
Clifford Algebras and Euclid’s
Parameterization of Pythagorean Triples

Jerzy Kocik

Abstract. We show that the space of Euclid’s parameters for Pythagorean
triples is endowed with a natural symplectic structure and that it emerges
as a spinor space of the Clifford algebra R21, whose minimal version may be
conceptualized as a 4-dimensional real algebra of “kwaternions.” We observe
that this makes Euclid’s parameterization the earliest appearance of the con-
cept of spinors. We present an analogue of the “magic correspondence” for
the spinor representation of Minkowski space and show how the Hall matrices
fit into the scheme. The latter obtain an interesting and perhaps unexpected
geometric meaning as certain symmetries of an Apollonian gasket. An exten-
sion to more variables is proposed and explicit formulae for generating all
Pythagorean quadruples, hexads, and decuples are provided.
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1. Introduction

In the common perception, Clifford algebras belong to modern mathematics. It
may then be a point of surprise that the first appearance of spinors in mathematical
literature is already more than two thousand years old! Euclid’s parameters m and
n of the Pythagorean triples, first described by Euclid in his Elements, deserve the
name of Pythagorean spinors — as will be shown.

The existence of Pythagorean triples, that is triples of natural numbers
(a, b, c) satisfying

a2 + b2 = c2 (1.1)
has been known for thousands of years1. Euclid (ca 300 bce) provided a formula
for finding Pythagorean triples from any two positive integers m and n, m > n,

1The cuneiform tablet known as Plimpton 322 from Mesopotamia enlists 15 Pythagorean triples
and is dated for almost 2000 BCE. The second pyramid of Giza is based on the 3-4-5 triangle
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namely:
a = m2 − n2

b = 2mn

c = m2 + n2

(1.2)

(Lemma 1 of Book X). It easy to check that a, b and c so defined automatically
satisfy Eq. (1.1), i.e., they form an integer right triangle.

A Pythagorean triple is called primitive if (a, b, c) are mutually prime, that
is gcd (a, b, c) = 1. Every Pythagorean triple is a multiple of some primitive triples.
The primitive triples are in one-to-one correspondence with relatively prime pairs
(m,n), gcd (m,n) = 1, m > n, such that exactly one of (m, n) is even [14, 15].

An indication that the pair (m,n) forms a spinor description of Pythagorean
triples comes from the well-known fact that (1.2) may be viewed as the square
of an integer complex number. After recalling this in the next section, we build a
more profound analysis based on a 1:2 correspondence of the integer subgroups of
O(2, 1) and S∗L(2,R), from which the latter may be viewed as the corresponding
pin group of the former. For that purpose we shall also introduce the concept of
pseudo-quaternions (“kwaternions”) — representing the minimal Clifford algebra
for the pseudo-Euclidean space R2,1 .

The most surprising result concerns an Apollonian gasket where all the ob-
jects mentioned acquire a geometric interpretation.

2. Euclid’s Labels as Complex Numbers

Squaring an integer complex number z = m+ni will result in an integer complex
number

z2 = (m + n i)2 = (m2 − n2) + 2mn i, (2.1)
the norm of which turns out to be also an integer:

|z2 | = m2 + n2 . (2.2)

This auspicious property gives a method of producing Pythagorean triangles: just
square any integer complex number and draw the result. For instance z = 2+i will
produce 3-4-5 triangle, the so-called Egyptian triangle (Figure 2b). Equation 2.1
is equivalent to Euclid’s formula for the parameterization of Pythagorean triples
[15]. We shall however allow z to be any integer complex number, and therefore
admit triangles with negative legs (but not hypotenuses). The squaring map

sq: C → C : z → z2

(exclude zero) has a certain redundancy — both z and – z give the same Pythagorean
triple. This double degeneracy has the obvious explanation: squaring a complex
number has a geometric interpretation of doubling the angle. Therefore one turn
of the parameter vector z = m + ni around the origin makes the Pythagorean

quite perfectly and was build before 2500 BCE. It has also been argued that many megalithic
constructions include Pythagorean triples [16].



Clifford Algebras and Euclid’s parameterization of Pythagorean triples 3

iz 432

5

3

4

iz 2

square

m2 + n2

(m+ni)2

2mn

m2 – n2

(a) (b) 

Figure 1. (a) Euclid’s parameterization. (b) The Egyptian tri-
angle is the square of z = 2 + i.

vector z2 go twice around the origin. We know the analogue of such a situation
from quantum physics. Fermions need to be turned in the visual space twice be-
fore they return to the original quantum state (a single rotation changes the phase
of the “wave function” by 180◦). Mathematically this corresponds to the group
homomorphism of a double cover

SU(2) 2:1−−→ SO(3)

which is effectively exploited in theoretical physics [2]. The rotation group SO(3)
is usually represented as the group of special orthogonal 3×3 real matrices, and
the unitary group SU(2) is typically realized as the group of special unitary 2×2
complex matrices. The first acts on R3 — identified with the visual physical space,
and the latter acts on C2 — interpreted as the spin representation of states. One
needs to rotate a visual vector twice to achieve a single rotation in the spinor space
C2. This double degeneracy of rotations can be observed on the quantum level [1],
[13].

m+ni

a
bc

squareEuclid’s 
parameter

space

Space of 
Pythagorean

vectors

Figure 2. Double degeneracy of the Euclid’s parameterization.

Remark 2.1. The group of rotations SO(3) has the topology of a 3-dimensional
projective space, and as such has first fundamental group isomorphic to Z2. Thus
it admits loops that cannot be contracted to a point, but a double of a loop
(going twice around a topological “hole”) becomes contractible. Based on this
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fact, P.A.M. Dirac designed a way to visualize the property as the so-called “belt
trick” [4, 5, 11].

This analogy between the relation of the Pythagorean triples to the Euclid’s
parameters and the rotations to spinors has a deeper level — explored in the
following sections, in which we shall show that (2.1) is a shadow of the double
covering homomorphism S∗L(2) → O(2, 1). It shall become clear that calling the
Euclid parameterization (m,n) a Pythagorean spinor is legitimate.

Before we go on, note another interesting redundancy of the Euclidean scheme.
For a complex number z = m + ni define

zd = (m + n) + (m− n)i .

The square of this number brings

(zd)2 = 4mn + 2(m2 − n2) i (2.3)

with the norm |zd|2 = 2(m2 + n2). Thus both numbers z and zd give – up to scale
– the same Pythagorean triangle but with the legs interchanged. For instance both
z = 2 + i and zd = 3 + i give Pythagorean triangles 3-4-5 and 8-6-10, respectively
(both similar to the Egyptian triangle). In Euclid’s recipe (1.2), only one of the
two triangles is listed. This map has “near-duality” property:

(zd)d = 2z . (2.4)

3. Pseudo-quaternions and Matrices

A. Pseudo-quaternions. Let us introduce here an algebra very similar to the algebra
of quaternions.

Definition. Pseudo-quaternions K (kwaternions) are numbers of type

q = a + bi + cj + dk (3.1)

where a, b, c, d ∈ R and where i, j, k are independent “imaginary units”. Addition
in K is defined the usual way. Multiplication is determined by the following rules
for the “imaginary units”:

i2 = 1 ij = k

j2 = 1 jk = −i

k2 = −1 ki = −j

(3.2)

plus the anticommutation rules for any pair of distinct imaginary units: ij = −ji,
jk = −kj, and ki = −ik. [The rules are easy to remember: the minus sign appears
only when k is involved in the product].

The pseudo-quaternions form an associative, non-commutative, real 4-dimensional
algebra with a unit. Define the conjugation of q as

q = a− bi− cj− dk (3.3)
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and the squared norm

|q|2 = qq = a2 − b2 − c2 + d2 (3.4)

The norm is not positive definite, yet kwaternions “almost” form a division algebra.
Namely the inverse

q−1 = q/|q|2 (3.5)

is well-defined except for a subset of measure zero — the “cone” a2−b2−c2+d2 = 0.
Other properties like |ab|2 = |ba|2, |ab|2 = |a|2|b|2, etc., are easy to prove.

The set Go = {q ∈ K | |q|2 = 1} forms a group, and Go
∼= SL(2,R). Topologically,

the group (subset of kwaternions) is a product of the circle and a plane, G ∼=
S1 ×R2 . The bigger set G = {q ∈ K | |q|2 = ±1} is isomorphic to S∗L(2, R), the
unomodular group of matrices with determinant equal ±1.

The regular quaternions describe rotations of R3. Pseudo-quaternions de-
scribe Lorentz transformations of Minkowski space R2,1, O(2, 1). Indeed, note
that the map

v → v′ = qvq−1 (3.6)

preserves the norm, |qvq−1|2 = |v|2. Thus the idea is quite similar to regular
quaternions. Represent the vectors of space-time R2,1 by the imaginary part

v = xi + yj + tk (3.7)

Its norm squared is that of Minkowski space R2,1, |v|2 = x2 +y2−z2. Define
a transformation kwaternion as an element q ∈ G. Special cases are:

rotation in xy-plane: q = cos φ/2 + k sinφ/2

hyperbolic rotations q = cosh φ/2 + i sinhφ/2 (boost in direction of y-axis)
(boosts) : q = cosh φ/2 + j sinhφ/2 (boost in direction of x-axis).

(3.8)
It is easy to see that the norm of v is preserved transformation (3.7), as well

as its lack of real part.

B. Pseudo-quaternions as a Clifford algebra. The algebra of pseudo-quaternions
is an example of a Clifford algebra. Namely, it is the Clifford algebra of a pseudo-
Euclidean space R2,1, a 3-dimensional Minkowski space with quadratic form

g = x2 + y2 − z2 (3.9)

The corresponding scalar product of two vectors will be denoted as g(v, w) =
〈v, w〉. Let {f1, f2, f3} be an orthonormal basis of R2,1 such that:

〈f1, f1〉 = 1

〈f2, f2〉 = 1

〈f3, f3〉 = −1

and 〈fi, fj〉 = 0 for any i 6= j .

(3.10)
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Let us build the Clifford algebra [12] of this space. We shall assume the sign
convention:

vw + wv = 2〈v,w〉

(Clifford products on the left side, pseudo-Euclidean scalar product on the right).
The basis of the universal Clifford algebra R2,1 of the space R2,1 consists of eight
elements

R2,1 = span{ 1, f1, f2, f3, f1f2, f2f3, f3f1, f1f2f3 }

The basic elements satisfy these relations (in the sense of the algebra products (cf.
(3.2)) :

f2
1 = 1

f2
2 = 1

f2
3 = −1

and fifj = −fjfi for any i 6= j .

(3.11)

Relations between the other elements of the basis of the Clifford algebra are in-
duced from these via the associativity of the algebra product.

C. Matrix representation of pseudo-quaternions. Note that the following four
matrices satisfy the above relations (3.4):

σ0 =
[

1 0
0 1

]
σ1 =

[
0 1
1 0

]
σ2 =

[
−1 0
0 1

]
σ3 =

[
0 1
−1 0

]
. (3.12)

Indeed, the squares are, respectively:

σ2
0 = σ0 σ2

1 = σ0 σ2
2 = σ0 σ2

3 = −σ0 . (3.13)

The products are

σ1σ2 = +σ3 σ2σ3 = −σ1 σ3σ1 = −σ2 (3.14)

and σ0σi = σi for each i. Thus these matrices play a similar role as the Pauli
matrices in the case of spin description or the regular quaternions. Note however
the difference: the above construct is over real numbers while the Pauli matrices
are over complex numbers.

The other elements are represented by matrices as follows:

1 =σ0 f1f2 = σ3 f2f3 = −σ1 f3f1 = −σ2 f1f2f3 = −σ0 .

As in the case of quaternions, the universal Clifford algebra for R2,1 is 8-dimensional,
yet the minimal Clifford algebra is of dimension 4 and is isomorphic to the algebra
of kwaternions K.
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4. Minkowski Space of Triangles and Pythagorean Spinors

Now we shall explore the geometry of Euclid’s map for Pythagorean triples. As a
map from a 2-dimensional symplectic space to a 3-dimensional Minkowski space,
we have:

ϕ : (R2, ω) → (R2,1, G)

(m,n) → (m2 − n2, 2mn, m2 + n2)
(4.1)

The map (2.1) of squaring complex numbers is just its truncated version. We shall
discuss symmetries of the natural structures of both spaces. Obviously, we are
mostly interested in the discrete subsets Z2 and Z3 of those spaces.

First, introduce the space of triangles (x, y, z) as a real 3-dimensional Minkowski
space R2,1 with a quadratic form

Q = x2 + y2 − z2 (4.2)

(“space-time” with the hypotenuse as the “time”), and with metric given by a
3×3 matrix G = diag(1, 1,−1). The right triangles are represented by “light-like”
(null) vectors, and the Pythagorean triples by the integer null vectors in the light
cone. Clearly, not all vectors correspond to real triangles, and the legs may assume
both positive and negative values. We have immediately

Proposition 4.1. The group of integer orthogonal matrices O(2, 1;Z) ⊂ O(2, 1;R)
(Lorentz transformations) permutes the set of Pythagorean triangles.

On the other hand we have the two-dimensional space of Euclid’s parameters
E ∼= R2. Its elements will be called Pythagorean spinors. Occasionally we shall use
the isomorphism R2 ∼= C and identify [m,n]T = m + ni.

The space of Euclid’s parameters will be equipped with an inner product:

Definition 4.2. For two vectors u = [m,n]T and w = [m′, n′]T , the value of the
symplectic form ω is defined as

ω(u, w) = mn′ − nm′. (4.3)

Conjugation A* of a matrix A representing an endomorphism in E is the adjugate
matrix, namely

if A =
[

a b
c d

]
then A∗ =

[
d −b
−c a

]
(4.4)

Conjugation of vectors in E is a map into the dual space, expressed in terms of
matrices as [

m
n

]∗
=

[
−n m

]
. (4.5)

Now, the symplectic product may be performed via matrix multiplication: ω(u, w) =
u∗w. The map defined by (4.5) is the symplectic conjugation of the spinor. Also,
note that AA∗ = A∗A = det(A)I.

Remark 4.3. In the complex representation, the symplectic product is ω(u, w) =
i
2 (ūw − w̄u).
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Proposition 4.4. For any two matrices A and B and vector u in the spinor space
we have:

(i) (AB)∗ = B∗A∗

(ii) (A)∗∗ = A

(iii) (Au)∗ = u∗A∗ .

(4.6)

Proposition 4.5. The group that preserves the symplectic structure (up to a sign)
is the unimodular group S∗L(2,Z) ⊂ S∗L(2,R) understood here as the group of
2× 2 integer (respectively, real) matrices with determinant equal ±1.

Proof. Preservation of the symplectic form is equivalent to matrix property A∗A =
±I. Indeed:

ω(Au, Aw) = (Au)∗(Aw) = u(A∗A)w = det(A)u∗w = ±ω(u, v)

for any u, w, since A∗A = ±det(A)I, and by assumption det(A) = ±1.
Let us relate the two spaces. Given any endomorphism M of the space of

triangles R2,1, we shall call an endomorphism M̃ its spinor representation, if

M(ϕ(u)) = ϕ(M̃u) . (4.7)

Now we shall try to understand the geometry of the spin (Euclid’s) representation
of the Pythagorean triples in terms of the kwaternions defined in the previous
sections. Recall the matrices representing the algebra:

σ0 =
[

1 0
0 1

]
σ1 =

[
0 1
1 0

]
σ2 =

[
−1 0
0 1

]
σ3 =

[
0 1
−1 0

]
.

By analogy to the spinor description of Minkowski space explored in theoretical
physics, we shall build a “magic correspondence” for Pythagorean triples and their
spinor description. First, we shall map the vectors of the space of triangles, R2,1

into the traceless 2 × 2 real matrices, M0
22 . The map will be denoted by tilde

∼: R2,1 → M0
22 and defined:

v = (x, y, z) =⇒ ṽ = x · 1
2

[
0 1
1 0

]
+ y · 1

2

[
−1 0
0 1

]
+ z · 1

2

[
0 1
−1 0

]

=
1
2

[
−y x + z

x− z y

]
.

(4.8)

�

Proposition 4.6. The matrix representation of the Minkowski space of triangles
R2,1 realizes the original Minkowski norm via the determinant:

||v|| = −4 det ṽ = x2 + y2 − z2 .

The scalar product may be realized by traces, namely:

v ·w = Tr ṽ w̃

and particular vector coefficients may be read from the matrix by:

vi = Tr ṽσi
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The technique of Clifford algebras allows one to represent the orthogonal
group by the corresponding pin group. Since an orthonormal transformation may
be composed from orthogonal reflections in hyperplanes, one finds a realization of
the action of the Lorenz group on the Minkowski space of triangles via conjugation
by matrices of the spin group S∗L(2,R); in particular, for any orthogonal matrix
A ∈ O(2, 1;Z), the action v′ = Av corresponds to

ṽ ′ = Ã ṽ Ã∗ (4.9)

that is, the following diagram commutes:

v e−−−−→ ṽ = 1
2

∑
viσiyA

yconj Ã

Av e−−−−→ ÃṽÃ∗

And now the reward: since the Pythagorean triples lie on the “light cone” of the
Minkowski space, we may construct them from spinors in a manner analogous to
the standard geometry of spinors for relativity theory. But here we reconstruct
Euclid’s parameterization of the triples. Recall that x

y
z

 =

 m2 − n2

2mn
m2 + n2

 .

Thus we have:

Theorem 4.7. The spin representation of Pythagorean triples splits into a tensor
(Kronecker) product:

ṽ =
1
2

[
−y x + z

x− z y

]
=

[
−mn m2

−n2 mn

]
=

[
m
n

]
⊗

[
−n m

]
. (4.10)

Hence we obtain yet another aspect of the Euclid’s formula, namely a tensor
version of the (1.2) and (4.1):

ϕ̃(u) = u⊗ u∗ . (4.11)

Note that [−n, m] in (4.10) is the symplectic conjugation of the spinor [m,n]T .
Now, due to the above Theorem, the adjoint action splits as follows

ṽ ′ = Ã ṽ Ã∗ = Ã

[
m
n

]
⊗ [−n m] Ã∗ =

(
Ã

[
m
n

])
⊗

(
Ã

[
m
n

])
. (4.12)

And the conclusion to the story: The spin representation emerges as “half” of the
above representation: [

m
n

]
→

[
m′

n′

]
= Ã

[
m
n

]
. (4.13)
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Remark 4.8 (on d-duality). The “duality” (2.4) is also represented in spin language,
namely, the matrix D of exchange of x with y and the corresponding 2-by-2 spin
matrix, D̃, are:

D =

 0 1 0
1 0 0
0 0 1

 , D̃ =
[

1 1
1 −1

]
. (4.14)

Indeed, we have: [
1 1
1 −1

] [
m
n

]
=

[
m + n
m− n

]
.

The d-duality may be expressed in the form of a commuting diagram

[
m
n

]
e−−−−→

 x
y
z

 =

 m2 − n2

2mn
m2 + n2


yD̃

yD

[
m + n
m− n

]
e−−−−→ 2

 y
x
z

 =

 4mn
2m2 − 2n2

2m2 + 2n2



Magic Correspondence

Minkowski space R2,1 Traceless 2× 2 matrices

Main object v = (x, y, z) ṽ =
P

viσi = 1
2

� −y x+z
x−z y

�

Norm ‖v‖ = x2 + y2 − z2 ‖v‖ = −4 det ṽ

Action v′ = Av ṽ′ = ÃṽÃ∗ for any A ∈ S∗L(2,Z)

Stucture preserved G = diag(1, 1,−1) ω (symplectic structure)

Minkowski scalar product v ·w = vT Gw v ·w = Tr ṽw̃

The ith coefficient vi = v · ei vi = Tr ṽσ1

Table 1. Magic correspondence for Pythagorean triples and their
spinor description
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5. Hall Matrices and Their Spinor Representation

It is known that all primitive Pythagorean triples can be generated by the following
three Hall matrices [3]

U =

 1 2 2
2 1 2
2 2 3

 L =

 1 −2 2
2 −1 2
2 −2 3

 R =

 −1 2 2
−2 1 2
−2 2 3

 (5.1)

by acting on the initial vector v = [3, 4, 5]T (“Egyptian vector”). For clarification,
a few examples:

Lv =

 1 −2 2
2 −1 2
2 −2 3

 3
4
5

 =

 5
12
13

 Rv =

 −1 2 2
−2 1 2
−2 2 3

  3
4
5

 =

 15
8
17



Uv =

 1 2 2
2 1 2
2 2 3

 3
4
5

 =

 21
20
29

 URL2Uv =

 3115
3348
4573

 .

Let us state it formally:

Theorem 5.1 (Hall). The set of primitive Pythagorean triples is in one-to-one
correspondence with the algebra of words over alphabet {U,L,R}.

The original argument of Hall was algebraic (see [3] for a proof). But here we
shall reinterpret this intriguing result in terms of geometry. Hall matrices may be
understood in the context of our previous section and augmented with the spinor
description. Let us start with this:

Proposition 5.2. The Hall matrices and their products are elements of the Lorentz
group O(2, 1;Z). In particular, for any v = [x, y, z]T ,

g(v,v) = 0 ⇒ g(Mv,Mv) = 0,

and therefore they permute Pythagorean triples.

Proof. Elementary. Recall that the matrix of the pseudo-Euclidean metric is G =
diag(1,1,-1). One readily checks that Hall matrices preserve the quadratic form,
i.e., that XT GX = G for X = U , L, R. In particular we have L,R ∈ SO(2, 1), as
det L = 1, det R = 1. Since det U = −1, U contains a reflection. �

Hall’s theorem thus says that the set of primitive Pythagorean triples coin-
cides with the orbit through [3, 4, 5]T of the action of the semigroup generated by
the Hall matrices, a subset of the Lorenz group of the Minkowski space of triangles:

gen{R,L,U} ⊂ O(2, 1;Z) .

Thus the results of the previous section apply in particular to the Hall semi-
group. In particular:
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Theorem 5.3. The spin representation of the Hall matrices are

Ũ =
[

2 1
1 0

]
L̃ =

[
2 −1
1 0

]
R̃ =

[
1 2
0 1

]
. (5.2)

In particular, they are members of the unimodular group S∗L(2,Z) ⊂ S∗L(2,R),
that is they preserve the symplectic form up to a sign.

Proof. The transformations in the space of Euclid’s parameters that correspond to
the Hall matrices may be easily found with elementary algebra. By Proposition 4.5,
we need to check M∗M = ±I. Simple calculations show:

Ũ∗Ũ = −I L̃ ∗L̃ = I R̃∗R̃ = I .

That is, the determinants are det Ũ = −1, det L̃ = 1, and det R̃ = 1. �

Clearly, the “magic correspondence” outlined in the previous section holds as
well for the Hall matrices. In particular, the spin version of matrices act directly
on Pythagorean spinors (4.9), and the action on the Pythagorean vectors may be
obtained by the tensor product (4.13).

A classification of the semigroups in the unimodular group S∗L(2,Z) that
generate the set of primitive Pythagorean spinors as their orbits seems an inter-
esting question.

Remark on the structure of the Pythagorean semigroup and its spin version. The
last unresolved question concerns the origin or the geometric meaning of the Hall
matrices and their spin version. First, one may try to interpret Hall matrices in
terms of the Minkowski space-time structure. They may easily be split into a boost,
spatial rotation and reflection. Indeed, define in R2,1 these three operators:

H =

 3 0
√

8
0 1 0√
8 0 3

 , T =

 c s 0
−s c 0
0 0 1

 where c = s =
√

2/2

(H = boost by “velocity” (
√

3/8,0) , T = rotation by 45◦). Then the Hall matrices
are the following Lorentz transformations :

U = T 2(T−1HT ) = THT

R = THTR1

L = THTR2

where R1 = diag(−1, 1, 1) and R2 = diag(1,−1, 1) represent reflections. For in-
stance, U represents a boost in the special direction (1,1) followed by space point-
inversion. This path seems to lead to nowhere. Thus we may try the spinor version
of the Hall matrices. One may easily see that the latter can be expressed as linear
combinations of our pseudo-Pauli basis:

L̃ = σ0 − σ2 − σ3 R̃ = σ0 + σ1 + σ3 Ũ = σ0 + σ1 − σ2 .
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But this näıve association does not seem to explain anything. Quite surprisingly,
insight may be found in the geometry of disk packing. This is the subject of the
next section.

6. Pythagorean Triangles, Apollonian Gasket and Poincaré Disk

Now we shift our attention to — at first sight rather exotic for our problem —
Apollonian gaskets.

Apollonian window. Apollonian gasket is the result of the following construction.
Start with a unit circle, called in the following the boundary circle. Inscribe two
circles so that all three are mutually tangent. Then inscribe a new circle in every
enclosed triangular-shaped region (see Figure 3a). Continue ad infinitum. A spe-
cial case, when the first two inscribed circles are half the radius of the boundary
circle will be called the Apollonian window (shown in Figure 3b). The Apollonian

(a) (b) 

Figure 3. An Appollonian gasket and the Apollonian window

window has amazing geometric properties [10], [8]. One of them is the fact that
the curvature of each circle is an integer. Also, as demonstrated in [7], the center of
each circle has rational coordinates. It can be shown that the segment that joins
the centers of any two adjacent circles forms the hypotenuse of a Pythagorean
triangle, whose two legs are parallel/perpendicular to the main axes. More specif-
ically, the sides of the triangle become integers when divided by the product r1r2

of the radii of the adjacent circles (see Figure 4).
Let us call a subboundary circle any circle in the Apollonian window tangent

to the boundary circle (shaded circles in Fig. 5). Consider a pair of tangent circles
of which one is the boundary— and the other a subboundary circle. If we prolong
the hypotenuses of the associated triangles, we shall hit points on the boundary
circle, namely the points of tangency. Due to this construction, the slope of each
such line is rational. We will try to see how to permute these points.

Among the many symmetries of the Apollonian window are inversions in the
circles that go through the tangency points of any three mutually tangent circles.
Such inversions permute the disks of the window, and in particular preserve their
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16
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17

13
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125 15

6

3

2

11

Figure 4. Pythagorean triangles in the Apollonian window. Bold
numbers represent the curvatures of the corresponding circles.

tangencies. We shall look at the following three symmetries labeled A, B, C (see
Figure 5b):

A – reflection through the vertical axis
B – reflection through the horizontal axis

C – inversion through the circle C (only a quarter of the circle is shown)
(6.1)

Proposition 6.1. The three compositions of maps

CA, CB, CBA (6.2)

leave the set of subboundary circles of the first quadrant invariant. In particular,
they permute points of tangency on the boundary circle in the first quadrant.

Proof. A reflection in line A or B or their composition AB (reflection through
the central point) carries any circle in the first quarter to one of the other three
quarters. If you follow it with the inversion through C, the circle will return to the
first quarter. Since tangency is preserved in these transformations, the proposition
holds. �

The crucial observation is that both the lines A, B and circle C may be
understood as “lines” in the Poincaré geometry, if the circle is viewed as the
Poincaré disk. This will allow us to represent these operations by matrices using
the well-known hyperbolic representation of the Poincaré disk.

Poincaré disk. Recall the geometry of the hyperbolic Poincaré disk. In the standard
model, the set of points is that of a unit disk D in the Euclidean plane:

D = {(x, y) ∈ R2 : x2 + y2 < 1} with ∂D = {(x, y) : x2 + y2 = 1}.
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C

A

B

Figure 5. (a) Subboundary circles and the corresponding
Pythagorean rays. (b) Three symmetries of the Apollonian win-
dow.

Poincaré lines are the circles that are orthogonal to ∂D (clearly, only the intersec-
tion with D counts). This geometry – as is well known – may be induced from a
hyperbolic linear space. Consider a three-dimensional Minkowski space R2,1 and
a hyperboloid H:

t2 − x2 − y2 = 1 . (6.3)

Stereographic projection π onto the plane P ∈ R2,1 defined by t = 0, with the
vertex of projection at (−1, 0, 0), brings all points of the hyperboloid H onto D
in a one-to-one manner. In particular, each Poincaré line in D is an image of
the intersection of a plane in R2,1 through the origin O with the hyperboloid H,
projected by π onto D. We shall use this plane-line correspondence. Recall also
that reflection in a plane P can be done with the use of a unit normal vector n:

Rn : v → v′ = v − 2〈v,n〉n (6.4)

where the orthogonality n⊥P and the scalar product are in the sense of the pseudo-
Euclidean structure of the Minkowski space R2,1.

Back to the Apollonian window. Consider the three symmetries of the Apollo-
nian window (6.2). Each of them may be realized in terms of a reflection in a
corresponding plane in the hyperbolic representation.
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Proposition 6.2. The three symmetries (6.1) of the Poincaré disc (coinciding with
the Apollonian window) have the following matrix representations

Symmetry A : n1 = [1, 0, 0]T → R1 =

 −1 0 0
0 1 0
0 0 1


Symmetry B : n2 = [0, 1, 0]T → R2 =

 1 0 0
0 −1 0
0 0 1


Symmetry C : n3 = [1, 1, 1]T → R3 =

 −1 −2 2
−2 −1 2
−2 −2 3

 .

(6.5)

Proof. One can easily verify that each ni is unit and corresponds to the assigned
symmetry. Here are direct calculations for finding the matrix corresponding to the
third symmetry C. Acting on the basis vectors and using (6.4) we get:

R3e1 = e1 − 2(e1·n)n =

 1
0
0

− 2 · 1

 1
1
1

 =

 −1
−2
−2



R3e2 = e2 − 2(e2·n)n =

 0
1
0

− 2 · 1

 1
1
1

 =

 −2
−1
−2



R3e3 = e3 − 2(e3·n)n =

 0
0
1

− 2 · (−1)

 1
1
1

 =

 2
2
3


which indeed defines matrix R3. The other two, R1 and R2 are self-explanatory. �

And now we have our surprising result:

Theorem 6.3. The hyperbolic representation of the permutations (6.2) of the sub-
boundary circles of the first quadrant correspond to the Hall matrices:

R3R1 =

 1 −2 2
2 −1 2
2 −2 3

 = L

R3R2 =

 −1 2 2
−2 1 2
−2 2 3

 = R

R3R1R2 =

 1 2 2
2 1 2
2 2 3

 = U .

(6.6)
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[2,1]

[3,1]

[3,2]

[4,-3] 

[1,2]

[4,1]

[2,-1] 

Figure 6. Spinors for some Pythagorean triangles in the Apol-
lonian window, given as labels at the points of tangency of the
corresponding pairs of circles.

Corollary. Each primitive Pythagorean triangle is represented in the Apollonian
window.

This finally answers our question of Section 5 on the origin and structure
of the matrices of spin representation of the Hall matrices. Following the above
definitions, we get in Clifford algebra the following representations of the reflections
that constitute the symmetries (6.2):

(f1 + f2 + f3)f1 = f2
1 + f2f1 + f3f1 = −σ3 + σ0 − σ2 =

[
2 −1
1 0

]
= L̃

(f1 + f2 + f3)f2 = f1f2 + f2
2 + f3f2 = σ0 + σ3 + σ1 =

[
1 2
0 1

]
= R̃

(f1 + f2 + f3)(−f3) = −f1f3 − f2f3 − f2
3 = −σ2 + σ1 + σ0 =

[
2 1
1 0

]
= Ũ

(6.7)

(cf. (5.2)). Note that the duality map (4.13) that exchanges x and y in the
Pythagorean triangles and which has a spinor representation D = σ1 − σ2 fits
the picture, too, as the vector n = [1,−1] represents (scaled) reflection in the
plane containing the x-y diagonal.

We conclude our excursion into the spin structure of the Euclid parameter-
ization of Pythagorean triples with Figure 6 that shows spinors corresponding to
some Pythagorean triangles in the Apollonian window.
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7. Conclusions and Remarks

We have seen that the space of Euclid’s parameters for Pythagorean triples is
endowed with a natural symplectic structure and should be viewed as a spinor
space for the Clifford algebra R2,1, built over 3-dimensional Minkowski space,
whose integer light-like vectors represent the Pythagorean triples (see Figure 7).
The minimal algebra for R2,1 is four-dimensional and may be conceptualized as
“pseudo-quaternions” K and represented by 2 × 2 matrices. In this context the
Pythagorean triples may be represented as traceless matrices, and Euclid’s pa-
rameterization map as a tensor product of spinors. This set-up allows us to build
the spinor version of the Hall matrices. The Hall matrices acquire a geometric in-
terpretation in a rather exotic context of the geometry of the Apollonian window.

Euclid’s discovery of the parameterization of Pythagorean triples may be
viewed then as the first recorded use of a spinor space. The spinor structure of
the Apollonian window is another interesting subject that will be studied further
elsewhere.

The method may be generalized to other dimensions, as indicated here:

Method A. Define a Pythagorean (k, l)-tuple as a system of (k + l) integers that
satisfy

a2
1 + a2

2 + a2
3 + . . . + a2

k = b2
1 + b2

2 + b2
3 + . . . + b2

l (7.1)
In order to obtain a parameterization of Pythagorean (k, l)-tuples do the following:
Start with pseudo-Euclidean space Rk,l, build a representation of the Clifford
algebra Rk,l . Then split the matrix that represents the isotropic vectors of Rk,l

into a tensor product of spinors. This tensor square provides the parameterization
when restricted to the integer spinors.

Example. Consider Pythagorean quadruples, that is quadruples of integers (a, b, c, d)

a2 + b2 + c2 = d2 .

Among the examples are (1,2,2,3), (1,4,8,9), (6,6,7,11), etc. A well-known formula
that produces Pythagorean quadruples is [9]:

a = 2mp
b = 2np

c = p2 − (m2 + n2)

d = p2 + m2 + n2 .

(7.2)

It is also known that not all quadruples are generated this way, for instance (3,
36, 8, 37) is excluded [17].

Let us try our method. The spinor representation of the Clifford algebra
R3,1 is well known. The light-like vectors are represented by the Hermitian 2× 2
matrices that split into a spinor product,

M =
[

d + a b + ci
b− ci d− a

]
= 2

[
z
w

]
⊗

[
z̄ w̄

]
, (7.3)



Clifford Algebras and Euclid’s parameterization of Pythagorean triples 19

m

n

 = R2  ( C) — symplectic space

 = symplectic structure 

O(2,R)     O(2,Z)   gen{U,R,L}

R2,1  — Minkowski space

g = pseudo-Euclidean product 

([m,n]) =  
     = (m2–n2, 2mn, m2+n2)

Symmetries of the structure g

S*L(2,R)   S*L(2,Z)  gen { , ,U R L }
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Space of Pythagorean spinors Space of triangles 

right
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Figure 7. Objects related to Euclid’s parametrization of
Pythagorean triples.
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where the matrix M on the left side is well-known in physics with d standing for
time and a, b, c for spatial variables. Note that indeed detM = d2 − a2 − b2 − c2

represents the quadratic form of Minkowski space. The factor of 2 is chosen to
keep things integer.

Let z = m + ni and w = p + qi. Then (7.3) becomes:[
d + a b + ci
b− ci d− a

]
= 2

[
m2 + n2 (mp + nq) + (np−mq)i

(mp + nq)− (np−mq)i p2 + q2

]
which may be readily resolved for a, b, c, d. Thus we have proven:

Theorem 7.1. The following formulae produce all Pythagorean quadruples:

a = m2 + n2 − p2 − q2

b = 2(mp + nq)

c = 2(np−mq)

d = m2 + n2 + p2 + q2

(7.4)

that is

(m2 + n2 − p2 − q2)2 + (2mp + 2nq)2 + (2nn− 2mq)2 = (m2 + n2 + p2 + q2)2 .

The quadruple (3, 36, 8, 37) that was not covered by (7.2) may be now
obtained by choosing (m,n, p, q) = (4, 2, 4, 1)

(42 +22−42−12)2 +(2 ·4 ·4+2 ·2 ·1)2 +(2 ·2 ·4−2 ·4 ·1)2 = (42 +22 +42 +12)2 .

The standard Euclid’s parameterization of Pythagorean triples results by
choosing n = q = 0 (which imposes c = 0), or by m = n and p = q , although this
time with a redundant doubling in the formulae. Also, choosing only q = 0 will
result in the system of formulae (7.2).

Quite similarly, we can treat Pythagorean hexads using the fact that R5,1
∼=

H(2) (quaternionic 2× 2 matrices).

Theorem 7.2. Let us use collective notation m = (m0,m1,m2,m3) and n =
(n0, n1, n2, n3). Also denote in ususal way mn = m0n0 + m1n1 + m2n2 + m3n3.
The following formulae produce Pythagorean hexads:

a0 = m2 + n2

a1 = 2(n0m1 − n1m0 + m3n2 −m2n3)

a2 = 2(n0m2 − n2m0 + m1n3 −m3n1)

a3 = 2(n0m3 − n3m0 + m2n1 −m1n2)
a4 = 2mn

a5 = m2 − n2

(7.5)

that is for any m,n ∈ Z4 we have

a2
0 = a2

1 + a2
2 + a2

3 + a2
4 + a2

5 .
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Proof. A general Hermitian quaternionic matrix can be split into the Kronecker
product [

a0 + a5 a
ā a0 − a5

]
= 2

[
p
q

]
⊗

[
p̄ q̄

]
, (7.6)

where on the left side a0, a5 ∈ R, and a = a1 + a2i + a2j + a3k ∈ H, and on the
right side q = m0 + m1i + m2j + m3k and p = n0 + n1i + n2j + n3k. Resolving
this equation gives (7.5). �

For example (m,n) = ((1, 2, 2, 1), (2, 1, 1, 1)) produces 22+32+42+82+142 =
172. Note that in this parameterization map, ϕ : Z8 → Z6, the dimension of the
parameter space outgrows that of the space of Pythagorean tuples.

Reconsidering the entries of matrices of equation (7.6) gives us this alternative
generalization:

Theorem 7.3. Consider equation[
a + b c

c̄ a− b

]
= 2

[
p
q

]
⊗

[
p̄ q̄

]
, (7.7)

with a, b ∈ R, and c, p, q ∈ A, where A is an algebra with a not necessarily
positive definite norm and cojugation satisfying aa∗ = |a|2 and (ab)∗ = b∗a∗. If the
quadratic form of A is of signature (r, s), then formula (7.5) produces Pythagorean
(r + 1, s + 1)-tuples.

Note that as a special case we may use the Cliford algebras themselves as
algebra A. As an example consider “duplex numes” D, [6], which form Clifford
algebra of R1. Let c = c0 + c1I ∈ D, where c0, c1 ∈ R, and I2 = 1 (pseudo-
imaginary unit). Similarly, set p = p0 + p1I and q = q0 + q1I. Then (7.7) produces
Pythagorean (2,2)-tuples:

(p2
0 − p2

1 + q2
0 − q2

1)2 + (2p0q1 − 2p1q0)2 = (p2
0 − p2

1 − q2
0 + q2

1)2 + (2p0q0 − 2p1q1)2

A simple application that goes beyond Clifford algebras: using the algebra of oc-
tonions, A = O, results in a parameterization ϕ : Z16 → Z10 of Pythagorean
“decuples” by 16 parameters.

Remark 7.4. Since Clifford algebras are 2n-dimensional, using them in Theorem
7.3 will lead to parameteriztion of (generalized) Pythagorean (2n + 2)-tuples by
2n+1 “Euclid’s parameters”. For n = 0, 1, 2, . . . we get 3-, 4-, 6-, 10-, ..., -tuples.
Incidentally, these numbers occur frequently in various string theories, the reason
for which is not fully understood [18].
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