %xpe&d  to goodness-of-fit statistic (Costanzo,et al.  1982) and
drain through that cell,based on maps of slope and by comparison of predicted and observed vegeta-
exposure (e.g., Band 1986; Marks et al. 1984); tion patterns (see below).

The association of vegetation and mapped ter- To generate a map of predicted vegetation pat-
rain variables was madeled  using’.polychotomous tern, vegetation class~probabilities  for each cell in
logit  regression analysis (Wrigle$1975).,  Vegetation ” the database were cal.culated  from the regression
samples were located by stratifying the study area equations, and the cell was assigned to the vegeta-
into six subregions, and then sampling 40-60  vege- tion classwith the highest calculated probability of
tation  stands from each subregion that were at least occurrence using the program PROBCLAS (May-
60.  by%.60  meters in area on %miform’  geology and nard and Strahler 1981).
topography (to minimize cartographic error). Sam- The correspondence between maps can be mea-
ple neighborhood was selected randomly, but sam- sured by testing for non-random distribution of
ple locations were sometimes adjusted 30-60 m to map residuals using spatial measures of contiguity
meet our criteria of uniform vegetation and site or spatial autocorrelation (Cliff and Ord 1981),  or
conditions. Vegetation type and percent cover by using aspatial  measures of contingency or correla-
coast live oak in each sample were determined using tion (Phipps 1981). Given the large sample size
1983 1:24,000  color aerial photography (high pho- (n = 79,605 cells) we assessed map correspondence
tointerpretation accuracy was verified during nu- using non-spatial analyses of randomly located
merous.,field  visits between 1985 and 1987). Geo- samples. The use. of conventional significance
logic substrate and values for topographic ‘variables tests of association was problematic because the
were taken from the digital database, spatial dependence in mapped variables violated the

Thedata  consisted of 258 samples.of,four  vegeta- assumption of sample independence (Fingleton
tion types, oak forest (n=60),  oak woodland and 1986). To avoid this problem we sub-sampled the
hard chaparral (n = 116),*  coastal scrub (n = 62) and maps at a sampling density low.enough  so that sam-
conifer forest (n = 20). We excluded willow wood- ple values were expected to be independent at the
land because it is infrequent and is associated with average intersample distance. For topographic vari-
riparian areas that we could not model successfully ables, the sampling distance was determined empir-
using the DEM data. As mentioned above, we also ically by semi-variogram analysis (Oliver and Web-
excluded grassland because this type occurs nearly ster 1986) to be around 210 m, corresponding to a
exclusively on recently disturbed sites.  Initially, oak 2% sample of the region. Accordingly, the associa-
woodland and chaparral were analyzed separately, tion of observed vegetation pattern with topo-
but we observed no difference in the’site relations graphic variables was measured for a random sam-
of these two types so these types were combined to ple of 1450 cells (1.8% of the study region) from the
increase class sample size for estimating logit model database.
coefficients. Oak cover increases during fire-free
intervals on many chaparral-covered sites in the R&s
study area, and on these sites chaparral is probably
seral to woodland (Wells 1962; Davis et al. 1988). Oak forest was mapped over 4.5% of the study

Initial data exploration indicated that site rela- area (Fig. 3). The remaining area was mapped as
tions of the vegetation classes differed among the *oak  woodland and chaparral (19.4%),  coastal
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Tuble3.  Summary of polychotomous logit regression models for
four  potent ia l  na tura l  vegeta t ion  c lasses ,  Bur ton  Mesa  and
Purisima Hills. Signs in parentheses indicate the direction of the
relationship between the topographic variable and the likelihood
of oak forest .

-0.6

-0.6

Geologic substrate Significant variables

Quarternary deposits March insolation (-  )
Slope (-  )

Paso robles conglo- March insolation (-  )
merate

Careaga sandstone March insola t ion  ( - )
Aspect (+)

RHO-squared

0.246

0.174

0.228

Sisquoc Diatomite December insolation ( - ) 0.192
Elevation ( - )

All substrates 0.338

o- - 0

0 5 1 0 1 5 2 0 25 3 0 3 5

Patch Size (ha)

Fig. 4. Patch size distribution of observed oak forest in classified
?MS  image (bars) and cumulative proportion of forested area as
‘a function of patch size (line).

scrub (20.0%),  conifer forest (2.9%),  or other
(residential, cropland, grassland, willow wood-
land) (53.2%). Mapped stands of oak forest aver-
aged 0.51 ha, with the size distribution strongly
skewed towards the 0.09 ha resolution of the TMS
data (Fig. 4). Some of the small patches were local
dense clusters of oaks in stands of oak woodland
and chaparral (Davis 1987). These occurred primar-
ily on Burton Mesa. Other small patches were forest

stands that were highly localized in riparian cor-
riders or mesic  coves, or were remnant fragments in
areas subjected to historical clearing and burning.

Overlaying maps of geology and vegetation cor-
roborated the observations by Cole (1980) that
conifer forest in the region is essentially restricted
to diatomaceous shale of the Sisquoc formation
(Table 2). Stratification of the region by geology
combined with logit regression models based on
topographic variables gave a relatively high RHO-
squred of 0.338 (Table 3). The separate logit regres-
sion models had only moderate predictive skill,
with values for RHO-squared of 0.17-0.25. Calcu-
lated March radiation was the topographic variable
most strongly associated with the pattern of natural
vegetation on all substrates except the Sisquoc
diatomite, where December radiation was a better
predictor. Differences in the association of vegeta-
tion pattern and solar radiation for the months of
December through March were slight (correlation
of March and December radiation = 0.97).

The RHO-squared statistics indicated how well
the model fit the 258 training samples, but a more

fib/e  2.  Frequencies and relative percentages of 4 natural vegetation classes and other.land  cover types on four geologic substrates in
the study area (n = 79,605 cells). Percentages for each substrate sum to 100%.

=hY
Oak Oak Coastal Conifer

forest woodland/chaparral s c r u b forest Other

Quaternary  deposits 2423 0.05 18824 0.39 8 5 7 2 0.18 4 0.00 18530 0.38
Paso Robles  conglomerate 588 0.12 1335 0.26 1343 0.26 3 0.00 1811 0.36
Careaga sandstone 1 9 2 7 0.11 6468 0.37 6195 0.36 ,,  SC 0.00 2848 0.16
SiSquoc shale 939 0.11 5034 0.58 1 4 3 4 0.16 500 0.06 819 0.09
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most observed oak forest on Quaternary deposits
mapped onto predicted oak woodland sites. Low
predictive success of model was the result of: 1) car-
tographic error due to confusion of dense oak
woodland and oak forest in the map of actual vege-
tation, and 2) ecological error, in the sense that oak
forest was not as restricted to low radiation en-
vironments as the model predicted. For example,
many small patches of oak forest were predicted
oak woodland sites on fevel uplands of Burton
Mesa that were not recently burned or cleared.

Fig. 5. Boxplots  showing the distribution of March insolation
for 4 vegetation classes on all geologic substrates, based on a
random sample of 1450 cells from the database. Sharp ridges
and ravines were excluded from the sample, because of the lower
accuracy of DEM data in those areas. Boxes show the upper
quartile, median and lower quartile for observations; vertical
lines and asterisks show upper and lower extremes and outliers.
Non-overlapping of notches indicates differende at a rough 5%
significance level (Chambers et al. 1983).

The proportion of ‘observed oak forest on
predicted oak forest sites also depended strongly on
patch size (Fig. 6), with a much higher rate of suc-
cess for larger patches of forest. Excluding patches
less than 2 hectares (58% of mapped oak forest),
60% of remaing forest occurred on predicted oak
forest sites. The three largest patches of oak forest,
all.,greater than 10 ha in size, fell entirely within
predicted oak forest areas. Although we could not
account fully for this scale-dependence in model fit,
it was due in part to the high error rate for small
oak forest patches on Quarternary deposits. Also,
larger patches of oak forest tended to occur on larg-
er more homogeneous slopes, which were more ac-
curately depicted by the DEM data. Finally, we ob-
served in the field that many smaller patches of
mapped oak forest occurred near seeps, along geo-
logic contacts, in swales and near lower order
streams, all environments that were not depicted
reliably by the database.

Only 21 Vo of predicted oak forest sites supported
general test of model performance was provided by oak forest. 55% supported oak woodland and
comparing predicted to observed vegetation pat- chaparral and 24% supported coastal scrub,
terns for the entire study region. The proportion of conifer forest or other cover types (mainly grass-
observed oak forest that occurred on predicted oak land, cropland and residential) (Fig. 7). Propor-
forest sites was 40% overall, but varied substan- tions of observed vegetation on predicted oak
tially between substrates (Table 4). For example, forest sites varied sharply between substrates (Table

Table 4. Relative proportions of observed oak forest on predicted vegetation types as a function of substrate type (columns sum to 1).

Predicted vegetation

Oak forest
Oak woodland
Coastal scrub
Conifer forest

Quaternary P a s o  Rabies
d e p o s i t s conglomerate

0.24 0.27
0.73 0.37
0.03 0.36
0.00 0.00

Careaga Sisquoc
sandstone s h a l e

0.42 0.50
0.42 0.02
0.16 0.13
0.0 0.35
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Frg.  6. Percent of observed oak forest occurring on predicted
oak forest sites as a function of mmimum forest patch size ana-
lyzed. Asterisks are actual data values. Solid line was fitted using
locally weighted regression (Chambers et al. 1983). Broken line

shows corresponding percent of observed oak forest on predict-
ed oak woodland sites.

5). For example, most predicted oak forest on
Sisquoc shale was observed to be oak woodland and
chaparral, whereas on the Paso Robles it was main-
ly coastal scrub and other. This partly reflected
differences in land use and disturbance on these
substrates. Fire has been the major form of distur-
bance on Sisquoc shale, whereas large areas of the
Paso Robles conglomerate and Careaga sandstone
have been cleared and grazed. On several substrates
the residuals were systematically associated with
different topographic variables. For example, on
the Sisquoc shale, conifer forest and oak wood-
land/chaparral occurred at significantly higher ele-
vation than oak forest on predicted oak forest sites.
We attributed this result to the association of these
vegetation types with the diatomaceous member of
the Sisquoc Formation, which occupes  higher ele-
vations. Thus this model bias could be reduced by
including a more detailed geologic classification.

Fig. 7. Predicted distribution of coast live oak forest based on

geology, topography and insolation. Black areas are predicted
vegetation other than oak forest. Colored areas are predicted
oak forest sites on which mapped existing vegetation was oak

forest (red), oak woodland (blue), coastal scrub (green), conifer
(white) or other land cover types (yellow). Image orientation and
area are as in Fig. 1.

Discussion

The association between vegetation and calculat-
ed monthly radiation was relatively strong for the
months of December through March, in spite of the
inaccuracies and relatively coarse resolution of the
DEM data. Also, vegetation pattern was more
strongly associated with calculated radiation than
with measures of slope orientation that did not ac-
count for shading by local horizons. These results
indicate the potential for analyzing plant species
distributions in relation to dynamic patterns of so-
lar radiation using high resolution (e.g., 5-10 m)
digital elevation data. Previously such analyses
were possible only for sample points or localized
transects (e.g., Kirkpatrick and Nunez 1980). Using
accurate higher resolution data it should also be
possible to relate vegetation patterns to topographi-
cally-controlled patterns in soil moisture or sur-
face hydrology (e.g., O’Loughlin  1 9 8 6 ;  B a n d
1986).

Results of predictive mapping suggest that coast
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Table%  Relative proportions of observed vegetationor land cover types on areas predicted as oak forest sites, as a function of substrate
type (columns sum to I). ‘

Observed vegetation Quaternary
d e p o s i t s

P a s o  Robles
conglomerate

Careaga
s a n d s t o n e

S i s q u o c
s h a l e

Oak forest 0.17 0.14 0.18 0.13
Oak woodland 0.54 0.24 0.35 0.65
Coastal scrub 0.14 0.34 0.33 0.05
Conifer forest 0 . 0 0 0.00 0.00 0.04
Other 0.14 0.28 0.15 0.13

live oak forest occupies only a small fraction of ex-
isting suitable habitat in the region, and that in
most areas it has been replaced by oak woodland
and chaparral. Wells (1962) blamed anthropogenic
fires, cutting and grazing for the conversion of
large areas of oak forest to chaparral in this area.
Oak forest may require several to many decades to
recover from such disturbances (Davis et al. 1988),
although the rates probably vary between sites and
depending on the nature of the disturbance. In this
study we observed that much of the observed oak
forest occurred only on the lower portion of slopes
that were predicted oak forest. This could be a sys-
tematic  flaw in the predictive site model, an indica-
tion of less frequent or less intense disturbance (es-
pecially  fire) of lower hillslope areas, or more rapid
recovery of oak forest from disturbances in these
sites. Including maps of recent fire and land use his-
tories should help to resolve some of the discrepan-
ties  between observed and predicted vegetation pat-
terns in the region.

Our analyses of coast live oak forest are based on
relatively simple GIS operations combining map
weighting and overlay, patch size analysis, and spa-
tial sampling. Such GIS-based ecological analyses
are useful to the degree that maps derived from a se-
quence  of cartographic operations are of sufficient
spatial resolution to describe the ecological pro-
cesses  under investigation, and are of sufficient ac-
curacy so that ecological information is not over-
whelmed by cartographic noise. Digital maps
contain inaccuracies due both to inherent errors in
the original data and operational errors from map
digitizing and registration (Burrough 1986; Walsh
et al. 1987), so that a geographical database is
at best a ‘fuzzy’ representation of the landscape

(Robinson and Strahler 1984). For this reason there
is a trade-off between model complexity (e.g., more
variables or more complex spatial operations) and
model reliability (Burrough 1986). In the analyses
reported here, we could readily generate enough
samples from the database to outweigh cartograph-
ic errors, so that previously documented associa-
tions of vegetation pattern with geology and topog-
raphy were detectable (e.g., Wells 1962; Harrison et
al. 1971; Cole 1980; Westman 1981).

The results presented above are intended to illus-
trate how GIS-based cartographic modeling can
contribute to the analysis of regional vegetation
patterns and the association of vegetation with en-
vironmental variables. We are not suggesting that
cartographic modeling can substitute for field sam-
pling in developing and testing vegetation site
models. However, the types of cartographic ana-
lyses conducted here complement traditional field
survey methods by measuring associations or test-
ing field results with many more random samples
and at larger spatial scales than can practically be
collected in the field, facilitating the analysis of
large heterogeneous landscapes. Furthermore, we
have found that the ability to overlay predicted on
observed landscape patterns gives a strong sense of
the true predictive skill and bias of quantitative site
models, providing useful guidance in terms of mod-
el improvement and application.
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