
Bioinformatics—An Introduction for Computer Scientists

JACQUES COHEN

Brandeis University

Abstract. The article aims to introduce computer scientists to the new field of
bioinformatics. This area has arisen from the needs of biologists to utilize and help
interpret the vast amounts of data that are constantly being gathered in genomic
research—and its more recent counterparts, proteomics and functional genomics. The
ultimate goal of bioinformatics is to develop in silico models that will complement in
vitro and in vivo biological experiments. The article provides a bird’s eye view of the
basic concepts in molecular cell biology, outlines the nature of the existing data, and
describes the kind of computer algorithms and techniques that are necessary to
understand cell behavior. The underlying motivation for many of the bioinformatics
approaches is the evolution of organisms and the complexity of working with incomplete
and noisy data. The topics covered include: descriptions of the current software
especially developed for biologists, computer and mathematical cell models, and areas of
computer science that play an important role in bioinformatics.

Categories and Subject Descriptors: A.1 [Introductory and Survey]; F.1.1
[Computation by Abstract Devices]: Models of Computation—Automata (e.g., finite,
push-down, resource-bounded); F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems; G.2.0 [Discrete Mathematics]: General;
G.3 [Probability and Statistics]; H.3.0 [Information Storage and Retrieval]:
General; I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and
Search; I.5.3 [Pattern Recongnition]: Clustering; I.5.4 [Pattern Recongnition]:
Applications—Text processing; I.6.8 [Simulation and Modeling]: Types of
Simulation—Continuous; discrete event; I.7.0 [Document and Text Processing]:
General; J.3 [Life and Medical Sciences]: Biology and genetics

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Molecular cell biology, computer, DNA, alignments,
dynamic programming, parsing biological sequences, hidden-Markov-models,
phylogenetic trees, RNA and protein structure, cell simulation and modeling,
microarray

1. INTRODUCTION

It is undeniable that, among the sciences,
biology played a key role in the twentieth
century. That role is likely to acquire fur-
ther importance in the years to come. In
the wake of the work of Watson and Crick,

Author’s address: Department of Computer Science, Brandeis University, Waltham, MA 02454; email: jc@
cs.brandeis.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.
c©2004 ACM 0360-0300/04/0600-0122 $5.00

[2003] and the sequencing of the human
genome, far-reaching discoveries are con-
stantly being made.

One of the central factors promoting the
importance of biology is its relationship
with medicine. Fundamental progress in
medicine depends on elucidating some of

ACM Computing Surveys, Vol. 36, No. 2, June 2004, pp. 122–158.

Bioinformatics—An Introduction for Computer Scientists 123

the mysteries that occur in the biological
sciences

Biology depended on chemistry to make
major strides, and this led to the de-
velopment of biochemistry. Similarly, the
need to explain biological phenomena at
the atomic level led to biophysics. The
enormous amount of data gathered by
biologists—and the need to interpret it—
requires tools that are in the realm of com-
puter science. Thus, bioinformatics.

Both chemistry and physics have bene-
fited from the symbiotic work done with
biologists. The collaborative work func-
tions as a source of inspiration for novel
pursuits in the original science. It seems
certain that the same benefit will ac-
crue to computer science—work with bi-
ologists will inspire computer scientists to
make discoveries that improve their own
discipline.

A common problem with the matu-
ration of an interdisciplinary subject is
that, inevitably, the forerunner disciplines
call for differing perspectives. I see these
differences in working with my biolo-
gist colleagues. Nevertheless, we are so
interested in the success of our dia-
logue, that we make special efforts to
understand each other’s point of view.
That willingness is critical for joint
work, and this is particularly true in
bioinformatics.

An area called computational biology
preceded what is now called bioinformat-
ics. Computational biologists also gath-
ered their inspiration from biology and de-
veloped some very important algorithms
that are now used by biologists. Computa-
tional biologists take justified pride in the
formal aspects of their work. Those often
involve proofs of algorithmic correctness,
complexity estimates, and other themes
that are central to theoretical computer
science.

Nevertheless, the biologists’ needs are
so pressing and broad that many other as-
pects related to computer science have to
be explored. For example, biologists need
software that is reliable and can deal with
huge amounts of data, as well as inter-
faces that facilitate the human-machine
interactions.

I believe it is futile to argue the differ-
ences and scope of computational biology
as compared to bioinformatics. Presently,
the latter is more widely used among biol-
ogists than the former, even though there
is no agreed definition for the two terms.

A distinctive aspect of bioinformatics is
its widespread use of the Web. It could
not be otherwise. The immense databases
containing DNA sequences and 3D pro-
tein structures are available to almost
any researcher. Furthermore, the commu-
nity interested in bioinformatics has de-
veloped a myriad of application programs
accessible through the Internet. Some of
these programs (e.g., BLAST) have taken
years of development and have been finely
tuned. The vast numbers of daily visits
to some of the NIH sites containing ge-
nomic databases are comparable to those
of widely used search engines or active
software downloading sites. This explains
the great interest that bioinformaticians
have in script languages such as Perl and
Python that allow the automatic exami-
nation and gathering of information from
websites.

With the above preface, we can put for-
ward the objectives of this article and
state the background material necessary
for reading it. The article is both a tuto-
rial and a survey. As its title indicates, it
is oriented towards computer scientists.

Some biologists may argue that the
proper way to learn bioinformatics is to
have a good background in organic chem-
istry and biochemistry and to take a full
course in molecular cell biology. I beg to
disagree: In an interdisciplinary field like
bioinformatics there must be several en-
try points and one of them is using the
language that is familiar to computer sci-
entists. This does not imply that one can
skip the fundamental knowledge avail-
able in a cell and molecular biology text.
It means that a computer scientist inter-
ested in learning what is presently being
done in bioinformatics can save some pre-
cious time by reading the material in this
article.

It was mentioned above that, in inter-
disciplinary areas like bioinformatics, the
players often view topics from a different

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

124 J. Cohen

perspective. This is not surprising since
both biologists and computer scientists
have gone through years of education in
their respective fields. A related plausible
reason for such differences is as follows:

In computer science, we favor general-
ity and abstractions; our approach is often
top-down, as if we were developing a pro-
gram or writing a manual. In contrast, bi-
ologists often favor a bottom-up approach.
This is understandable because the minu-
tiae are so important and biologists are of-
ten involved with time-consuming experi-
ments that may yield ambiguous results,
which in turn have to be resolved by fur-
ther tests. The work of synthesis eventu-
ally has to take place but, since in biology
most of the rules have exceptions, biolo-
gists are wary of generalizations.

Naturally, in this article’s presentation,
I have used a top-down approach. To make
the contents of the article clear and self-
contained, certain details have had to be
omitted. From a pragmatic point of view,
articles like this one are useful in bridg-
ing disciplines, provided that the readers
are aware of the complexities lying behind
abstractions.

The article should be viewed as a tour
of bioinformatics enabling the interested
reader to search subsequently for deeper
knowledge. One should expect to expend
considerable effort gaining that knowl-
edge because bioinformatics is inextrica-
bly tied to biology, and it takes time to
learn the basic concepts of biology.

This work is directed to a mature com-
puter scientist who wishes to learn more
about the areas of bioinformatics and com-
putational biology. The reader is expected
to be at ease with the basic concepts of
algorithms, complexity, language and au-
tomata theory, topics in artificial intelli-
gence, and parallelism.

As to knowledge in biology, I hope the
reader will be able to recall some of the
rudiments of biology learned in secondary
education or in an undergraduate course
in the biological sciences. An appendix
to this article reviews a minimal set of
facts needed to understand the material in
the subsequent sections. In addition, The
Cartoon Guide to Genetics [Gonick and

Wheelis 1991] is an informative and amus-
ing text explaining the fundamentals of
cell and molecular biology.

The reader should keep in mind the per-
vasive role of evolution in biology. It is
evolution that allows us to infer the cell
behavior of one species, say the human,
from existing information about the cell
behavior of other species like the mouse,
the worm, the fruit fly, and even yeast.

In the past decades, biologists have
gathered information about the cell char-
acteristics of many species. With the help
of evolutionary principles, that informa-
tion can be extrapolated to other species.
However, most available data is frag-
mented, incomplete, and noisy. So if one
had to characterize bioinformatics in logi-
cal terms, it would be: reasoning with in-
complete information. That includes pro-
viding ancillary tools allowing researchers
to compare carefully the relationship be-
tween new data and data that has been
validated by experiments. Since under-
standing the human cell is a primary con-
cern in medicine, one usually wishes to in-
fer human cell behavior from that of other
species.

This article’s contents aim to shed some
light on the following questions:

—How can one describe the actors and
processes that take place within a liv-
ing cell?

—What can be determined or measured to
infer cell behavior?

—What data is presently available for that
purpose?

—What are the present major problems in
bioinformatics and how are they being
solved?

—What areas in computer science relate
most to bioinformatics?

The next section offers some words of
caution that should be kept in the reader’s
mind. The subsequent sections aim at an-
swering the above questions. A final sec-
tion provides information about how to
proceed if one wishes to further explore
this new discipline.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 125

2. WORDS OF CAUTION

Naturally, it is impossible to condense
the material presently available in many
bioinformatics texts into a single survey
and tutorial. Compromises had to be made
that may displease purists who think that
no shortcuts are possible to explain this
new field. Nevertheless, the objective of
this work will be fulfilled if it incites the
reader to continue along the path opened
by reading this précis.

There is a dichotomy between the var-
ious presentations available in bioinfor-
matics articles and texts. At one extreme
are those catering to algorithms, com-
plexity, statistics, and probability. On the
other are those that utilize tools to in-
fer new biological knowledge from ex-
isting data. The material in this arti-
cle should be helpful to initiate potential
practitioners in both areas. It is always
worthwhile to keep in mind that new al-
gorithms become useful when they are
developed into packages that are used by
biologists.

It is also wise to recall some of the distin-
guishing aspects of biology to which com-
puter scientists are not accustomed. David
B. Searls, in a highly recommended arti-
cle on Grand challenges in computational
biology [Searls 1998], points out that, in
biology:

—There are no rules without exception;
—Every phenomenon has a nonlocal com-

ponent;
—Every problem is intertwined with

others.

For example, for some time, it was
thought that a gene was responsible for
producing a single protein. Recent work
in alternate splicing indicates that a gene
may generate several proteins. This may
explain why the number of genes in
the human genome is smaller than that
that had been anticipated earlier. Another
example of the biology’s fundamentally
dynamic and empirical state is that it
has been recently determined that gene-
generated proteins may contain amino
acids beyond the 20 that are normally used
as constituents of those proteins.

The second item in Searls’ list warns
us that the existence of common local fea-
tures cannot be generalized. For example,
similar 3D substructures may originate
from different sequences of amino acids.
This implies that similarity at one level
cannot be generalized to another.

Finally, the third item cautions us to
consider biological problems as an aggre-
gate and not to get lost in studying only
individual components. For example, sim-
ple changes of nucleotides in DNA may
result in entirely different protein struc-
tures and function. This implies that the
study of genomes has to be tied to the
study of the resulting proteins.

3. BRIEF DESCRIPTION OF A SINGLE CELL
AT THE MOLECULAR LEVEL

In this section, we assume that the reader
has a rudimentary level of knowledge in
cell and molecular biology. (The appendix
reviews some of that material.) The in-
tent here is to show the importance three-
dimensional structures have in under-
standing the behavior of a living cell. Cells
in different organisms or within the same
organism vary significantly in shape, size,
and behavior. However, they all share com-
mon characteristics that are essential for
life.

The cell is made up of molecular
components, which can be viewed as
3D-structures of various shapes. These
molecules can be quite large (like DNA
molecules) or relatively small (like the pro-
teins that make up the cell membrane).
The membrane acts as a filter that con-
trols the access of exterior elements and
also allows certain molecules to exit the
cell.

Biological molecules in isolation usually
maintain their structure; however, they
may also contain articulations that allow
movements of their subparts (thus, the in-
terest of nano-technology researchers in
those molecules).

The intracellular components are made
of various types of molecules. Some of
them navigate randomly within the media
inside the membrane. Other molecules are
attracted to each other.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

126 J. Cohen

In a living cell, the molecules interact
with each other. By interaction it is meant
that two or more molecules are combined
to form one or more new molecules, that
is, new 3D-structures with new shapes.
Alternatively, as a result of an interac-
tion, a molecule may be disassembled
into smaller fragments. An interaction
may also reflect mutual influence among
molecules. These interactions are due to
attractions and repulsions that take place
at the atomic level. An important type of
interaction involves catalysis, that is, the
presence of a molecule that facilitates the
interaction. These facilitators are called
enzymes.

Interactions amount to chemical reac-
tions that change the energy level of
the cell. A living cell has to maintain
its orderly state and this takes energy,
which is supplied by surrounding light and
nutrients.

It can be said that biological inter-
actions frequently occur because of the
shape and location of the cell’s constituent
molecules. In other words, the proximity of
components and the shape of components
trigger interactions. Life exists only when
the interactions can take place.

A cell grows because of the availability
of external molecules (nutrients) that can
penetrate the cell’s membrane and par-
ticipate in interactions with existing in-
tracellular molecules. Some of those may
also exit through the membrane. Thus, a
cell is able to “digest” surrounding nutri-
ents and produce other molecules that are
able to exit through the cell’s membrane. A
metabolic pathway is a chain of molecular
interactions involving enzymes. Signaling
pathways are molecular interactions that
enable communication through the cell’s
membrane. The notions of metabolic and
signaling pathways will be useful in un-
derstanding gene regulation, a topic that
will be covered later.

Cells, then, are capable of growing
by absorbing outside nutrients. Copies
of existing components are made by in-
teractions among exterior and interior
molecules. A living cell is thus capable of
reproduction: this occurs when there are

enough components in the original cell to
produce a duplicate of the original cell, ca-
pable of acting independently.

So far, we have intuitively explained the
concepts of growth, metabolism, and re-
production. These are some of the basic
characteristics of living organisms. Other
important characteristics of living cells
are: motility, the capability of searching
for nutrients, and eventually death.

Notice that we assumed the initial ex-
istence of a cell, and it is fair to ask the
question: how could one possibly have en-
gineered such a contraption? The answer
lies in evolution. When the cell duplicates
it may introduce slight (random) changes
in the structure of its components. If those
changes extend the life span of the cell
they tend to be incorporated in future gen-
erations. It is still unclear what ingredi-
ents made up the primordial living cell
that eventually generated all other cells
by the process of evolution.

The above description is very general
and abstract. To make it more detailed
one has to introduce the differences be-
tween the various components of a cell. Let
us differentiate between two types of cell
molecules: DNA and proteins. DNA can be
viewed as a template for producing addi-
tional (duplicate) DNA and also for pro-
ducing proteins.

Protein production is carried out using
cascading transformations. In bacterial
cells (called prokaryotes), RNA is first
generated from DNA and proteins are
produced from RNA. In a more developed
type of cells (eukaryotes), there is an
additional intermediate transformation:
pre-RNA is generated from DNA, RNA
from pre-RNA, and proteins from RNA.
Indeed, the present paragraph expresses
what is known as the central dogma
in molecular biology. (Graphical repre-
sentations of these transformations are
available in the site of the National Health
Museum [http://www.accessexcellence.
org/AB/GG/].)

Note that the above transformations are
actually molecular interactions such as we
had previously described. A transforma-
tion A → B means that the resulting

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 127

molecules of B are constructed anew us-
ing subcomponents that are “copies” of the
existing molecules of A. (Notice the sim-
ilarity with Lisp programs that use con-
structors like cons to carry out transfor-
mations of lists.)

The last two paragraphs implicitly as-
sume the existence of processors capable of
effecting the transformations. Indeed that
is the case with RNA-polymerases, spliceo-
somes, and ribosomes. These are mar-
velous machineries that are made them-
selves of proteins and RNA, which in turn
are produced from DNA! They demon-
strate the omnipresence of loops in cell
behavior.

One can summarize the molecular
transformations that interest us using the
notation:

DNA →
RNA-polymerase

pre-RNA →
Spliceosome

RNA →
Ribosome

Protein

The arrows denote transformations and
the entities below them indicate the pro-
cessors responsible for carrying out the
corresponding transformations. Some im-
portant remarks are in order:

(1) All the constituents in the above
transformation are three-dimensional
structures.

(2) It is more appropriate to consider
a gene (a subpart of DNA) as the
original material processed by RNA-
polymerase.

(3) An arsenal of processors in the vicinity
of the DNA molecule works on multiple
genes simultaneously.

(4) The proteins generated by various
genes are used as constituents making
up the various processors.

(5) A generated protein may prevent (or
accelerate) the production of other
proteins. For example, a protein Pi
may place itself at the origin of gene
Gk and prevent Pk from being pro-
duced. It is said that Pi represses Pk .
In other cases, the opposite occurs:
one protein activates the production of
another.

(6) It is known that a spliceosome is capa-
ble of generating different RNAs (al-
ternate splicing) and therefore the old
notion that a given gene produces one
given protein no longer holds true. As
a matter of fact, a gene may produce
several different proteins, though the
mechanism of this is still a subject of
research.

(7) It is never repetitious to point out that
in biology, most rules have exceptions
[Searls 1998].

The term, gene expression, refers to the
production of RNA by a given gene. Pre-
sumably, the amount of RNA generated
by the various genes of an organism es-
tablishes an estimate of the corresponding
protein levels.

An important datum that can be ob-
tained by laboratory experiments is an
estimate of the simultaneous RNA produc-
tion of thousands of genes. Gene expres-
sions vary depending on a given state of
the cell (e.g., starvation or lack of light,
abnormal behavior, etc.).

3.1. Analogy with Computer Science
Programs

We now open a parenthesis to recall the
relationship that exists between computer
programs and data; that relationship has
analogies that are applicable to under-
standing cell behavior. Not all biologists
will agree with a metaphor equating DNA
to a computer program. Nevertheless, I
have found that metaphor useful in ex-
plaining DNA to computer scientists.

In the universal Turing Machine (TM)
model of computing, one does not distin-
guish between program and data—they
coexist in the machine’s tape and it is the
TM interpreter that is commanded to start
computations at a given state examining
a given element of the tape.

Let us introduce the notion of interpre-
tation in our simplified description of a
single biological cell. Both DNA and pro-
teins are components of our model, but the
interactions that take place between DNA
and other components (existing proteins)

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

128 J. Cohen

result in producing new proteins each of
which has a specific function needed for
cell survival (growth, metabolism, replica-
tion, and others).

The following statement is crucial to un-
derstanding the process of interpretation
occurring within a cell. Let a gene G in the
DNA component be responsible for pro-
ducing a protein P . Interpreters Icapable
of processing any gene may well utilize P
as one of its components. This implies that
if P has not been assembled into the ma-
chinery of I no interpretation takes place.

Another instance in which P cannot be
produced is the already mentioned fact
that another protein P ′ may position itself
at the beginning of gene G and (temporar-
ily) prevent the transcription.

The interpreter in the biological case is
either one that already exists in a given
cell (prior to cell replication) or else it
can be assembled from proteins and RNA
generated by specific genes (e.g., riboso-
mal genes). In biology the interpreter can
be viewed as a mechanical gadget that
is made of moving parts that produce
new components based on given templates
(DNA or RNA). The construction of new
components is made by subcomponents
that happen to be in the vicinity. If they
are not, interpretation cannot proceed.

One can imagine a similar situation
when interpreting computer programs (al-
though it is unlikely to occur in actual in-
terpreters). Assume that the components
of I are first generated on the fly and once
I is assembled (as data), control is trans-
ferred to the execution of I (as a program).

The above situation can be simulated
in actual computers by utilizing concur-
rent processes that comprise a multitude
of interrupts to control program execution.
This could be implemented using inter-
preters that first test that all the compo-
nents have been assembled: execution pro-
ceeds only if that is the case; otherwise an
interrupt takes place until the assembly
is completed. Alternatively one can exe-
cute program parts as soon as they are
produced and interrupt execution if a se-
quel has not yet been fully generated. In
Section 7.5.1, we will describe one such
model of gene interaction.

4. LABORATORY TOOLS FOR
DETERMINING BIOLOGICAL DATA

We start with a warning that the expla-
nations that follow are necessarily coarse.
The goal of this section is to enable the
reader to have some grasp of how biolog-
ical information is gathered and of the
degree of difficulty in obtaining it. This
will be helpful in understanding the var-
ious types of data available and the pro-
grams needed to utilize and interpret that
data.

Sequencers are machines capable of
reading off a sequence of nucleotides in a
strand of DNA in biological samples. The
machines are linked to computers that dis-
play the DNA sequence being analyzed.
The display also provides the degree of
confidence in identifying each nucleotide.
Present sequencers can produce over 300k
base pairs per day at very reasonable
costs. It is also instructive to remark that
the inverse operation of sequencing can
also be performed rather inexpensively:
it is now common practice to order from
biotech companies vials containing short
sequences of nucleotides specified by a
user.

A significant difficulty in obtaining an
entire genome’s DNA is the fact that the
sequences gathered in a wet lab consist
of relatively short random segments that
have to be reassembled using computer
programs; this is referred to as the shot-
gun method of sequencing. Since DNA
material contains many repeated subse-
quences, performing the assemblage can
be tricky. This is due to the fact that a frag-
ment can be placed ambiguously in two or
more positions of the genome being assem-
bled. (DNA assembly will be revisited in
Section 7.7.)

Recently, there has been a trend to
attempt to identify proteins using mass
spectroscopy. The technique involves de-
termining genes and obtaining the corre-
sponding proteins in purified form. These
are cut into short sequences of amino acids
(called peptides) whose molecular weights
can be determined by a mass spectro-
graph. It is then computationally possible
to infer the constituents of the peptides

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 129

yielding those molecular weights. By us-
ing existing genomic sequences, one can
attempt to reassemble the desired se-
quence of amino acids.

The 3D structure of proteins is mainly
determined by X-ray crystallography and
by nuclear magnetic resonance (NMR).
Both these experiments are time consum-
ing and costly. In X-ray crystallography,
one attempts to infer the 3D position of
each of the protein’s atoms from a projec-
tion obtained by passing X-rays through
a crystallized sample of that protein. One
of the major difficulties of the process is
the obtaining of good crystals. X-ray ex-
periments may require months and even
years of laboratory work.

In the NMR technique, one obtains a
number of matrices that express the fact
that two atoms—that are not in the same
backbone chain of the protein—are within
a certain distance. One then deduces a 3D
shape from those matrices. The NMR ex-
periments are also costly. A great advan-
tage is that they allow one to study mobile
parts of proteins, a task which cannot be
done using crystals.

The preceding paragraphs explain why
DNA data is so much more abundant than
3D protein data.

Another type of valuable information
obtainable through lab experiments is
known as ESTs or expressed sequence tags.
These are RNA chunks that can be gath-
ered from a cell in minute quantities, but
can easily be duplicated. Those chunks are
very useful since they do not contain ma-
terial that would be present in introns (see
the Appendix for a definition). The avail-
ability of EST databases comprising many
organisms allows bioinformaticians to in-
fer the positions of introns and even de-
duce alternate splicing.

A powerful new tool available in biol-
ogy is microarrays. They allow determin-
ing simultaneously the amount of mRNA
production of thousands of genes. As men-
tioned earlier, this amount corresponds to
gene-expression; it is presumed that the
amount of RNA generated by the var-
ious genes of an organism establishes
an estimate of the corresponding protein
levels.

Microarray experiments require three
phases. In the first phase one places thou-
sands of different one-stranded chunks of
RNA in minuscule wells on the surface of
a small glass chip. (This task is not un-
like that done by a jet printer using thou-
sands of different colors and placing each
of them in different spots of a surface.) The
chunks correspond to the RNA known to
have been generated by a given gene. The
2D coordinates of each of the wells are of
course known. Some companies mass pro-
duce custom preloaded chips for cells of
various organisms and sell them to biolog-
ical labs.

The second phase consists of
spreading—on the surface of the glass—
genetic material (again one-stranded
RNA) obtained by a cell experiment one
wishes to perform. Those could be the
RNAs produced by a diseased cell, or
by a cell being subjected to starvation,
high temperature, etc. The RNA already
in the glass chip combines with the
RNA produced by the cell one wishes to
study. The degree of combined material
obtained by complementing nucleotides is
an indicator of how much RNA is being
expressed by each one of the genes of the
cell being studied.

The third phase consists of using a laser
scanner connected to a computer. The ap-
paratus measures the amount of com-
bined material in each chip well and de-
termines the degree of gene expression—a
real number—for each of the genes origi-
nally placed on the chip. Microarray data
is becoming available in huge amounts. A
problem with this data is that it is noisy
and its interpretation is difficult. Microar-
rays are becoming invaluable for biologists
studying how genes interact with each
other. This is crucial in understanding dis-
ease mechanisms.

The microarray approach has been ex-
tended to the study of protein expres-
sion. There exist chips whose wells contain
molecules that can be bound to particular
proteins.

Another recent development in exper-
imental biology is the determination of
protein interaction by what is called two-
hybrid experiments. The goal of such

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

130 J. Cohen

experiments is to construct huge Boolean
matrices, whose rows and columns repre-
sent the proteins of a genome. If a protein
interacts with another, the corresponding
position in the matrix is set to true. Again,
one has to deal with thousands of pro-
teins (genes); the data of their interactions
is invaluable in reconstructing metabolic
and signaling pathways.

A final experimental tool described in
this section is the availability of libraries
of variants of a given organism, yeast be-
ing a notable example. Each variant cor-
responds to cells having a single one of its
genes knocked out. (Of course researchers
are only interested in living cells since
certain genes are vital to life.) These
libraries enable biologists to perform
experiments (say, using microarray) and
deduce information about cell behavior
and fault tolerance.

A promising development in experimen-
tal biology is the use of RNA-i (the i denot-
ing interference). It has been found that
when chunks of the RNA of a given gene
are inserted in the nucleus of a cell, they
may prevent the production of that gene.
This possibility is not dissimilar to that of-
fered by libraries of knocked-out genes.

The above descriptions highlight the
trend of molecular biology experiments be-
ing done by ordering components, or by
having them analyzed by large biotech
companies.

5. BIOLOGICAL DATA AVAILABLE

In a previous section, we mentioned that
all the components of a living cell are 3D
structures and that shape is crucial in
understanding molecular interactions. A
fundamental abstraction often done in bi-
ology is to replace the spatial 3D infor-
mation specifying chemical bindings with
a much simpler sequence of symbols: nu-
cleotides or amino acids. In the case of
DNA, we know that the helix is the un-
derlying 3D structure.

Although it is much more convenient to
deal with sequences of symbols than with
complex 3D entities, the problem of shape
determination remains a critical one in the
case of RNA and proteins.

The previous section outlined the labo-
ratory tools for gathering biological data.
The vast majority of the existing informa-
tion has been obtained through sequenc-
ing, and it is expressible by strings—that
is, sequences of symbols. These sequences
specify mostly nucleotides (genomic data)
but there is also substantial information
on sequences of amino acids.

Next in volume of available information
are the results of microarray experiments.
These can be viewed as very large usu-
ally dense matrices of real numbers. These
matrices may have thousands of rows and
columns. And that is also the case of the
sparse Boolean matrices describing pro-
tein interactions.

The information about 3D structures
of proteins pales in comparison to that
available in sequence form. The pro-
tein database (PDB) is the repository
for all known three-dimensional protein
structures.

In a recent search, I found that there
are now about 26 billion base pairs (bp)
representing the various genomes avail-
able in the server of the National Cen-
ter for Biotechnology Information (NCBI).
Besides the human genome with about
3 billion bp, many other species have their
complete genome available there. These
include several bacteria (e.g., E. Coli)
and higher organisms including yeast,
worm, fruit fly, mouse, and plants (e.g.,
Arabidopsis).

The largest known gene in the NCBI
server has about 20 million base pairs and
the largest protein consists of about 34,000
amino acids. These figures give an idea of
the lengths of the entities we have to deal
with.

In contrast, the PDB has a catalogue of
only 45,000 proteins specified by their 3D
structure. These proteins originate from
various organisms. The relatively meager
protein data shows the enormous need of
inferring protein shape from data avail-
able in the form of sequences. This is one
of the major tasks facing biologists. But
many others lie ahead.

The goal of understanding protein struc-
ture is only part of the task. Next we have
to understand how proteins interact and

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 131

form the metabolic and signaling path-
ways in the cell.

There is information available about
metabolic pathways in simple organisms,
and parts of those pathways are known
for human cells. The formidable task is
to put all the available information to-
gether so that it can be used to under-
stand better the functioning of the hu-
man cell. That pursuit is called functional
genomics.

The term, genomics, is used to denote
the study of various genomes as enti-
ties having similar contents. In the past
few years other terms ending with the
suffixes-ome or - mics have been popular-
ized. That explains proteomics (the study
of all the proteins of a genome), transcrip-
tome, metabolome, and so forth.

6. PRESENT GOALS OF BIOINFORMATICS

The present role of bioinformatics is to aid
biologists in gathering and processing ge-
nomic data to study protein function. An-
other important role is to aid researchers
at pharmaceutical companies in making
detailed studies of protein structures to fa-
cilitate drug design. Typical tasks done in
bioinformatics include:

—Inferring a protein’s shape and function
from a given a sequence of amino acids,

—Finding all the genes and proteins in a
given genome,

—Determining sites in the protein struc-
ture where drug molecules can be
attached.

To perform these tasks, one usually has
to investigate homologous sequences or
proteins for which genes have been deter-
mined and structures are available. Ho-
mology between two sequences (or struc-
tures) suggests that they have a common
ancestor. Since those ancestors may well
be extinct, one hopes that similarity at the
sequence or structural level is a good indi-
cator of homology.

It is important to keep in mind that se-
quence similarity does not always imply
similarity in structure, and vice-versa. As
a matter of fact, it is known that two fairly

dissimilar sequences of amino acids may
fold into similar 3D structures.

Nevertheless, the search for similarity
is central to bioinformatics. When given
a sequence (nucleotides or amino acids)
one usually performs a search of similarity
with databases that comprise all available
genomes and known proteins. Usually, the
search yields many sequences with vary-
ing degrees of similarities. It is up to the
user to select those that may well turn out
to be homologous.

In the next section we describe the var-
ious computer science algorithms that are
frequently used by bioinformaticians.

7. ALGORITHMS FREQUENTLY USED
IN BIOINFORMATICS

We recall that a major role of bioinfor-
matics is to help infer gene function from
existing data. Since that data is varied, in-
complete, noisy, and covers a variety of or-
ganisms, one has to constantly resort to
the biological principles of evolution to fil-
ter out useful information.

Based on the availability of the data and
goals described in Sections 4 to 6, we now
present the various algorithms that lead
to a better understanding of gene function.
They can be summarized as follows:

(1) Comparing Sequences. Given the
huge number of sequences available, there
is an urgent need to develop algorithms
capable of comparing large numbers of
long sequences. These algorithms should
allow the deletion, insertion, and replace-
ments of symbols representing nucleotides
or amino acids, for such transmutations
occur in nature.

(2) Constructing Evolutionary (Phyloge-
netic) Trees. These trees are often con-
structed after comparing sequences be-
longing to different organisms. Trees
group the sequences according to their de-
gree of similarity. They serve as a guide
to reasoning about how these sequences
have been transformed through evolution.
For example, they infer homology from
similarity, and may rule out erroneous
assumptions that contradict known evolu-
tionary processes.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

132 J. Cohen

(3) Detecting Patterns in Sequences.
There are certain parts of DNA and amino
acid sequences that need to be detected.
Two prime examples are the search for
genes in DNA and the determining of sub-
components of a sequence of amino acids
(secondary structure). There are several
ways to perform these tasks. Many of them
are based on machine learning and in-
clude probabilistic grammars, or neural
networks.

(4) Determining 3D Structures from Se-
quences. The problems in bioinformat-
ics that relate sequences to 3D structures
are computationally difficult. The deter-
mination of RNA shape from sequences
requires algorithms of cubic complexity.
The inference of shapes of proteins from
amino acid sequences remains an un-
solved problem.

(5) Inferring Cell Regulation. The
function of a gene or protein is best
described by its role in a metabolic or
signaling pathway. Genes interact with
each other; proteins can also prevent or
assist in the production of other pro-
teins. The available approximate models
of cell regulation can be either discrete
or continuous. One usually distinguishes
between cell simulation and modeling.
The latter amounts to inferring the for-
mer from experimental data (say microar-
rays). This process is usually called reverse
engineering.

(6) Determining Protein Function and
Metabolic Pathways. This is one of the
most challenging areas of bioinformat-
ics and for which there is not consider-
able data readily available. The objective
here is to interpret human annotations
for protein function and also to develop
databases representing graphs that can be
queried for the existence of nodes (speci-
fying reactions) and paths (specifying se-
quences of reactions).

(7) Assembling DNA Fragments. Frag-
ments provided by sequencing machines
are assembled using computers. The
tricky part of that assemblage is that DNA
has many repetitive regions and the same

fragment may belong to different regions.
The algorithms for assembling DNA are
mostly used by large companies (like the
former Celera).

(8) Using Script Languages. Many of
the above applications are already avail-
able in websites. Their usage requires
scripting that provides data for an appli-
cation, receives it back, and then analyzes
it.

The algorithms required to perform the
above tasks are detailed in the following
subsections. What differentiates bioinfor-
matics problems from others is the huge
size of the data and its (sometimes ques-
tionable) quality. That explains the need
for approximate solutions.

It should be remarked that several
of the problems in bioinformatics are
constrained optimization problems. The
solution to those problems is usually com-
putationally expensive. One of the effi-
cient known methods in optimization is
dynamic programming. That explains why
this technique is often used in bioinfor-
matics. Other approaches like branch-
and-bound are also used, but they are
known to have higher complexity.

7.1. Comparing Sequences

From the biological point of view sequence
comparison is motivated by the fact that
all living organisms are related by evolu-
tion. That implies that the genes of species
that are closer to each other should exhibit
similarities at the DNA level; one hopes
that those similarities also extend to gene
function.

The following definitions are useful in
understanding what is meant by the com-
parison of two or more sequences. An
alignment is the process of lining up se-
quences to achieve a maximal level of iden-
tity. That level expresses the degree of sim-
ilarity between sequences. Two sequences
are homologous if they share a common
ancestor, which is not always easy to de-
termine. The degree of similarity obtained
by alignment can be useful in determining
the possibility of homology between two
sequences.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 133

In biology, the sequences to be com-
pared are either nucleotides (DNA, RNA)
or amino acids (proteins). In the case of
nucleotides, one usually aligns identical
nucleotide symbols. When dealing with
amino acids the alignment of two amino
acids occurs if they are identical or if one
can be derived from the other by substitu-
tions that are likely to occur in nature.

An alignment can be either local or
global. In the former, only portions of the
sequences are aligned, whereas in the lat-
ter one aligns over the entire length of the
sequences. Usually, one uses gaps, repre-
sented by the symbol “-”, to indicate that
it is preferable not to align two symbols
because in so doing, many other pairs can
be aligned. In local alignments there are
larger regions of gaps. In global align-
ments, gaps are scattered throughout the
alignment.

A measure of likeness between two se-
quences is percent identity: once an align-
ment is performed we count the number
of columns containing identical symbols.
The percent identity is the ratio between
that number and the number of symbols
in the (longest) sequence. A possible mea-
sure or score of an alignment is calculated
by summing up the matches of identical
(or similar) symbols and counting gaps as
negative.

With these preliminary definitions in
mind, we are ready to describe the algo-
rithms that are often used in sequence
comparison.

7.1.1. Pairwise Alignment. Many of the
methods of pattern matching used in
computer science assume that matches
contain no gaps. Thus there is no match
for the pattern bd in the text abcd. In
biological sequences, gaps are allowed
and an alignment abcd with bd yields the
representation:

a b c d
− b − d .

Similarly, an alignment of abcd with buc
yields:

a b − c d
− b u c −.

The above implies that gaps can appear
both in the text and in the pattern. There-
fore there is no point in distinguishing
texts from patterns. Both are called se-
quences. Notice that, in the above exam-
ples, the alignments maximize matches
of identical symbols in both sequences.
Therefore, sequence alignment is an op-
timization problem.

A similar problem exists when we at-
tempt to automatically correct typing er-
rors like character replacements, inser-
tions, and deletions. Google and Word, for
example, are able to handle some typing
errors and display suggestions for possi-
ble corrections. That implies searching a
dictionary for best matches.

An intuitive way of aligning two se-
quences is by constructing dot matrices.
These are Boolean matrices representing
possible alignments that can be detected
visually. Assume that the symbols of a first
sequence label the rows of the Boolean ma-
trix and those of the second sequence label
the columns. The matrix is initially set to
zero (or false). An entry becomes a one (or
true) if the labels of the corresponding row
and column are identical.

Consider now two identical sequences.
Initially, assume that all the symbols in a
sequence are different. The corresponding
dot matrix has ones in the diagonal indi-
cating a perfect match. If the second se-
quence is a subsequence of the first, the
dot matrix also shows a shorter diago-
nal line of ones indicating where matches
occur.

The usage of dot matrices requires a vi-
sual inspection to detect large chunks of
diagonals indicating potential common re-
gions of identical symbols. Notice, how-
ever, that if the two sequences are long
and contain symbols of a small vocabulary
(like the four nucleotides in DNA) then
noise occurs: that means that there will
be a substantial number of scattered ones
throughout the matrix and there may be
several possible diagonals that need to be
inspected to find the one that maximizes
the number of symbol matches. Compar-
ing multiple symbols instead of just two—
one in a row the other in a column—may
reduce noise.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

134 J. Cohen

An interesting case that often occurs in
biology is one in which a sequence contains
repeated copies of its subsequences. That
results in multiple diagonals, and again
visual inspection is used to detect the best
matches.

The time complexity of constructing dot
matrices for two sequences of lengths m
and n is m∗n. The space complexity is also
m∗n. These values may well be intolerable
for very large values of m and n. Notice
also that, if we know that the sequences
are very similar, we do not need to build
the entire matrix. It suffices to construct
the elements around the diagonal. There-
fore, one can hope to achieve almost linear
complexity in those cases. It will be seen
later that the most widely used pairwise
sequence alignment algorithm (BLAST)
can be described in terms of finding diag-
onals without constructing an entire dot
matrix.

The dot matrix approach is useful but
does not yield precise measures of simi-
larity among sequences. To do so, we in-
troduce the notion of costs for the gaps, ex-
act matches, and the fact that sometimes
an alignment of different symbols is toler-
ated and considered better than introduc-
ing gaps.

We will now open a parenthesis to mo-
tivate the reader of the advantages of us-
ing dynamic programming in finding op-
timal paths in graphs. Let us consider a
directed acyclic graph (DAG) with possi-
bly multiple entry nodes and a single exit
node. Each directed edge is labeled with a
number indicating the cost (or weight) of
that edge in a path from the entry to the
exit node. The goal is to find an optimal
(maximal or minimal) path from an entry
to the exit node.

The dynamic programming (DP) ap-
proach consists of determining the best
path to a given node. The principle is sim-
ple: consider all the incoming edges ei to
a node V . Each of these edges is labeled
by a value vi indicating the weight of the
edge ei. Let pi be the optimal values for
the nodes that are the immediate prede-
cessors of V . An optimal path from an
entry point to V is the one correspond-
ing to the maximum (or the minimum)

of the quantities: p1 + v1, p2 + v2, p3 +
v3, . . . etc.

Starting from the entry nodes one de-
termines the optimal path connecting that
node to its successors. Each successor node
is then considered and processed as above.
The time complexity of the DP algorithm
for DAGs is linear with its number of
nodes. Notice that the algorithm deter-
mines a single value representing the total
cost of the optimal path.

If one wished to determine the sequence
of nodes in that path, then one would have
to perform a second (backward) pass start-
ing from the exit node and retrace one by
one the nodes in that optimal path. The
complexity of the backward pass is also
linear. A word of caution is in order. Let
us assume that there are several paths
that yield the same total cost. Then the
complexity of the backward pass could be
exponential!

We will now show how to construct a
DAG that can be used to determine an op-
timal pairwise sequence alignment. Let us
assume that the cost of introducing a gap
is g , the cost of matching two identical
symbols is s,and the choice of tolerating
the alignment of different symbols is d .
In practice when matching nucleotide se-
quences it is common to use the weights
g = −2, s = 1, and d = −1. That attri-
bution of weights penalizes gaps most, fol-
lowed by a tolerance of unmatched sym-
bols; identical symbols induce the highest
weight. The optimal path being sought is
the one with a total maximum cost.

Consider now the following part of a
DAG expressing the three choices dealing
with a pair of symbols being aligned.

The horizontal and vertical arrows state
that a gap may be introduced either in the
top or in the bottom sequences. The di-
agonal indicates that the symbols will be

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 135

aligned and the cost of that choice is either
s (if the symbols match) or d if they do not
match.

Consider now a two-dimensional ma-
trix organized as the previously described
dot matrix, with its rows and columns
being labeled by the elements of the se-
quences being aligned. The matrix entries
are the nodes of a DAG, each node hav-
ing the three outgoing directed edges as in
the above representation. In other words
the matrix is tiled with copies of the above
subgraph. Notice that the bottommost row
(and the rightmost column) consists only
of a sequence of directed horizontal (verti-
cal) edges labeled by g .

An optimal alignment amounts to de-
termining the optimal path in the overall
DAG. The single entry node is the matrix
element with indices [0,0] and the single
exit node is the element indexed by [m, n]
where m and n are the lengths of the two
sequences being aligned.

The DP measure of similarity of the
pairwise alignment is a score denoting
the sum of weights in the optimal path.
With the weights mentioned earlier (g =
−2, s = 1, and d = −1), the best score
occurs when two identical sequences of
length n are aligned; the resulting score
is n, since the cost attributed to a diagonal
edge is 1. The worst (unrealistic) case oc-
curs when aligning a sequence with the
empty sequence resulting in a score of
−2n. Another possible outcome is that dif-
ferent symbols become aligned since the
resulting path yields better scores than
those that introduce gaps. In that case, the
score becomes −n.

Now a few words about the complexity
of the DP approach for alignment. Since
there are m∗n nodes in the DAG, the time
and space complexity is quadratic when
the two sequences have similar lengths.
As previously pointed out, that complex-
ity can become intolerable (exponential) if
there exist multiple optimal solutions and
all of them need to be determined. (That
occurs in the backward pass.)

The two often-used algorithms for pair-
wise alignment are those developed by the
pairs of co-authors Needleman–Wunsch
and Smith–Waterman. They differ on the

costs attributed to the outmost horizon-
tal and vertical edges of the DAG. In the
Needleman–Wunsch approach, one uses
weights for the outmost edges that encour-
age the best overall (global) alignment. In
contrast, the Smith–Waterman approach
favors the contiguity of segments being
aligned.

Most of the textbooks mentioned in
the references (e.g., Setubal and Meidanis
[1997], Durbin et al. [1998], and Dwyer
[2002]) contain good descriptions of us-
ing dynamic programming for performing
pairwise alignments.

7.1.2. Aligning Amino Acids Sequences.
The DP algorithm is applicable to any
sequence provided the weights for com-
parisons and gaps are properly chosen.
When aligning nucleotide sequences the
previously mentioned weights yield good
results. A more careful assessment of the
weights has to be done when aligning
sequences of amino acids. This is be-
cause the comparison between any two
amino acids should take evolution into
consideration.

Biologists have developed 20×20 trian-
gular matrices that provide the weights
for comparing identical and different
amino acids as well as the weight that
should be attributed to gaps. The two
more frequently used matrices are known
as PAM (Percent Accepted Mutation) and
BLOSUM (Blocks Substitution Matrix).
These matrices reflect the weights ob-
tained by comparing the amino acids sub-
stitutions that have occurred through evo-
lution. They are often called substitution
matrices.

One usually qualifies those matrices by
a number: the higher values of the X in ei-
ther PAM X or BLOSUM X, indicate more
lenience in estimating the difference be-
tween two amino acids. An analogy with
the previously mentioned weights clarifies
what is meant by lenience: a weight of 1
attributed to identical symbols and 0 at-
tributed to different symbols is more le-
nient than retaining the weight of 1 for
symbol identity and utilizing the weight
−1 for nonidentity.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

136 J. Cohen

Many bioinformatics texts (e.g., Mount
[2001] and Pevzner [2000]) provide de-
tailed descriptions on how substitution
matrices are computed.

7.1.3. Complexity Considerations and BLAST.
The quadratic complexity of the DP-
based algorithms renders their usage pro-
hibitive for very large sequences. Recall
that the present genomic database con-
tains about 30 billion base pairs (nu-
cleotides) and thousands of users access-
ing that database simultaneously would
like to determine if a sequence being stud-
ied and made up of thousands of symbols
can be aligned with existing data. That is
a formidable problem!

The program called BLAST (Basic Local
Alignment Search Tool) developed by the
National Center for Biotechnology Infor-
mation (NCBI) has been designed to meet
that challenge. The best way to explain
the workings of BLAST is to recall the
approach using dot matrices. In BLAST
the sequence, whose presence one wishes
to investigate in a huge database, is split
into smaller subsequences. The presence
of those subsequences in the database can
be determined efficiently (say by hashing
and indexing).

BLAST then attempts to pursue further
matching by extending the left and right
contexts of the subsequences. The pairings
that do not succeed well are abandoned
and the best match is chosen as a result of
the search. The functioning of BLAST can
therefore be described as finding portions
of the diagonals in a dot matrix and then
attempting to determine the ones that can
be extended as much as possible. It ap-
pears that such technique yields practi-
cally linear complexity. The BLAST site
handles about 90,000 searches per day. It
success demonstrates that excellent hack-
ing has its place in computer science.

BLAST allows comparisons of either
nucleotide or amino acid sequences with
those existing in the NCBI database. In
the case of amino acids, the user is offered
various options for selecting the applicable
substitution matrices. Other input param-
eters are also available.

Among the important information pro-
vided by a BLAST search is the p-value
associated with each of the sequences
that match a user specified sequence. A
p-value is a measure of how much evi-
dence we have against the null hypothe-
ses. (The null hypothesis is that observa-
tions are purely the result of chance.) A
very small p-value (say of the order of
10−19) indicates that it is very unlikely
that the sequence provided by the search
is totally unrelated to the one provided by
the user. The home page of BLAST is an
excellent source for a tutorial and a wealth
of other information (http://www.ncbi.nlm.
nih.gov/BLAST/).

FASTA is another frequently used
search program with a strategy similar to
that of BLAST. The differences between
BLAST and FASTA are discussed in many
texts (e.g., Pevsner [2003]).

A topic that has attracted the atten-
tion of present researchers is the compar-
ison between two entire genomes. That
involves aligning sequences containing
billions of nucleotides. Programs have
been developed to handle these time con-
suming tasks. Among these programs is
Pipmaker [Schwartz et al. 2000]; a discus-
sion of the specific problems of comparing
two genomes is presented in Miller [2001].
An interesting method of entire genome
comparison using suffix trees is described
in Delcher et al. [1999].

7.1.4. Multiple Alignments. Let us assume
that a multiple alignment is performed for
a set of sequences. One calls the consensus
sequence the one obtained by selecting for
each column of the alignment the symbol
that appears most often in that column.

Multiple alignments are usually per-
formed using sequences of amino acids
that are believed to have similar struc-
tures. The biological motivation for multi-
ple alignments is to find common patterns
that are conserved among all the se-
quences being considered. Those patterns
may elucidate aspects of the structure of a
protein being studied.

Trying to extend the dot matrix and
DP approaches to the alignment of three

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 137

or more sequences is a tricky proposi-
tion. One soon gets into difficult time-
consuming problems. A three-dimensional
dot matrix cannot be easily inspected vi-
sually. The DP approach has to consider
DAGs whose nodes have seven outgoing
edges instead of the three edges needed
for pairwise alignment (see, e.g., Dwyer
[2002]).

As dimensionality grows so does algo-
rithmic complexity. It has been proved
that multiple alignments have exponen-
tial complexity with the number of se-
quences to be aligned. That does not pre-
vent biologists from using approximate
methods. These approximate approaches
are sometimes unsatisfactory; therefore,
multiple alignment remains a worthy
topic of research. Among the approximate
approaches, we consider two.

The first is to reduce a multiple align-
ment to a series of pairwise alignments
and then combine the results. One can use
the DP approach to align all pairs of se-
quences and display the result in a tri-
angular matrix form such that each en-
try [i, j] represents the score obtained by
aligning sequence i with sequence j .

What follows is more an art than sci-
ence. One can select a center sequence C
as the one that yields a maximum sum of
pairwise scores with all others. Other se-
quences are then aligned with C following
the empirical rule: once a gap is introduced
it is never removed. As in the case of pair-
wise alignments, one can obtain global or
local alignments. The former attempts to
obtain an alignment with maximum score
regardless of the positions of the symbols.
In contrast, local alignments favor conti-
guity of matched symbols.

Another approach for performing mul-
tiple alignments is using the Hidden
Markov Models (HMMs), which are cov-
ered in Section 7.3.2.

CLUSTAL and its variants are software
packages often used to produce multiple
alignments. As in the case of pairwise
alignments these packages offer capa-
bilities of utilizing substitution matrices
like BLOSUM or PAM. A description of
CLUSTAL W appears in Tompson et al.
[1994].

7.1.5. Pragmatic Aspects of Alignments. An
important aspect of providing results for
sequence alignments is their presenta-
tion. Visual inspection is crucial in obtain-
ing meaningful interpretations of those re-
sults. The more elaborate packages that
perform alignments use various colors to
indicate regions that are conserved and
provide statistical data to assess the con-
fidence level of the results.

Another aspect worth mentioning is the
variety of formats that are available for in-
put and display of sequences. Some pack-
ages require specific formats and, in many
cases, it is necessary to translate from one
format to another.

7.2. Phylogenetic Trees

Since evolution plays a key role in biol-
ogy, it is natural to attempt to depict it us-
ing trees. These are referred to as phyloge-
netic trees: their leaves represent various
organisms, species, or genomic sequences;
an internal node Pstands for an abstract
organism (species, sequence) whose exis-
tence is presumed and whose evolution
led to the organisms whose direct descen-
dants are the branches emanating from P .

A motivation for depicting trees is to
express—in graphical form—the outcome
of multiple alignments by the relation-
ships that exist between pairs or groups
of sequences. These trees may reveal evo-
lutionary inconsistencies that have to be
resolved. In that sense the construction of
phylogenetic validates or invalidates con-
jectures made about possible ancestors of
a group of organisms.

Consider a multiple alignment: Among
its sequences one can select two, whose
pairwise score yields the highest value. We
then create an abstract node representing
the direct ancestor of the two sequences.

A tricky step then is to reconstruct—
among several possible sequences—one
that best represents its children. This re-
quires both ingenuity and intuition. Once
the choice is made, the abstract ances-
tor sequence replaces its two children and
the algorithm continues recursively until
a root node is determined. The result is
a binary tree whose root represents the

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

138 J. Cohen

primordial sequence that is assumed to
have generated all the others. We will soon
revisit this topic.

There are several types of trees used in
bioinformatics. Among them, we mention
the following:

(1) Unrooted trees are those that spec-
ify distances (differences) between
species. The length of a path between
any two leaves represents the accumu-
lated differences.

(2) Cladograms are rooted trees in which
the branches’ lengths have no mean-
ing; the initial example in this section
is a cladogram.

(3) Phylograms are extended cladograms
in which the length of a branch quan-
tifies the number of genetic transfor-
mations that occurred between a given
node and its immediate ancestor.

(4) Ultrametric trees are phylograms in
which the accumulated distances from
the root to each of the leaves is quanti-
fied by the same number; ultrametric
trees are therefore the ones that pro-
vide most information about evolution-
ary changes. They are also the most
difficult to construct.

The above definitions suggest establish-
ing some sort of molecular clock in which
mutations occur at some predictable rate
and that there exists a linear relation-
ship between time and number of changes.
These rates are known to be different for
different organisms and even for the var-
ious cell components (e.g., DNA and pro-
teins). That shows the magnitude and dif-
ficulty of establishing correct phylogenies.

An algorithm frequently used to con-
struct unrooted trees is called UPGMA
(for Unweighted Pair Group Method us-
ing Arithmetic averages). Let us recon-
sider the initial example of multiple align-
ments and assume that one can quantify
the distances between any two pairwise
alignments (The DP score of those align-
ments could yield the information about
distances: the higher the score, the lower
is the distance among the sequences). The
various distances can be summarized in
triangular matrix form.

The UPGMA algorithm is similar to the
one described in the initial example. Con-
sider two elements E1 and E2 having the
lowest distance among them. They are
grouped into a new element (E1, E2). An
updated matrix is constructed in which
the new distances to the grouped elements
are the averages of the previous distances
to E1 and E2. The algorithm continues
until all nodes are collapsed into a sin-
gle node. Note that if the original ma-
trix contains many identical small en-
tries there would be multiple solutions
and the results may be meaningless. In
bioinformatics—as in any field—one has
to exercise care and judgment in interpret-
ing program output.

The notion of parsimony is often invoked
in constructing phylograms, rooted trees
whose branches are labeled by the number
of evolutionary steps. Parsimony is based
on the hypothesis that mutations occur
rarely. Consequently, the overall number
of mutations assumed to have occurred
throughout evolutionary steps ought to be
minimal. If one considers the change of a
single nucleotide as a mutation, the prob-
lem of constructing trees from sequences
becomes hugely combinatorial.

An example illustrates the difficulty. Let
us assume an unrooted tree with two types
of labels. Sequences label the nodes and
numbers label the branches. The numbers
specify the mutations (symbol changes
within a given position of the sequence)
occurring between the sequences labeling
adjacent nodes.

The problem of constructing a tree us-
ing parsimony is: given a small number of
short nucleotide sequences, place them in
the nodes and leaves of an unrooted tree
so that the overall number of mutations is
minimal.

One can imagine a solution in which all
possible trees are generated, their nodes
labeled and the tree with minimal over-
all mutations is chosen. This approach
is of course forbidding for large sets of
long sequences and it is another example
of the ubiquity of difficult combinatorial
optimization problems in bioinformatics.
Mathematicians and theoretical computer
scientists have devoted considerable effort

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 139

in solving efficiently these types of prob-
lems (see, e.g., Gusfield [1997]).

We end this section by presenting an in-
teresting recent development in attempt-
ing to determine the evolutionary trees
for entire genomes using data compression
[Bennett et al. 2003]. Let us assume that
there is a set of long genomic sequences
that we want to organize as a cladogram.
Each sequence often includes a great deal
of intergenic (noncoding) DNA material
whose function is still not well understood.
The initial example in this section is the
basis for constructing the cladogram.

Given a text T and its compressed form
C, the ratio r = |C|/|T | (where |α| is
the length of the sequence α) expresses
the degree of compression that has been
achieved by the program. The smaller the
ratio the more compressed is C. Data com-
pressors usually operate by using dictio-
naries to replace commonly used words by
pointers to words in the dictionary.

If two sequences S1 and S2 are very
similar, it is likely that their respective r
ratios are close to each other. Assume now
that all the sequences in our set have been
compressed and the ratios r are known.
It is then easy to construct a triangular
matrix whose entries specify the differ-
ences in compression ratios between any
two sequences.

As in the UPGMA algorithm, we con-
sider the smallest entry and construct the
first binary node representing the pair of
sequences Si and Sj that are most simi-
lar. We then update the matrix by replac-
ing the rows corresponding to Si and Sj
by a row representing the combination of
Si with Sj . The compression ratio for the
combined sequences can be taken to be the
average between the compression ratios of
Si and Sj . The algorithm proceeds as be-
fore by searching for the smallest entry
and so on, until the entire cladogram is
constructed.

An immense advantage of the data com-
pression approach is that it will consider
as very similar two sequences αβγ δ and
αδγβ, where α, β, γ , and δ are long subse-
quences that have been swapped around.
This is because the two sequences are
likely to have comparable compression ra-

tios. Genome rearrangements occur dur-
ing evolution and could be handled by us-
ing the data compression approach.

Finally, we should point out the exis-
tence of horizontal transfers in molecular
biology. This term implies that the DNA
of given organism can be modified by the
inclusion of foreign DNA material that
cannot be explained by evolutionary argu-
ments. That occurrence may possibly be
handled using the notion of similarity de-
rived from data compression ratios.

A valuable reference on phylogenetic
trees is the recent text by Felsenstein
[2003]. It includes a description of
PHYLIP (Phylogenetic Inference Pack-
age), a frequently used software package
developed by Felsenstein for determining
trees expressing the relationships among
multiple sequences.

7.3. Finding Patterns in Sequences

It is frequently the case in bioinformat-
ics that one wishes to delimit parts of se-
quences that have a biological meaning.
Typical examples are determining the lo-
cations of promoters, exons, and introns
in RNA, that is, gene finding, or detect-
ing the boundaries of α-helices, β-sheets,
and coils in sequences of amino acids.
There are several approaches for perform-
ing those tasks. They include neural nets,
machine learning, and grammars, espe-
cially variants of grammars called prob-
abilistic [Wetherell 1980].

In this subsection, we will deal with
two of such approaches. One is using
grammars and parsing. The other, called
Hidden Markov Models or HMMs, is
a probabilistic variant of parsing using
finite-state grammars.

It should be remarked that the recent
capabilities of aligning entire genomes
(see Section 7.1.3) also provides means for
gene finding in new genomes: assuming
that all the genes of a genome G1 have
been determined, then a comparison with
the genome G2 should reveal likely posi-
tions for the genes in G2.

7.3.1. Grammars and Parsing. Chomsky’s
language theory is based on grammar

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

140 J. Cohen

rules used to generate sentences. In that
theory, a nonterminal is an identifier
naming groups of contiguous words that
may have subgroups identified by other
nonterminals.

In the Chomsky hierarchy of gram-
mars and languages, the finite-state (FS)
model is the lowest. In that case, a
nonterminal corresponds to a state in
a finite-state automaton. In context-free
grammars one can specify a potentially
infinite number of states. Context-free
grammars (CFG) allow the description
of palindromes or matching parentheses,
which cannot be described or generated by
finite-state models.

Higher than the context-free languages
are the so-called context sensitive ones
(CSL). Those can specify repetitions of
sequence of words like ww, where w
is any sequence using a vocabulary.
These repetitions cannot be described by
CFGs.

Parsing is the technique of retracing the
generation of a sentence using the given
grammar rules. The complexity of parsing
depends on the language or grammar be-
ing considered. Deterministic finite-state
models can be parsed in linear time. The
worst case parsing complexity of CF lan-
guages is cubic. Little is known about the
complexity of general CS languages but
parsing of its strings can be done in finite
time.

The parse of sentences in a finite-state
language can be represented by the se-
quence of states taken by the correspond-
ing finite-state automaton when it scans
the input string. A tree conveniently rep-
resents the parse of a sentence in a
context-free language. Finally, one can
represent the parse of sentence in a CSL
by a graph. Essentially, an edge of the
graph denotes the symbols (or nontermi-
nals) that are grouped together.

This prelude is helpful in relating lan-
guage theory with biological sequences.
Palindromes and repetitions of groups of
symbols often occur in those sequences
and they can be given a semantic meaning.
Searls [1992, 2002] has been a pioneer in
relating linguistics to biology and his pa-
pers are highly recommended.

All the above grammars, including
finite-state, can generate ambiguous
strings, and ambiguity and nondetermin-
ism are often present when analyzing
biological sequences. In ambiguous
situations—as in natural language—one
is interested in the most-likely parse. And
that parse can be determined by using
probabilities and contexts. In biology, one
can also use energy considerations and
dynamic programming to disambiguate
multiple parses of sequences.

There is an important difference be-
tween linguistics as used in natural lan-
guage processing and linguistics applied
to biology. The sentences or speech utter-
ances in natural language usually amount
to a relatively few words. In biology, we
have to deal with thousands!

It would be wonderful if we could pro-
duce a grammar defining a gene, as a non-
terminal in a language defining DNA. But
that is an extremely difficult task. Simi-
larly, it would be very desirable to have
a grammar expressing protein folds. In
that case, a nonterminal would correspond
to a given structure in 3D space. As in
context-sensitive languages, the parse (a
graph) would indicate the subcomponents
that are close together.

It will be seen later (Section 7.4.1) that
CFGs can be conveniently used to map
RNA sequences into 2D structures. How-
ever, it is doubtful that practical gram-
mars would exist for detecting genes in
DNA or determining tertiary structure of
proteins.

In what follows, we briefly describe the
types of patterns that are necessary to
detect genes in DNA. A nonterminal G,
defined by the rules below, can roughly
describe the syntax of genes:

G → P R
P → N
R → E I R|E
E → N
I → gtNag ,

where N denotes a sequence of nucleotides
a , c , g , t ; E is an exon, I an intron, R a

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 141

sequence of alternating exons and introns
and P is a promoter region, that is, a head-
ing announcing the presence of the gene.
In this simplified grammar, the markers
gt and ag are delimiters for introns.

Notice that it is possible to transform
the above CFG into an equivalent FSG
since there is a regular expression that de-
fines the above language. But the impor-
tant remark is that the grammar is highly
ambiguous since the markers gt or ag
could appear anywhere within an exon an
intron or in a promoter region. Therefore,
the grammar is descriptive but not usable
in constructing a parser.

One could introduce further constraints
about the nature of promoters, require
that the lengths of introns and exons
should adhere to certain bounds, and that
the combined lengths of all the exons
should be a multiple of three since a gene is
transcribed and spliced to form a sequence
of triplets (codons).

Notice that even if one transforms the
above rules with constraints into finite-
state rules, the ambiguities will remain.
The case of alternative splicing bears wit-
ness to the presence of ambiguities. The al-
ternation exons-introns can be interpreted
in many different ways, thus accounting
for the fact that a given gene may generate
alternate proteins depending on contexts.
Furthermore, in biology there are excep-
tions applicable to most rules. All this im-
plies that probabilities will have to be in-
troduced. This is a good motivation for the
need of probabilistic grammars as shown
in the following section.

7.3.2. Hidden Markov Models (HMMs).
HMMs are widely used in biological
sequence analysis. They originated and
still play a significant role in speech
recognition Rabiner [1989].

HMMs can be viewed as variants
of probabilistic or stochastic finite-state
transducers (FSTs). In an FST, the au-
tomaton changes states according to the
input symbols being examined. On a given
state, the automaton also outputs a sym-
bol. Therefore, FSTs are defined by sets of
states, transitions, and input and output

vocabularies. There is as usual an initial
state and one or more final states.

In a probabilistic FST, the transitions
are specified by probabilities denoting the
chance that a given state will be changed
to a new one upon examining a symbol in
the input string. Obviously, the probabili-
ties of transition emanating from a given
state for a given symbol have to add up
to 1. The automata that we are dealing
with can be and usually are nondetermin-
istic. Therefore, upon examining a given
input symbol, the transition depends on
the specified probabilities.

As in the case of an FST, an output is
produced upon reaching a new state. An
HMM is a probabilistic FST in which there
is also a set of pairs [p, s] associated to
each state; p is a probability and s is a
symbol of the output vocabulary. The sum
of the p’s in each set of pairs within a
given state also has to equal 1. One can
assume that the input vocabulary for an
HMM consists of a unique dummy symbol
(say, the equivalent of an empty symbol).
Actually, in the HMM paradigm, we are
solely interested in state transitions and
output symbols. As in the case of finite-
state automata, there is an initial state
and a final state.

Upon reaching a given state, the HMM
automaton produces the output symbol s
with a probability p. The p’s are called
emission probabilities. As we described
so far, the HMM behaves as a string
generator.

The following example inspired from
Durbin et al. [1998] is helpful to under-
stand the algorithms involved in HMMs.

Assume we have two coins: one, which
is unbiased, the other biased. We will use
the letters F (fair) for the former and L
(loaded) for the latter. When tossed, the
L coin yields Tails 75% of the time. The
two coins are indistinguishable from each
other in appearance.

Now imagine the following experiment:
the person tossing the coins uses only one
coin at a given time. From time to time,
he alternates between the fair and the
crooked coin. However, we do not know at a
given time which coin is being used (hence,
the term hidden in HMM). But let us

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

142 J. Cohen

assume that the transition probabilities
of switching coins are known. The transi-
tion from F to L has probability u, and the
transition from L to F has probability v.

Let F be the state representing the us-
age of the fair coin and L the state repre-
senting the usage of the loaded coin. The
emission probabilities for the F state are
obviously 1/2 for Heads and 1/2 for Tails. Let
us assume that the corresponding proba-
bilities while in L are 3/4 for Tails and 1/4
for Heads.

Let [r, O] denote “emission of the sym-
bol O with probability r” and {S, [r, O] ,w,
S′} denote the transition from state S to
state S′ with probability w. In our partic-
ular example, we have:

{F, [1/2, H], u, L}
{F, [1/2, T], u, L}
{F, [1/2, H], 1 − u, F }
{F, [1/2, T], 1 − u, F }

{L, [3/4, T], v, F }
{L, [1/4, H], v, F }
{L, [3/4, T], 1 − v, L}
{L, [1/4, H], 1 − v, L}.

Let us assume that both u and v are small,
that is, one rarely switches from one coin
to another. Then the outcome of a genera-
tor simulating the above HMM could pro-
duce the string:

. . . HTHTTHTT HTTTTTTTHT . . .

. . . FFFFFFFF LLLLLLLLLLL

The sequence of states below each emit-
ted symbol indicates the present state F
or L of the generator.

The main usage of HMMs is in the
reverse problem: recognition or parsing.
Given a sequence of H ’s and T ’s, attempt
to determine the most likely corresponding
state sequence of F ’s and L’s.

We now pause to mention an often-
neglected characteristic of nondeter-
ministic and even ambiguous finite-
state-automata (FSA). Given an input

string accepted by the automaton, it is
possible to generate a directed acyclic
graph (DAG) expressing all possible
parses (sequence of transition states).
The DAG is a beautifully compact form to
express all those parses. The complexity
of the DAG construction is O(n∗|S|) in
which n is the size of the input string and
|S| is the number of states. If |S| is small,
then the DAG construction is linear!

Let us return to the biased-coin exam-
ple. Given an input sequence of H ’s and
T ’s produced by an HMM generator and
also the numeric values for the transition
and emission probabilities, we could gen-
erate a labeled DAG expressing all possi-
ble parses for the given input string. The
label of each edge and node of the graph
correspond to the transition and emission
probabilities.

To determine the optimal parse (path),
we are therefore back to dynamic pro-
gramming (DP) as presented in the section
on alignments (7.1). The DP algorithm
that finds the path of maximum likelihood
in the DAG is known as the Viterbi algo-
rithm: given an HMM and an input string
it accepts, determine the most likely parse,
that is, the sequence of states that best
represent the parsing of the input string.

A biological application closely related
to the coin-tossing example is the deter-
mination of GC islands in DNA. Those are
regions of DNA in which the nucleotides G
and C appear in a higher frequency than
the others. The detection of GC islands is
relevant since genes usually occur in those
regions.

An important consideration not yet dis-
cussed is how to determine the HMMs
transition and emission probabilities. To
answer that question, we have to enter the
realm of machine learning.

Let us assume the existence of a learn-
ing set in which the sequence of tosses is
annotated by very good guesses of when
the changes of coins occurred. If that set
is available one can compute the tran-
sition and emission probabilities simply
by ratios of counts. This learning is re-
ferred as supervised learning since the
user provides the answers (states) to each
sequence of tosses.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 143

An even more ambitious question is:
can one determine the probabilities with-
out having to annotate the input string?
The answer is yes, with reservations.
First, one has to suspect the existence
of different states and the topology of
the HMM; furthermore, the generated
probabilities may not be of practical use
if the data is noisy. This approach is
called unsupervised learning and the cor-
responding algorithm is called Baum—
Welch.

The interested reader is highly recom-
mended to consult the book by Durbin
et al. [1998] where the algorithms of
Viterbi and Baum—Welch (probability
generator) are explained in detail. A very
readable, paper by Krogh [1998] is also
advocated. That paper describes interest-
ing HMMs applications such as multiple
alignments and gene finding. Many appli-
cations of HMMs in bioinformatics con-
sist of finding subsequences of nucleotides
or amino acids that have biological sig-
nificance. These include determining pro-
moter or regulatory sites, and protein sec-
ondary structure.

It should be remarked that there is
also a theory for stochastic context-free-
grammars; those grammars have been
used to determine RNA structure. That
topic is discussed in the following section.

7.4. Determining Structure

From the beginning of this article, we
reminded the reader of the importance
of structure in biology and its relation
to function. In this section, we review
some of the approaches that have been
used to determine 3D structure from lin-
ear sequences. A particular case of struc-
ture determination is that of RNA, whose
structure can be approximated in two di-
mensions. Nevertheless, it is known that
3D knot-like structures exist in RNA.

This section has two subsections. In the
first, we cover some approaches available
to infer 2D representations from RNA se-
quences. In the second, we describe one of
the most challenging problems in biology:
the determination of the 3D structure of
proteins from sequences of amino acids.

Both problems deal with minimizing en-
ergy functions.

7.4.1. RNA Structure. It is very conve-
nient to describe the RNA structure prob-
lem in terms of parsing strings generated
by context-free-grammars (CFG). As in
the case of finite-state automata used in
HMMs we have to deal with highly am-
biguous grammars. The generated strings
can be parsed in multiple ways and one
has to choose an optimal parse based on
energy considerations.

RNA structure is determined by the at-
tractions among its nucleotides: A (ade-
nine) attracts U (uracil) and C (cytosine)
attracts G (guanine). These nucleotides
will be represented using small case let-
ters. The CFG rules:

S → aSu/uSa/ε

generate palindrome-like sequences of u’s
and a’s of even length. One could map
this palindrome to a 2D representation
in which each a in the left of the gener-
ated string matches the corresponding u
in the right part of the string and vice-
versa. In this particular case, the number
of matches is maximal.

This grammar is nondeterministic since
a parser would not normally know where
lies the middle of the string to be parsed.
The grammar becomes highly ambiguous
if we introduce a new nonterminal N gen-
erating any sequence of a’s and u’s.

S → aSu/uSa/N N → aN/uN/ε.

Now the problem becomes much harder
since any string admits a very a large
number of parses and we have to chose
among all those parses the one that
matches most a’s with u’s and vice versa.
The corresponding 2D representation of
that parse is what is called a hairpin loop.

The parsing becomes even more com-
plex if we introduce the additional rule:

S → SS.

That rule is used to depict bifurcations of
RNA material. For example, two hairpin

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

144 J. Cohen

structures may be formed, one correspond-
ing to the first S, the second to the second
S. The above rule increases exponentially
the number of parses.

An actual grammar describing RNA
should also include the rules specifying
the attractions among c’s and g ’s:

S → cS g/g Sc/.

And N would be further revised to al-
low for left and right bulges in the 2D
representation. These will correspond to
left and right recursions for the new rules
defining N :

N → aN/uN/cN/g N/Na/Nu/Nc/N g/ε.

The question remains that, from all
parses, we have to select the one yield-
ing the maximal number of complemen-
tary pairs. And there could be several en-
joying that property.

Zuker has developed a clever algorithm,
using DP, that is able to find the best parse
in n3 time where n is the length of the
sequence (see Zuker and Stiegler [1981]).
That is quite an accomplishment since just
the parsing of strings generated by gen-
eral (ambiguous) CFG is also cubic.

Recent work by Rivas and Eddy [2000]
shows that one can use variants of con-
text sensitive grammars to map RNA se-
quences onto structures containing knots,
that is, overlaps that actually make the
structure three-dimensional. That results
in higher than cubic complexity.

We should point out that the cubic
complexity is acceptable in natural lan-
guage processing or in speech recognition
where the sentences involved are rela-
tively short. Determining the structure of
RNA strings involving thousands of nu-
cleotides would imply in unbearable com-
putation times.

One should also keep in mind that mul-
tiple solutions in the vicinity of a the-
oretical optimum may well exist; some
of those may be of interest to biologists
and portray better what happens in na-
ture. Ideally, one would want to introduce
constraints and ask questions like: Given

an RNA string and a 2D pattern con-
strained to satisfy a given geometrical cri-
teria, is there an RNA configuration that
exhibits that 2D pattern and is close to the
optimum?

We end this subsection by pointing
out a worthy extension of CFGs called
stochastic or probabilistic CFG’s. Recall
from Section 7.3.2 that HMMs could be
viewed as probabilistic finite-state trans-
ducers. Stochastic CFGs have been pro-
posed and utilized in biology (see Durbin
et al. [1998]). Ideally, one would like to
develop the counterparts of the Viterbi
and Baum–Welch algorithms applicable to
stochastic CFGs and that topic is being in-
vestigated. This implies that the probabil-
ities associated to a given CFG could be
determined by a learning set, in a manner
similar to that used to determine proba-
bilities for HMMs.

7.4.2. Protein Structure. We have already
mentioned the importance of 3D struc-
tures in biology and the difficulty in ob-
taining the actual 3D structures for pro-
teins described by a sequence of amino
acids. The largest repository of 3D pro-
tein structures is the PDB (Protein Data
Base): it records the actual x, y , z coordi-
nates of each atom making up each of its
proteins. That information has been gath-
ered mostly by X-ray crystallography and
NMR techniques.

There are very valuable graphical pack-
ages (e.g., Rasmol) that can present the
dense information in the PDB in a visu-
ally attractive and useful form allowing
the user to observe a protein by rotating
it to inspect its details viewed from differ-
ent angles.

The outer surface of a protein consists
of the amino acids that are hydrophilic
(tolerate well the water media that sur-
rounds the protein). In contrast, the hy-
drophobic amino acids usually occupy the
protein’s core. The configuration taken by
the protein is one that minimizes the en-
ergy of the various attractions and repul-
sions among the constituent atoms.

Within the 3D representation of a pro-
tein, one can distinguish the following

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 145

components. A domain is a portion of the
protein that has its own function. Do-
mains are capable of independently fold-
ing into a stable structure. The combina-
tion of domains determines the protein’s
function.

A motif is a generalization of a short
pattern (also called signature or finger-
print) in a sequence of amino acids, rep-
resenting a feature that is important for a
given function. A motif can be defined by
regular expressions involving the concate-
nation, union, and repetition of amino acid
symbols. Since function is the ultimate ob-
jective in the study of proteins, both do-
mains and motifs are used to characterize
function.

In what follows, we will present the
bioinformatics approaches that are being
used to describe and determine 3D protein
structure. We mentioned in Section 7.3
that there exist several approaches that
attempt to determine secondary structure
of proteins by detecting 3D patterns—
α-helices, β-sheets, and coils—in a given
sequence of amino acids. That detection
does not give any information as to how
close those substructures are from each
other in three-dimensional space.

A team at the EBI (European Bioin-
formatics Institute) has suggested the
use of what is called cartoons [Gilbert
et al. 1999]. These are two-dimensional
representations that express the prox-
imity among components (α-helices and
β-sheets).

The cartoon uses graphical conven-
tions—sheets represented by triangles,
helices by circles—and lines joining com-
ponents indicate their 3D closeness. This
can be viewed as an extension of the sec-
ondary structure notation in which point-
ers are used to indicate spatial proximity.
In essence, cartoons depict the topology of
a protein. The EBI group has developed a
database with information about cartoons
for each protein in the PDB. The objective
of the notation is to allow biologists to find
groups of combined helices and sheets (do-
mains) that have certain characteristics
and function.

Protein folding, the determination of
protein structure from a given sequence

of amino acids, is one of the most difficult
problems in present-day science. The ap-
proaches that have been used to solve it
can only handle short sequences and re-
quire the capabilities of the fastest par-
allel computers available. (Incidentally,
the IBM team that originated the chess-
winning program is now developing pro-
grams to attempt to solve this major
problem.)

Essentially, protein folding can be
viewed as an n-body problem as studied
by physicists. Assuming that one knows
the various attracting and repelling forces
among atoms the problem is to find the
configuration that minimizes the total en-
ergy of the system.

A related approach utilizes lattice mod-
els: these assume that the backbone of the
protein can be represented by a sequence
of edges in mini-cubes packed on a larger
cubic volume. In theory, one would have
to determine all valid paths within the
large cube. This determination requires
huge computational resources (see, e.g.,
Li et al. [1996]). Random walks are of-
ten used to generate a valid path and
an optimizer computes the correspond-
ing energy; the path is then modified
slightly in the search of minimal energy
configurations. As in many problems of
this kind, optimizers try to avoid local
minima.

The above brute-force approaches may
be considered as long-term efforts requir-
ing significant investment in computer
equipment. The more manageable present
formulations often use what is called the
inverse protein-folding problem: given a
known 3D structure S of a protein corre-
sponding to a sequence, attempt to find all
other sequences that will fold in a man-
ner similar to S. As mentioned earlier
(Section 2) structure similarity does not
imply sequence similarity.

An interesting approach called thread-
ing is based on the inverse protein
paradigm. Given a sequence of amino
acids, a threading program compares it
with all the existing proteins in the PDB
and determines a possible variant of the
PDB protein that best matches the one be-
ing considered.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

146 J. Cohen

More details about threading are as fol-
lows: Given a sequence s, one initially
determines a variant of its secondary
structure T defined by intervals within s
where each possible helix or sheet may
occur; let us refer to helices and sheets
simply as components. The threading pro-
gram uses those intervals and an energy
function E that takes into account the
proximity of any pair of components. It
then uses branch-and-bound algorithms
to minimize E and determine the most
likely boundaries between the components
[Lathrop and Smith 1996]. A disadvan-
tage of the threading approach is that it
cannot discover new folds (structures).

There are several threading programs
available in the Web (Threader being one
of them). These programs are given an in-
put sequence s and provide a list of all
the structures S in the PDB that are good
“matches” for s.

There are also programs that match 3D
structures. For example, it is often desir-
able to know if a domain of a protein ap-
pears in other proteins.

Protein structure specialists have an
annual competition (called CASP for Crit-
ical Assessment of Techniques for Protein
Structure Prediction) in which the partic-
ipant teams are challenged to predict the
structure of a protein given by its amino
acid sequence. That protein is one whose
structure has been recently determined
exactly by experiments but is not yet avail-
able at large. The teams can use any of the
available approaches.

In recent years, there has been some
success with the so-called ab initio tech-
niques. They consist of initially predicting
secondary structure and then attempting
to position the helices and sheets in 3D so
as to minimize the total energy. This dif-
fers from threading in the sense that all
possible combinations of proximity of he-
lices and sheets are considered in the en-
ergy calculations. (Recall that in thread-
ing intervals are provided to define the
boundaries of helices and sheets.) One can
think of ab initio methods as those that
place the linkages among the components
of the above mentioned cartoons.

7.5. Cell Regulation

In this section, we present two among
the existing approaches to simulate and
model gene interaction. The terms sim-
ulation and modeling are usually given
different meanings. A simulation mimics
genes’ interactions and produces results
that can be compared with actual exper-
imental data to check if the model used in
the simulation is realistic. In modeling the
experimental data is provided and one is
asked to provide the model. Modeling is a
reverse engineering problem that is much
harder than simulation. Modeling is akin
to program synthesis from data.

Although, in this section, we only deal
with gene interactions, the desirable out-
come of regulation research is to pro-
duce micro-level flowcharts represent-
ing metabolic and signaling pathways
(Section 7.6).

It is important to remark the signifi-
cance of intergenic DNA material in cell
regulation. These regions of noncoding
DNA play a key role in allowing RNA-
polymerase to start gene transcription.
This is because there has to be a suit-
able docking between the 3-D configura-
tions of the DNA strand and those of the
constituents of RNA-polymerase.

7.5.1. Discrete Model. We start by show-
ing how one can easily simulate the inter-
action of two or more genes by a program
involving threads. Consider the following
scenario:

Gene G1 produces protein P1 in T1 units
of time; P1 dissipates in time U1 and trig-
gers condition C1. Similarly:

Gene G2 produces P2 in T2 units of time;
P2 dissipates in time U2 and triggers con-
dition C2.

Once produced, P2 positions itself in G1
for U2 units of time preventing P1 from be-
ing produced. We further assume that the
production of a protein can only take place
if a precondition is satisfied. That precon-
dition is a function of the various post con-
ditions C′

is.
The above statements can be pre-

sented in program form by assuming the

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 147

existence of a procedure process involving
five parameters:

—The gene identification G (possibly a
string)

—A pre-condition C allowing a protein P
to be processed (a constraint)

—The units of time T needed to produce
protein P

—The time U for protein P to completely
dissipate

—A post-condition C′ to be performed after
the protein is produced (a constraint).

Notice that the precondition C can be
a general Boolean function and the post-
condition C′ can trigger changes in the pa-
rameters of any C. A rough description of
process is:

process (Gene, Pre-Condition, Process-Time,
Decay-Time, Post-Condition)

if Gene is not available (Pre-condition)
then wait until it becomes available
else {produce protein in Process-Time,

trigger Post-condition,
wait for the given Decay-Time}

The order in which the constituents of
the else part of the if-statement are ex-
ecuted is subject to different interpreta-
tions and it is left unspecified.

Now let us imagine that process acts like
a thread that can be executed in paral-
lel with other threads. We also make the
simplifying assumption that the process
of a given gene G cannot be invoked un-
til the previous incarnation of that pro-
cess has terminated. Consider the pro-
gram segment:

forever do
process (“G1”, P2 is not on, 50, 20, none)
process (“G2”, none, 200, 50, P2 is on “G1”)

Let t denote a current time in the ex-
ecution of the above program. It should
be clear to the reader that the behavior
of the program can be displayed by suc-
cessive Boolean vectors V (t) denoting the
state on or off of each of the genes at time t.

The above program is a minuscule ex-
ample of the type of concurrent processes
that take place within the cell. The pro-

cesses can be likened to RNA-polymerases,
spliceosomes and ribosomes.

Notice that in the case of eukaryotic
cells there would be three levels of cas-
cading processes since different conditions
would be applicable to simulate the gener-
ation of a given protein. This is because
there could be interruptions not only in
RNA production, but also in the splicing,
and generation of proteins.

Interesting organisms will have thou-
sands of genes and many of them will in-
teract with others in a complex manner
that we do not yet know. As mentioned, the
state of the program at time t is describ-
able by the vectors V (t). Actually these
vectors correspond to information that can
be gathered by microarray experiments.
Usually microarrays detect not step func-
tions but continuous ones expressing the
amount of RNA produced by a cell at a
given time under certain conditions.

Now we can state a major and enor-
mously difficult problem in biology: given
the vectors V(t), deduce the pre and post-
conditions for a program simulating gene
interactions. This is a reverse engineer-
ing problem that is probably undecidable.
Nevertheless, we can attempt to solve
more manageable problems of the sort:
given the results of microarray experi-
ments, is a given conjecture for the pre or
post- conditions possible?

There are groups of computer scientists
and biologists working in such problems.
One of these groups led by Regev and
Shapiro [2002] uses Milner’s Pi-calculus to
attempt to answer logical questions about
conjectures made by biologists. (The Pi-
calculus is a formal language for concur-
rent computational processes, like those
used in mobile telephone systems.) Since
the results of microarrays are often noisy
and uncertain one has to resort to a
probabilistic (or stochastic) variant of the
Pi-calculus.

Statistical methods like Bayesian net-
works and support vector machines have
also been used in inferring gene be-
havior from microarray data [Friedman
et al. 2000; Brown et al. 2000; Bar-Joseph
et al. 2002]. Clustering algorithms (see,

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

148 J. Cohen

Fig. 1.

e.g., Jain et al. [1999]) are often used
to group the genes exhibiting similar be-
havior, therefore reducing the problem’s
dimensionality.

7.5.2. Continuous Models. As in the case
of the discrete case, we will consider the
different aspects: simulation and model-
ing. The continuous simulation approach
is based on the theory of dynamic systems.
It is assumed that the expression level of
each gene is describable by a differential
equation. If there are n genes that interact
with each other then the continuous sim-
ulation consists of a system of n nonlinear
differential equations.

Let xi denote the expression level of the
ith gene. Then the resulting system of dif-
ferential equations becomes:

dxi/dt = fi(x) − γixi, xi ≥ 0,

where x is the vector (x1, x2, xn)
The term −γi xi states that the con-

centration of the ith product decreases
through spontaneous processes like degra-
dation, diffusion, etc. fij is the func-
tion specifying a combination of sigmoids
(highly nonlinear) which describes the in-
teraction between genes i and j ; m is a
parameter specifying the steepness of the
function around θij (see Figure 1).

fij = xm
j /

(
xm

j + θm
ij

)

The above specifies that gene expression
increases (or decreases) sharply when a
gene interacts with another. It is possi-
ble to generate the system of differential

equations from a graph whose nodes rep-
resent the genes and the branches their in-
teractions. Additionally, the branches can
be labeled with +’s or −’s indicating the
fact that a gene activates or represses an-
other gene.

Once the graph and the above param-
eters are known, the system of equations
can be generated, solved numerically and
yield curves that describe gene expression
as a function of time.

These results are the continuous coun-
terparts of those displayed for the dis-
crete simulation described in the previous
section. In the discrete case the gene ex-
pression was either on or off whereas in
the continuous case the gene expression
curves vary smoothly.

The fact remains that it would ex-
tremely difficult to do the reverse en-
gineering task of modeling, that is,
generating from existing data the sys-
tem of equations and their parameters.
The clustering algorithms mentioned in
Section 9 have become indispensable to
reduce the complexity of gene regulation
analysis from microarray data.

Somogyi and his co-workers [Liang et al.
1998] have proposed an interesting ap-
proach for both simulation and model-
ing of gene interaction. The simulation
uses a Boolean approach and the modeling
amounts to generating circuits (or equiva-
lent Boolean formulas) from data.

deJong [2002] has recently published an
extensive survey about work done in cell
regulation both in simulation and in mod-
eling. One interesting way of solving the
above differential equations is by qualita-
tive reasoning, a subject developed in ar-
tificial intelligence by Kuipers [1994] to
deal with discrete versions of differential
equations. Cohen [2001] proposes the use
of constraints to describe various cell reg-
ulation methods.

E-CELL is an ambitious Japanese
project that aims at simulating cells by
using stochastic systems of nonlinear dif-
ferential equations [Tomita et al. 1999]. It
has been used to simulate the behavior of
various cells including that of the human
heart. Versions of the E-CELL simulator
are available for various platforms.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 149

7.6. Determining Function and Metabolic
Pathways

In the previous section, we mentioned that
protein domains and motifs where im-
portant in determining protein function.
Function is a subjective topic that may
mean different things for different peo-
ple. The protein database (PDB) contains
annotations—in natural language—that
explain the role of the protein in the larger
context of cell behavior. Incidentally, great
care has to be taken to interpret annota-
tions since different researchers use differ-
ent terms that are supposed to be equiva-
lent. In a simplistic manner, the function
of a protein is its PDB annotation comple-
mented by related observations.

A typical example of an annotations for
gene function is as follows: “The gene,
known as 5-HTT, has been a focus of de-
pression studies because it contains the
code to produce a protein that escorts the
chemical messenger serotonin across the
spaces between brain cells, or synapses,
and then clears away the leftover sero-
tonin” (New York Times, July 18, 2003).

The ultimate way to express pro-
tein function is by finding its role in
metabolic, regulation, and signaling path-
ways. (These have been briefly defined in
the previous sections.) Karp [2001] has
studied this topic extensively. He has im-
plemented some of those pathways for E.
coli and other organisms in the form of
databases.

Karp rightfully points out that it is
impossible to develop a theory about a
complex system without the aid of a prop-
erly designed database of facts and in-
teractions among facts. Such database is
essentially the representation of large la-
beled graphs. Each node of the graph rep-
resents a chemical reaction, the proteins
involved, and the enzymes catalyzing that
reaction.

Graphical interfaces are mandatory
to display the results of queries about
metabolic pathways. For example, one
should be able to have graphical responses
to questions of the type: (i) determine all
the reactions, in which a given enzyme
acts as a catalyzer, (ii) find the differ-

ent enzymes catalyzing similar reactions,
(iii) specify all paths going trough a pair
of reactions, and so forth. In the Ecocyc
system developed by Karp, the results of
such queries are graph representations
with highlighted nodes or paths.

Karp’s research is an ambitious one. Ul-
timately one wants to attempt to generate
metabolic pathways from genomic data of
similar organisms. The system Metacyc is
a meta-system developed for that purpose.
This type of research should eventually
merge with that proposed by Shapiro and
briefly described in Section 7.5.1.

The Japanese have also developed a
widely used metabolic pathway database
called KEGG (Kyoto Encyclopedia of
Genes and Genomes) (http://www.genome.
ad.jp/kegg/pathway.html).

7.7. Assembling DNA Fragments

The problem of DNA assembly became
very important for sequencing very large
genomes such as the human genome. Com-
panies like Celera use the so-called whole
genome shotgun method that consists of
sequencing relatively small fragments of
DNA and then relying on computer pro-
grams to assemble those fragments. Eu-
gene Myers [1999] formerly from Celera,
now at Berkeley, has been a pioneer in this
effort.

Fragments are of the order of 500 base
pairs (bp). The target sequence—the one
to be reconstructed—is of the order of 50k
to 100k bp, and there are about 1,000 frag-
ments to be assembled.

The problem of assembly becomes com-
plex because of several factors that in-
clude orientation, repeats, and sequenc-
ing errors. Fragments can originate from
each of the two DNA strands, and orien-
tation means that either a given sequence
or its reverse complement is a valid can-
didate for being assembled into the target
sequence. Repeated subsequences in the
target sequence make the assembly more
difficult because one does know to which
copy a given fragment belongs.

A fragment Fi overlaps with a fragment
F j if the left (right) end of Fi shares a

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

150 J. Cohen

common subsequence with the right (left)
end of F j . (If one fragment is a subse-
quence of another, then the smaller one
can be discarded.) A region of contiguously
overlapping fragments is called a contig.

The assembly problem can be stated as
finding the shortest superstring S such
that each fragment is a subsequence of S.
Remark that this problem bears some sim-
ilarity with finding multiple alignments.
(As we have seen in Section 7.1.4, the lat-
ter is known to be a computationally diffi-
cult problem.)

It is easily shown that we can construct
a labeled directed graph G representing
the overlaps of each pair of fragments. Let
us assume that Fi overlaps q symbols with
F j and that the length of Fi is greater than
the length of Fi. Then the graph G con-
tains a directed edge labeled by q joining
the node Fi to the node Fi. Notice that
pairwise alignments can be used to de-
termine the edges of the graph and their
labels.

It is not difficult to see that a path
in G that contains no cycle represents a
contig. Therefore the shortest superstring
problem amounts to finding the shortest
Hamiltonian path in G. That is computa-
tionally difficult and one has to resort to
approximations. A greedy algorithm is of-
ten used to determine that path. The prob-
lems of orientation and repeats will also
have to be surmounted. A helpful hint is
that one knows the approximate size of the
target sequence. A recent article by Myers
and his colleagues reflects some of the lat-
est work done in DNA assembly [Huson
et al. 2002].

A problem related to assembly is that
of physical mapping of DNA. The frag-
ments for a given target sequence are ob-
tained from parts of chromosomes contain-
ing several hundred thousand base pairs.
These very large fragments have markers
that enable the reconstruction of the orig-
inal chromosomal DNA. As in the case of
DNA assembly, the reconstruction is based
on graphs and again the computational
complexity is very high. The reader is di-
rected to the text of Setubal and Meidanis
[1997] where that topic is presented
pedagogically.

7.8. Using Script Languages

Consider the following typical problem in
bioinformatics. Given a sequence of amino
acids representing a protein P , we want
to use BLAST to determine the proteins
in GenBank database that are homologous
to P but have a given degree a similarity
specified by a p-value threshold. Follow-
ing that search we may also want to per-
form a multiple alignment with those ho-
mologous proteins (using CLUSTAL) and
possibly utilize a package like PHYLIP to
determine the phylogenetic tree corre-
sponding to the multiple alignments. Fi-
nally, we would like to check if any of the
proteins in the multiple alignments has a
3D structure in the PDB.

The cascading use of the above packages
would require a researcher to take active
part in requesting the URL of a package,
performing formats changes if needed, in-
specting and rejecting some data, and so
forth. Script languages allow their users
to write programs that automatically per-
form these tasks.

Perl and Python are probably the most
often-used languages in bioinformatics.
Perl is older and has many ready-made
packages available for searching web-
sites and downloading results. Python, the
more recent language, is gaining momen-
tum in bioinformatics applications.

One of the frequent tasks done using
script languages is finding certain pat-
terns in files containing information in
various formats (e.g., html). Regular ex-
pressions (RE) are often used to specify
those set of patterns. A more specific ex-
ample of RE usage is as follows. Assume
that we want to test if a pattern of nu-
cleotides defines the boundaries between
exons and introns (these are called splice-
sites). Also assume that one knows the
splice-sites for many genes of a given or-
ganism O and can express them by a RE
that takes into account the left and right
contexts of the splice-sites.

Suppose now that we want to deter-
mine the splice-sites for another organism
O ′ that is possibly related to the first. A
search using the RE applicable to O may
reveal interesting putative splice-sites in

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 151

O ′. If that is the case, one may wish to
revise the RE for O to handle new organ-
isms. These situations occur very often in
bioinformatics.

8. A CHIMERICAL PROGRAM

In the previous sections, we reviewed the
approaches that are currently being used
to solve typical problems in bioinformat-
ics. In this section, we will try to take
a glimpse into the future. What follows
is the author’s extrapolation from current
work being done in bioinformatics, and it
is admittedly speculative.

The hypothetical program below de-
scribes the essence of functional genomics.
Given the genome of an organism, it seeks
to generate a program that simulates the
cell behavior for that organism. At the top
level, the program finds all the genes of the
genome, then determines the function of
each gene, and finally combines the results
into a simulator. Paraphrasing in program
form one has:

Generation of a cell simulator for a
new organism

Find-Genes (DNA, Genome)
for each Gene in Genome

Process (Gene, Function)
Combine (Function, Cell-Behavior)

The first parameter in each of the proce-
dures being called represents either given
data or results obtained from a preced-
ing procedure call. Find-Gene is probably a
version of some of the programs mentioned
in Section 7. Process embodies the Central
Dogma, and Combine is admittedly a “pie
in the sky” that will have to be worked out
in the future. Keep in mind, however, that
this is the goal of Karp’s project, briefly
described in Section 7.6.

In a first phase, Combine should gen-
erate a program similar to the discrete
model example in Section 7.5.1, but involv-
ing all genes of the genome. Eventually,
one would like to obtain a program that
not only mimics gene interactions but also
depicts in detail the workings of metabolic
and signaling pathways.

An elaborated version of Process is given
below. It introduces the types of the pa-

rameters whenever possible. Even though
all the components in the cell are 3D struc-
tures, the abstraction of DNA sequences
into the type “string” is likely to remain
applicable. Nevertheless, it is known that
the transcription by RNA-polymerase de-
pends on the (elongated) shape of the helix
segment that contains the gene.

Process (Gene: string,
Function: program-fragments)

The central dogma
RNA-Polymerase (Gene, Pre-
RNA)
Note the possibility of
alternate
splicing (multiple RNAs)
Spliceosome (Pre-RNA, RNA)
Ribosome (RNA, Aminoacid-
Sequence)

Fold (Aminoacid-Sequence,
Structure)
Determine-Function (Structure,
Function)

The above hypothetical procedure is not
unlike the thread process described in
Section 7.5.1 and leaves open how func-
tion can be determined from structure and
other data. It is clear that results obtained
through microarray experiments, protein
interactions, and known metabolic and
signaling pathways will have to be taken
into consideration.

9. TOPICS THAT PLAY AN IMPORTANT
ROLE IN BIOINFORMATICS

A perusal of the material in the previ-
ous sections provides insights on CS top-
ics that are likely to influence bioinformat-
ics. A recurring theme in the currently
used algorithms is optimization. Align-
ments, parsimony in phylogeny, determin-
ing RNA structure, and protein thread-
ing can all be viewed as optimization
problems.

The interest in dynamic programming
(DP) is that it enables an efficient (poly-
nomial) solution of certain optimization
problems. This occurs when a problem can
be transformed into determining the max-
imal (or minimal) path in a DAG. It was
seen in the case of pairwise alignments

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

152 J. Cohen

that one could formulate the problem us-
ing a DAG with n2 nodes, where n is
the length of the sequences being aligned.
However, the use of DP becomes pro-
hibitive in the case of multiple alignments.

Inevitably, in the case of algorithms
with higher complexity one has to resort to
heuristics. Typically, heuristic strategies
are used in the case of NP problems or
polynomial problems involving large vol-
umes of data.

For example, the DNA assembly prob-
lem requires suitable heuristics for greedy
algorithms to determine possible Hamilto-
nian paths in a graph. Genetic algorithms
have been used for that purpose [Parsons
et al. 1995], BLAST illustrates the case
in which even a quadratic space and time
complexity makes the DP algorithm unus-
able for practical problems involving huge
sequences.

Machine learning, data mining, neural
networks, and genetic algorithms occupy
a prominent position among the CS ap-
proaches used in bioinformatics (see, e.g.,
Mitchell [1997] and Hand et al. [2000]).
This is because there is an enormous
amount of data available and, fortunately,
biologists have annotated some of this
data. Typical examples include gene find-
ing and secondary structure determina-
tion (Section 7.3).

There are thousands of genes whose lo-
cations in various genomes have been de-
termined using laboratory experiments.
This information is recorded in a vast
repository of sequences, with markings
specifying the locations of promoters, ex-
ons, and introns. These annotations en-
able the determination of the most likely
contexts for desired boundaries. The prob-
lem becomes: given this learning set, infer
the corresponding boundaries for new se-
quences not in the learning set (supervised
learning).

A similar situation occurs when at-
tempting to determine the secondary
structure of proteins. An annotated learn-
ing set can be obtained from the Protein
Data Base (PDB), where thousands of pro-
teins have been studied in detail and for
which boundaries of helices and sheets
have been accurately determined.

The above are typical problems that can
be solved by machine-learning and neural
network techniques. Many gene-finders
and secondary structure estimators utilize
these approaches.

Classification and data clustering (see,
e.g., Jain et al. [1999]) are cognate to su-
pervised machine learning. Assume that
we are given a large set of lists each con-
taining the values of n parameters and
their known classification (say, an identi-
fier). One then groups the lists into clus-
ters that have the same classification.

Given a new list of parameters, we
wish to determine the most likely clus-
ter it should belong to. In two-dimensional
cases, the answer can be obtained by the
evaluation of a simple equation represent-
ing the straight line that separates the two
semispaces representing the clusters. The
n-dimensional case is considered in the
relatively new area of support vector ma-
chines (SVM). The SVM approach divides
the n-dimensional space into areas delim-
ited by semiplanes. These techniques have
acquired great significance in reducing the
complexity of the task of inferring gene
regulation from microarray data.

It is undeniable that probability and
statistics play an influential role in bioin-
formatics. This is not surprising since the
data available is huge, varied, and noisy.
Recent articles on interpreting microarray
experiments utilize statistical approaches
such as SVMs and Bayesian networks
[Friedman et al. 2000; Brown et al. 2000;
Bar-Joseph et al. 2002].

Hidden Markov Models are also
machine-learning techniques. In this ap-
proach, one starts by specifying a topology
of finite-states representing the structure
one believes is applicable. Based on the
learning set, the probabilities are com-
puted. Given a new sequence, we can then
use DP (the Viterbi algorithm) to deter-
mine the most likely succession of states
corresponding to the given sequence.

All these methods amount to the gen-
eration of probabilistic grammars from a
learning set. The topology of states in
HMMs is generalized to correspond to
the presumed grammar rules whose fre-
quency one wishes to estimate. Therefore,

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 153

methods using probabilistic grammars
are expected to have a salient place in
bioinformatics.

Data mining is akin to machine learn-
ing. In data mining one hopes to detect
certain patterns in huge amounts of data
(unsupervised learning). Data mining has
been used in forecasting protein interac-
tions [Thierry-Mieg 2000].

It should be apparent that database
design and development are integral
part of bioinformatics. The best single
place to look for information on biological
databases is the annual database issue
of Nucleic Acids Research: http://nar.
oupjournals.org /content /vol32 /suppl 1 /
index.shtml. A recommended précis of the
problems in the design of genomic and
genetic databases and their integration is
given in [Ashburner and Goodman 1997].

Computational geometry should also
play a key role in analyzing 3D struc-
tures. An example is 3D pattern match-
ing in proteins: in this case, the “pattern”
is a portion of a protein’s backbone, and
the “text” corresponds to all the proteins
in the PDB. One would want to deter-
mine the set of proteins that exhibit that
pattern. As in the case of alignments, we
would like to tolerate small discrepancies
between the pattern and elements in the
text.

The example of phylogenetic tree
construction using data compression
(Section 7.2) illustrates the importance of
information theory in analyzing massively
long sequences of symbols.

An interesting CS application in bioin-
formatics is that of natural language
processing (NLP). For example, biotech
companies hire teams of biologists to ex-
amine the large scientific literature avail-
able to detect descriptions of possible gene
or protein interactions. It would be de-
sirable to automate that process. Another
possible NLP application is to attempt to
make sense of annotations made by biol-
ogists to explain gene function. Questions
of the type: Are two annotations compara-
ble? are difficult inquiries that one would
want to be able to answer.

Graphics and graphical interfaces are
of course a necessity for displaying bi-

ological data. As in the other CS ap-
plications, knowledge of biology and the
capacity to interact with biologists are vi-
tal to successful software development in
bioinformatics.

10. LEARNING MORE ABOUT
BIOINFORMATICS

The material covered in this article is but
an introduction to the field. The inter-
ested reader will have to expand his or her
knowledge significantly to become profi-
cient in bioinformatics. A few hints as how
to proceed are discussed below.

We dealt with 3D structures in an ab-
stract manner and showed their impor-
tance in the molecular interactions that
are crucial to cell life. To understand
molecular structure and interactions in
detail, one has to plunge into biochem-
istry. Therefore, an introductory course
in biochemistry is a prerequisite for do-
ing work in bioinformatics. That and a
course in molecular biology are long-term
undertakings.

This author favors a continual updating
of knowledge by reading the tutorial ma-
terial available on the Web, and most of
all, by interacting with biologists. As men-
tioned earlier, this is not always an easy
task since we have been educated to rea-
son in different modes. Nevertheless, such
interactions are necessary in order to in-
fer which tools are best suited to help biol-
ogists tackle unsolved problems. And that
effort can lead to the development of novel
algorithms and approaches.

A recommended introductory bioinfor-
matics text, by Krane and Raymer [2003],
has recently been published. It provides
an easy to read introduction to the field.
A good companion for that book is the
Cartoon Guide to Genetics by Gonick and
Wheelis [1991].

Computer scientists interested in com-
putational biology are referred to the sev-
eral textbooks currently available that
are listed as references. We should dis-
tinguish two types of texts: those that
emphasize the discrete and combinato-
rial aspects of the field (e.g., Setubal and
Meidanis [1997]), and those that favor a

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

154 J. Cohen

probabilistic and statistical approach (e.g.,
Durbin et al. [1998]).

For the reader interested in the re-
search aspects of bioinformatics, the com-
pendium edited by Salzberg et al. [1998]
is recommended. The encyclopedic book
by Mount [2001], is an excellent reference
text. An interesting article by Luscombe
et al. [2001] defining the goals of bioin-
formatics is certainly worth reading. An
aperçu of recent advances in bioinformat-
ics appears in Goodman [2002].

Several texts in bioinformatics have
been published recently. Among them
we note: Dwyer’s book stressing pro-
gramming in bioinformatics using Perl
[Dwyer 2002]; a compendium of recent
topics in bioinformatics [Orengo et al.
2003]; a practical approach to the field
[Claverie and Notredame 2003]; and a
treatise on bioinformatics and functional
genomics by Pevsner [2003]. Suggestions
for implementing bioinformatics under-
graduate level courses have appeared in
Cohen [2003]. A recent undergraduate
text by Jones and Pevzner [2004] is highly
recommended.

11. FINAL REMARKS

Searls [1998] rightly pointed out that
many current problems, such as those
briefly described in Section 7, remain chal-
lenging tasks. His list includes: protein
structure prediction, homology search,
multiple alignment and phylogeny con-
struction, genomic sequence analysis, and
gene finding. The most recent develop-
ments in biology point in the direction
of functional genomics research. That
topic not only encompasses Searls’ list of
challenges but also includes cell simula-
tion and modeling, as well as metabolic
pathways.

Nearly all the contents of the present ar-
ticle have been devoted to explaining sin-
gle cell behavior. The generic-type cell—
also called a stem cell—can be transformed
into any other type of cell that specializes
in performing specific functions in a mul-
ticellular organism. Blocking the produc-
tion of certain proteins and encouraging
the expression of others achieve this spe-

cialization. This process is not yet well un-
derstood. Nevertheless, the geographic po-
sition of the cell and its neighbors is known
to have significant roles as to which genes
are turned on and which are switched off.

An interesting article written by com-
puter scientists at MIT deals with the
simulation of multiple cells and proposes
the paradigm of amorphous computing
[Abelson et al. 1995]. It has been inspired
by biology, and it develops a massively
parallel model that accounts for changes
in the shapes of a network of distributed
asynchronous computers. This is an ex-
ample on how biology can be inspirational
to computer science. Another prime exam-
ple is DNA computing, that is, using DNA
strands to solve computationally difficult
problems.

As to the future of the relationship be-
tween computer science and biology, it is
worth mentioning an interview given by
Knuth [1993]. He argues that major dis-
coveries in computer science are unlikely
to occur as frequently as they did in the
past few decades. On the other hand, he
states that “Biology easily has 500 years
of exciting problems to work on. . .”.

The accomplishments made in molecu-
lar biology in the past half century have
been remarkable. Nevertheless, they pale
in comparison to the wondrous tasks that
lie ahead. Consider, for example, attempt-
ing to answer questions like:

—How do brain cells establish linkages
among themselves while an embryo is be-
ing formed?

—Is it possible to understand better the ori-
gins of language and the nature-nurture
paradigm?

—How does Darwinian evolutionary the-
ory operate at the molecular level?

These questions pose enormous chal-
lenges and Knuth’s forecast may even turn
out to be conservative.

With the increasing relevance of biology
(and bioinformatics) also comes responsi-
bility. In a recent article in the New York
Times, Kelly [2003], the president of the
Federation of American Scientists, points
out that a graduate student in biology

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 155

using the wet lab (and available bioinfor-
matics tools) could concoct viruses with
great potential for harm.

Since the Manhattan Project physicists
have been in a similar predicament. It is
now the turn of the biologists (and bioin-
formaticians) to make sure that develop-
ments will be used for lofty purposes. For
example, understanding the mechanisms
of cell differentiation and inferring the
gene interactions that produce cancerous
cells will no doubt revolutionize medicine.

APPENDIX. A SUMMARY OF CONCEPTS IN
MOLECULAR CELL BIOLOGY

The material in this appendix is designed
as a concise refresher for the background
in molecular cell biology needed to read
the main article. Even though we have
avoided the description of chemical struc-
tures, they are essential to understanding
molecular interactions at the atomic level.

There are several detailed texts in
cell and molecular biology available. Two
often-used ones are those by Lodish et al.
[2003] and Alberts et al. [2004]. The reader
is also referred to the numerous glossaries
and tutorials that exist on the Web. It of-
ten suffices to use Google with the desired
keywords, followed by the terms “tutorial”
or “applet,” to obtain a wealth of pedagog-
ical information about a topic not covered
in this appendix. Preceding the references
we present a handful of URLs that are
helpful in providing additional informa-
tion.

DNA is helix-shaped molecule whose
constituents are two parallel strands of
nucleotides. There are four types of nu-
cleotides in DNA and they correspond to
the letters A (for adenine), T (thymine), C
(cytosine) and G (guanine). DNA is usu-
ally represented by sequences of these four
nucleotides. This assumes that only one
strand is considered; the second strand is
always derivable from the first by pair-
ing A’s with T’s and C’s with G’s and vice-
versa. That derivation is called finding the
reverse complementary pair of a strand.

Genes are contiguous subparts of single-
stranded DNA that are templates for pro-
ducing proteins. Genes can appear in ei-

ther of the DNAs strands. The set of all
genes in a given organism is called the
genome for that organism. The function
of DNA material between genes is largely
unknown. Certain intergenic regions of
DNA (called noncoding) are known to play
a major role in cell regulation, the pro-
cess that controls the production of pro-
teins and their possible interactions with
DNA.

Proteins are produced from DNA using
three operations or transformations called
transcription, splicing, and translation. In
humans and higher species (eukaryotes)
the genes are only a minute part of the
total DNA that exists in a cell. For the pur-
poses of this article, chromosomes are com-
pact chains of coiled DNA. In more rudi-
mentary types of cells that do not have a
nucleus (prokaryotes), the phase of splic-
ing does not occur.

DNA is capable of replicating itself. The
cell machinery that performs that task is
called DNA-polymerase. Biologists call the
capability of DNA for replication and un-
dergoing the above three (or two) transfor-
mations the central dogma.

Genes are transcribed into pre-RNA
by a complex ensemble of molecules
called RNA-polymerase. During transcrip-
tion the nucleotide T (thymine) is substi-
tuted by another one designated by the
letter U (for uracil). Pre-RNA can be rep-
resented by alternations of sequence seg-
ments called exons and introns. The exons
represent the parts of pre-RNA that will be
expressed, that is, translated into proteins.

Next comes the operation called splic-
ing; an ensemble of proteins called the
spliceosome performs it. Splicing consists
of concatenating the exons and excising
the introns to form what is known as
mRNA, or simply RNA.

The final phase, called translation, is es-
sentially a “table look-up” performed by
complex molecules called ribosomes (an
ensemble of RNA and proteins). Transla-
tion repeatedly considers a triplet of con-
secutive nucleotides in RNA and produces
one corresponding amino acid. The triplet
is called a codon. In RNA, there is one spe-
cial codon called a start codon and a few
others called the stop codons. An open

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

156 J. Cohen

reading frame (ORF) is a sequence of
codons starting with a start codon and
ending with an end codon. The ORF is thus
the sequence of nucleotides that is used by
the ribosome to produce the sequence of
amino acids that makes up a protein.

There are basically 20 amino acids but,
in certain rare situations, others can be
added to that list. Since there are 64 dif-
ferent codons and 20 amino acids, the “ta-
ble look-up” for translating each codon into
an amino acid is redundant in the sense
that multiple codons can produce the same
amino acid. The “table” used by nature to
perform translation is called the genetic
code. Due to the redundancy of the genetic
code, certain nucleotide changes in DNA
may not alter the resulting protein.

Once a protein is produced, it folds (most
of the time) into a unique structure in 3D
space.

In the 3D representation of a protein,
one can distinguish three different types of
components: α-helices, β-sheets and coils.
The secondary structure of a protein is
its sequence of amino acids, annotated to
distinguish the boundaries of each com-
ponent: helices, sheets, and coils. The
tertiary structure of a protein is its 3D
representation.

The function of a protein is the way
it participates with other proteins and
molecules in keeping the cell alive and in-
teracting with its environment. Function
is closely related to tertiary structure. In
functional genomics, one studies the func-
tion of all the proteins of a genome. One of
the important goals of bioinformatics is to
help biologists in deciphering the function
of proteins.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Mark
Gerstein, Nathan Goodman and the reviewers who
provided many suggestions to improve the original
manuscript.

REFERENCES

For interesting graphical gallery of biology con-
sult (downloadable drawings) sponsored by
the National Health Museum http://www.
accessexcellence.org/AB/GG/.

A recommended glossary of genetic terms http://
www.ornl.gov/TechResources/Human Genome/
publicat/primer2001/glossary.html.

NCBI (National Center for Biotechnology Informa-
tion) http://www.ncbi.nlm.nih.gov.

A summary of interesting sites in bioinformatics is
given by the URLs.

On line lectures in bioinformatics—Heidelberg
http://www.dkfz-heidelberg.de/tbi/bioinfo/Biol/
Intro/.

A special interest group with news and pointers
http://www.bioinformatrix.com.

Bioinformatics Bulletin Board http://bioinformatics.
org/faq/#education.

Bioinformatics resources http://www.brc.dcs.gla.ac.
uk/∼actan/resources.html.

Interesting and useful URL’s on existing courses.
Jackson’s Laboratory Web Page with educational

links http://www.jax.org/courses.
Course in bioinformatics (recommended set of

slides by R. L. Bernstein) http://www.swbic.org/
education/bioinfo/.

Highly recommended texts in molecular cell biology
[Alberts et al. 2004; Lodish et al. 2003].

Some texts in computational biology or bio-
informatics
[Baldi and Brunak 2002; Baxevanis and Ouel-
lette 1998; Campbell and Heyer 2002; Claverie
and Notredame 2003; Durbin et al. 1998;
Dwyer 2002; Felsenstein 2003; Gonick and
Wheelis 1991; Gusfield 1997; Krane and Raymer
2003; Jones and Pevzner 2004; Mount 2001;
Orengo et al. 2003; Pevsner 2003, Pevzner 2000;
Setubal and Meidanis 1997; Salzberg et al. 1998;
Waterman 1995].

Main Journals in BioInformatics
Bioinformatics, Oxford University Press
IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB).
Journal of Computational Biology, Mary Ann
Liebert, Inc, Publishers

Note: Many biology journals publish articles related
to bioinformatics, e.g., Science, Nature, Nucleic
Acids Research, Journal of Molecular Biology,
Proceedings of the National Academy of Sciences
(PNAS), etc. In particular Nucleic Acid Research
publishes a compendium of URL’s in its yearly
January issue.

Yearly Conferences
RECOMB, Research in Computational Molecu-
lar Biology
IEEE Computer Society Bioinformatics Confer-
ence
PSB Pacific Symposium on Biocomputing
ISMB Intelligent Systems for Molecular Biology

Articles and Books
ABELSON, H., ALLEN, D., COORE, D., HANSON, C., HOMSY,

G. KNIGHT, JR., . T. F., NAGPAL, R., RAUCH, E.,
SUSSMAN, G. J., AND WEISS, R. 1995. Amor-
phous Computing. Commun. ACM.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

Bioinformatics—An Introduction for Computer Scientists 157

ALBERTS, B., BRAY, D., JOHNSON, A., LEWIS, J., RAFF,
M., ROBERTS, K., AND WALTER, F. 2004. Essen-
tial Cell Biology, 2nd ed. Garland Publishing.

ASHBURNER, M. AND GOODMAN, N. 1997. Informat-
ics: Genome and genetic databases. Curr. Op.
Gen. Develop. 7, 750–756.

BALDI, P. AND BRUNAK, S. 2002. Bioinformat-
ics: The Machine Learning Approach, MIT
Press.

BAR-JOSEPH, Z., GERBER, G., GIFFORD, D., AND JAAKKOLA,
T. 2002. A new approach to analyzing gene ex-
pression time series data. In RECOMB The Sixth
Annual International Conference on Research in
Computational Molecular Biology.

BAXEVANIS, A., AND OUELLETTE, B. F. F. (EDS.). 1998.
Bioinformatics: A Practical Guide to the Analysis
of Genes and Proteins. Wiley, New York.

BENNETT, C., LI, M., AND MA, B. 2003. Linking chain
letters. Sci. Amer. (June) 77–81.

BROWN, M. P. S., GRUNDY, W. N., LIN, D., CRISTIAN-
INI, N., SUGNET, C. W., FUREY, T. S., ARES, JR.,
M. AND HAUSSLER, D. 2000. Knowledge-based
analysis of microarray gene expression data us-
ing support vector machines. Proc. Nat. Acad.
Sci. 97, 1, 262–267.

CAMPBELL, A. M. AND HEYER, L. 2002. Discovering
Genomics, Proteomics and BioInformatics. Ben-
jamin Cummings.

CLAVERIE, J. M. AND NOTREDAME, C. 2003. Bioinfor-
matics for Dummies. Wiley, New York.

COHEN, J. 2001. Classification of approaches used
to study cell regulation: Search for a unified view
using constraints and machine learning. Elec-
tronic Transactions in Artificial Intelligence, Ma-
chine Intelligence 18. Linköping Electronic Arti-
cles in Computer and Information Science ISSN
1401-9841, 6(025).

COHEN, J. 2003. Guidelines for establishing under-
graduate bioinformatics courses. J. Sci. Educat.
Tech. 12, 4 (Dec.) 449–456.

DEJONG, H. 2002. Modeling and simulation of ge-
netic regulatory systems: A literature review. J.
Comput. Biol. 9, 1, 67–103.

DELCHER, A., KASIF, S., FLEISCHMANN, R. D., PETERSON,
J., WHITE, O., AND SALZBERG, S. L. 1999. Align-
ment of whole genomes. Nucl. Acid Res. 27, 11,
2369–2376.

DUENWALD, M. 2003. Gene is linked to susceptibil-
ity to depression. The New York Times, July 18,
Sect. A, Page 14, Col. 1.

DURBIN, R., EDDY, S., KROGH, A., AND MITCHISON,
G. 1998. Biological Sequence Analysis. Cam-
bridge University Press, Cambridge, Mass.

DWYER, R. A. 2002. Genomic Perl: From Bioinfor-
matics Basics to Working Code. Cambridge Uni-
versity Press, Cambridge, Mass.

FELSENSTEIN, J. 2003. Inferring Phylogenies, Sin-
auer Associates.

FRIEDMAN, N., LINIAL, M., NACHMAN, I., PEER, D. 2000.
Using Bayesian networks to analyze expression

data. In Proceedings RECOMB—Computational
Molecular Biology, pp. 127–135.

GILBERT, D. R., WESTHEAD, D. R., NAGANO, N., AND

THORNTON, J. M. 1999. Motif-based searching
in TOPS protein topology databases. Bioinfor-
matics 5, 4, 317–326. Also see http://www.sander.
embl-ebi.ac.uk/tops/.

GONICK, L. AND WHEELIS, M. 1991. A Cartoon Guide
to Genetics. Harper Perennial.

GOODMAN, N. 2002. Biological data becomes com-
puter literate: new advances in bioinformatics.
Curr. Op. Biotech. 13, 66–71.

GUSFIELD, D. 1997. Algorithms on Strings, Trees,
and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press.

HAND, D. J., MANNILA, H., AND SMYTH, P. 2000. Prin-
ciples of Data Mining. MIT Press, Cambridge,
Mass.

HUSON, D. H., REINERT, K., AND MYERS, E. W. 2002.
The greedy path-merging algorithm for contig
scaffolding. J. ACM 49, 5 (Sept.), 603–615.

JAIN, A., MURTY, M., AND FLYNN, P. 1999. Data clus-
tering: A review. ACM Comput. Surv. 31, 3, 264–
323.

JONES, N. C. AND PEVZNER, P. A. 2004. An Introduc-
tion to Bioinformatics Algorithms, MIT Press,
Cambridge, Mass.

KARP, P. 2001. Pathway databases: A case study
in computational symbolic theories. Science 293,
2040–2044.

KELLY, H. C. 2003. Terrorism and the biology lab.
New York Times Op-Ed Page, July 2.

KNUTH, D. E. 1993. Computer Literacy Bookshops
Interview (Dec.) (Available at http://dmoz.org/
Computers/History/Pioneers/Knuth, Donald/).

KRANE, D. AND RAYMER, M. 2003. Fundamen-
tal Concepts of BioInformatics. Benjamin
Cummings.

KROGH, A. 1998. An introduction to hidden
Markov models for biological sequences. In
S. L. Salzberg, D. B. Searls, and S. Kasif (eds.),
Computational Methods in Molecular Biology.
Elsevier, Amsterdam, The Netherlands, pp.
45–63.

KUIPERS, B. J. 1994. Qualitative Reasoning: Mod-
eling and Simulation with Incomplete Knowl-
edge. MIT Press, Cambridge, Mass.

LATHROP, R. H. AND SMITH, T. F. 1996. Global opti-
mum protein threading with gapped alignment
and empirical pair potentials. J. Molec. Biol. 255,
641–665.

LI, H., HELLING, R., TANG, C., AND WINGREEN, N. 1996.
Emergence of preferred structures in a sim-
ple model of protein folding. Science 273, 666–
669.

LIANG, S., FUHRMAN, S., AND SOMOGYI, R. 1998. RE-
VEAL, A general reverse engineering algorithm
for inference of genetic network architectures. In
Pacific Symposium on Biocomputing 3, pp. 18–
29.

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

158 J. Cohen

LODISH, H., BERK, A., MATSUDAIRA, P., KAISER, C. A.,
KRIEGER, M., SCOTT, M. P., ZIPURSKY, L., AND

DARNELL, J. 2003. Molecular Cell Biology.
W.H. Freeman.

LUSCOMBE, N. M., GREENBAUM, D., AND GERSTEIN,
M. 2001. What is bioinformatics? A proposed
definition and overview of the field. Methods
Inf. Med. 40, 346–358 (Also available at http://
bioinfo.mbb.yale.edu/papers/).

MILLER, W. 2001. Comparison of genomic DNA se-
quences: Solved and unsolved problems. Bioin-
formatics 17, 5, 391–397.

MITCHELL, T. 1997. Machine Learning, McGraw
Hill, New York.

MOUNT, D. W. 2001. Bioinformatics: Sequence and
Genome Analysis, Cold Spring Harbor Press,
Cold Spring Harbor, N.Y.

MYERS, E. 1999. Whole genome DNA-sequencing.
IEEE Computat. Eng. Sci. 3, 1, 33–43.

ORENGO, C. A., JONES, D. T., AND THORNTON, J. M.
2003. Bioinformatics: Genes, Proteins and
Computers. BIOS Scientific Publishers, Oxford,
England.

PARSONS, R. J., FORREST, S., AND BURKS, C. 1995. Ge-
netic algorithms, operators, and DNA fragment
assembly. Mach. Learn. 21, 1–2, 11–33. (Also see
paper by Parsons in Computational Methods in
Molecular Biology, S. L. Salzberg, D. B. Searls,
and S. Kasif (Eds.). Elsevier, Amsterdam, The
Netherlands, 1998.)

PEVSNER, J. 2003. Bioinformatics and Functional
Genomics. Wiley-Liss.

PEVZNER, P. A. 2000. Computational Molecular Bi-
ology: An Algorithmic Approach. MIT Press,
Cambridge, Mass.

RABINER, L. R. 1989. A tutorial on hidden Markov
models and selected applications in speech
recognition. Proc. IEEE 77, 2, 257–286.

REGEV, E. AND SHAPIRO, E. 2002. Cellular abstrac-
tions: Cells as computation. Nature 419 (Sept.),
419–443.

RIVAS, E. AND EDDY, S. R. 2000. The language of
RNA: A formal grammar that includes pseudo
knots. Bioinformatics 18, 4, 334–340.

SALZBERG, S. L., SEARLS, D. B., AND KASIF, S., EDS.
1998. Computational Methods in Molec-
ular Biology. Elsevier, Amsterdam, The
Netherlands.

SCHWARTZ, S., ZHANG, Z., FRAZER, K. A., SMIT, A.,
RIEMER, C., BOUCK, J., GIBBS, R., HARDISON, R., AND

MILLER, W. 2000. PipMaker—A web server for
aligning two genomic DNA sequence. Genome
Res. 10, 4 (Apr.), 577–586.

SEARLS, D. B. 1992. The linguistics of DNA. Amer.
Sci. 80, 579–591.

SEARLS, D. B. 1998. Grand challenges in compu-
tational Biology. In Computational Methods in
Molecular Biology, S. L. Salzberg, D. B. Searls,
and S. Kasif, Eds. Elsevier Amsterdam, The
Netherlands.

SEARLS, D. B. 2002. The language of genes. Nature
420 (November), 211–217.

SETUBAL, J. AND MEIDANIS, J. 1997. Introduction to
Computational Molecular Biology, PWS Pub-
lishing.

THIERRY-MIEG, N. 2000. Protein-protein interac-
tion prediction for C. elegans: In Knowl-
edge Discovery in Biology, Workshop at the
PKDD2000 (Conference on Principles and Prac-
tice of Knowledge Discovery in Databases) (Lyon,
France, Sept.).

THOMPSON, J. D., HIGGINS, D. G., AND GIBSON, T. J.
1994. CLUSTAL W: Improving the sensitiv-
ity of progressive multiple sequence alignment
through sequence weighting, positions-specific
gap penalties and weight matrix choice. Nuc.
Acid Res. 22, 4673–4680.

TOMITA, M., HASHIMOTO, K., TAKAHASHI, K., SHIMIZU,
T. S., MATSUZAKI, Y., MIYOSHI, F., SAITO, K., TANIDA,
S., YUGI, K., VENTER, J. C., AND HUTCHINSON III,
C. A. 1999. E-CELL: Software environment
for whole cell simulation. Bioinformatics 15, 1,
72–84.

WATERMAN, M. S. 1995. Introduction to Computa-
tional Biology: Maps, Sequences and Genomes.
CRC Press.

WATSON, J. D. AND BERRY, A. 2003. DNA: The Secret
of Life. Knopf.

WETHERELL, C. S. 1980. Probabilistic languages: A
review and some open questions. ACM Comput.
Surv. 12, 4, 361–379.

ZUKER, M. AND STIEGLER, P. 1981. Optimal com-
puter folding of large RNA sequences us-
ing thermodynamics and auxiliary informa-
tion. Nuc. Acids Res. 9, 133–148. (Also see
http://www.bioinfo.rpi.edu/∼zukerm/).

Received July 2003; accepted August 2004

ACM Computing Surveys, Vol. 36, No. 2, June 2004.

