Finding software bugs with the
Clang Static Analyzer

Ted Kremenek, Apple Inc.

Findings Bugs with Compiler Techniques

Findings Bugs with Compiler Techniques

Compile-time warnings
% clang t.c

t.c:38:13: warning: invalid conversion '%lb’
printf("%s%lb%d", "unix", 10, 20);
oo A\ oo~

Findings Bugs with Compiler Techniques

Compile-time warnings
% clang t.c

t.c:38:13: warning: invalid conversion '%lb’
printf("%s%lb%d", "unix", 10, 20);

NNNNANNNN

Static Analysis

» Checking performed by compiler warnings inherently limited
* Find path-specific bugs

» Deeper bugs: memory leaks, buffer overruns, logic errors

Benefits of Static Analysis

Benefits of Static Analysis

Early discovery of bugs

* Find bugs early, while the developer is hacking on their code
* Bugs caught early are cheaper to fix

Benefits of Static Analysis

Early discovery of bugs

* Find bugs early, while the developer is hacking on their code
* Bugs caught early are cheaper to fix

Systematic checking of all code

» Static analysis reasons about all corner cases

Benefits of Static Analysis

Early discovery of bugs

* Find bugs early, while the developer is hacking on their code
* Bugs caught early are cheaper to fix

Systematic checking of all code

» Static analysis reasons about all corner cases

Find bugs without test cases

 Useful for finding bugs in hard-to-test code
* Not a replacement for testing

This Talk: Clang “Static Analyzer”

Clang-based static analysis tool for finding bugs
* Supports C and Objective-C (C++ in the future)
Outline

e Demo
e How It works

* Design and implementation

* Looking forwarc

This Talk: Clang “Static Analyzer”

Clang-based static analysis tool for finding bugs
* Supports C and Objective-C (C++ in the future)
Outline

e Demo
e How It works

* Design and implementation

* Looking forwarc

http://clang.llvm.org

http://clang.llvm.org
http://clang.llvm.org

How does static analysis work?

How does static analysis work?

» Can catch bugs with different degrees of analysis sophistication

How does static analysis work?

» Can catch bugs with different degrees of analysis sophistication
* Per-statement, per-function, whole-program all important

How does static analysis work?

» Can catch bugs with different degrees of analysis sophistication
* Per-statement, per-function, whole-program all important

int f(int y) { compiler warnings (simple checks)
int x;
% gcc -Wall -01 -c t.c
1f (y) t.c: In function ‘f’:
X = 1; t.c:5: warning: ‘x’ may be used uninitialized 1in

this function
printf("%d\n", y);
% clang -warn-uninit-values t.c
return x; t.c:13:12: warning: use of uninitialized variable

} return x;
A

How does static analysis work?

int f(int y) {
int x;

it (y)
x = 1;

orintf("%d\n", y);

return Xx;

}

How does static analysis work?

control-flow graph

. . .tX'
int f(int y) { nt X,

int x; if Cy)

it (y)

X =13 X = 1;

printf("%d\n", y);

return Xx;
; printf(“%d\n”, y);

return Xx;

How does static analysis work?

control-flow graph

. . . t X
int f(int y) { nt X,
int x; if Cy)
if (y) /
X =13 X = 1;
printf("%d\n", y);
return Xx;
} printf(“%d\n”, y);

return Xx;

How does static analysis work?

control-flow graph

int f(int y) { LTE 2%
int x; if Cy)
if (y) /
x =1 X = 1;
The bug occurs on this feasible path
printf("%d\n", y);
return Xx;
; printf(“%d\n”, y);

return Xx;

How does static analysis work?

int f(int y) {
int x;

it (y)
x = 1;

orintf("%d\n", y);

return Xx;

}

How does static analysis work?

int x;
if (y)
int f(int y) { X = 1;
int x;
if (y)
X =1;
orintfC"%d\n", y); pmntf(%d\n”, y);
it (y)
if (y)
return X;
return vy; return X;
ks

return y,

How does static analysis work?

int x;
it Cy)

X =1;

N

printf(“%d\n”, y);
1t (Cy)

return X;

return y;

How does static analysis work?

. % gcc -Wall -01 -c t.c

1nt X; t.c: In function ‘f’:

1f (y) t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c

x = 1; t.c:13:12: warning: use of uninitialized variable
return Xx;
A

printf(“%d\n”, y);
it (y)

return X;

return y;

How does static analysis work?

. % gcc -Wall -01 -c t.c

1nt X; t.c: In function ‘f’:

1f (y) t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c

XS t.c:13:12: warning: use of uninitialized variable
return Xx;
A
printf(“%d\n”, y); Two feasible paths:
if Cy)
return X;

return y;

How does static analysis work?

. % gcc -Wall -01 -c t.c

1nt X; t.c: In function ‘f’:

1f (y) t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c

X =13 t.c:13:12: warning: use of uninitialized variable
return Xx;
A
printFC“%d\n”, y); Two feasible paths:
1f :
() - Neither branch taken (y == 0)
return X;

return y;

How does static analysis work?

. % gcc -Wall -01 -c t.c

1nt X; t.c: In function ‘f’:

1f (y) t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c

x = 1; t.c:13:12: warning: use of uninitialized variable
return Xx;
A
orintf(“%d\n”, y); Two feasible paths:
1f
2 » Neither branch taken (y == 0)
- Both branches taken (y !=0)
return X;

return y;

How does static analysis work?

int x;
it Cy)

X =1;

N

printf(“%d\n”, y);
1t (y)

return X;

return y;

How does static analysis work?

- Bogus warning occurs on infeasible path:
int Xx;

if (y) - Don't take first branch (y == 0)

- Take second branch (y = 0)

printf(“%d\n”, y);
1t (y)

return X;

return y;

How does static analysis work?

False Positives (Bogus Errors)

False Positives (Bogus Errors)

» False positives can occur due to analysis imprecision
- False paths

- Insufficient knowledge about the program

False Positives (Bogus Errors)

» False positives can occur due to analysis imprecision
- False paths

- Insufficient knowledge about the program

* Many ways to reduce false positives
- More precise analysis

- Difficult to eliminate false positives completely

Flow-Sensitive Analyses

Flow-Sensitive Analyses

* Flow-sensitive analyses reason about flow of values

y = 1;
X =Y+ 2; // X ==

Flow-Sensitive Analyses

* Flow-sensitive analyses reason about flow of values

1;
y + 2; // x ==

y
X

* No path-specific information

1f (X == 0)

++X ; // X == 7
else

X = 2; // X =2

Yy = X, //X==?,y==?

Flow-Sensitive Analyses

* Flow-sensitive analyses reason about flow of values

y
X

1;
y + 2, // x =3

* No path-specific information

1f (x == 0)
++X; // X == 7
else
X = 2; // X =2
y = X; // X =7,y =7

* LLVM'’s SSA form designed for flow-sensitive algorithms

Flow-Sensitive Analyses

* Flow-sensitive analyses reason about flow of values

1;
y + 2; // x ==

y
X

* No path-specific information

1f (x == 0)
++X; // X == 7
else
X = 2; // X =2
y = X; // X =7,y =7

* LLVM'’s SSA form designed for flow-sensitive algorithms

* Linear-time algorithms
- Used by optimization algorithms and compiler warnings

Path-Sensitive Analyses

Path-Sensitive Analyses

» Reason about individual paths and guards on branches

1f (x == 0)

++X; // X ==
else

X = 2; // X ==

y = X; // (X=1, y=1)or (X =2, y == 2)

Path-Sensitive Analyses

» Reason about individual paths and guards on branches

1f (x == 0)
++X; // X ==
else
X = 2; // X ==
y = X; // (X=1, y=1)or (X =2, y == 2)

* Uninitialized variables example:
= Path-sensitive analysis picks up only 2 paths

- No false positive

Path-Sensitive Analyses

» Reason about individual paths and guards on branches

1f (x == 0)
++X; // X ==
else
X = 2; // X ==
y = X; // (X ==1, y=1) or X ==2, y == 2)

* Uninitialized variables example:
= Path-sensitive analysis picks up only 2 paths

- No false positive

* Worst-case exponential-time
- Complexity explodes with branches and loops

- Lots of clever tricks to reduce complexity in practice

Path-Sensitive Analyses

» Reason about individual paths and guards on branches

1f (x == 0)
++X; // x == 1
else
X = 2; // X == 2
y = X; // (X ==1, y=1) or X ==2, y == 2)

* Uninitialized variables example:
= Path-sensitive analysis picks up only 2 paths

- No false positive

* Worst-case exponential-time
- Complexity explodes with branches and loops

- Lots of clever tricks to reduce complexity in practice

» Clang static analyzer uses flow- and path-sensitive analyses

Finding leaks in Objective-C code

Memory Management in Objective-C

Objective-C in a Nutshell

* Used to develop Mac/iPhone apps
» C with object-oriented programming extensions

Memory management

* Objective-C objects have embedded reference counts
* Reference counts obey strict ownership idiom
* Garbage collection also available... but there are subtle rules

Ownership Idiom

Ownership Idiom

// Allocate an NSString. Since the object 1s newly allocated,

// ‘str’ 1s an owning reference (+1 retain count).

NSString* str = [[NSString alloc] initWithCString:“hello world”
encoding:NSASCIIStringEncoding];

Ownership Idiom

// Allocate an NSString. Since the object 1s newly allocated,

// ‘str’ 1s an owning reference (+1 retain count).

NSString* str = [[NSString alloc] initWithCString:“hello world”
encoding:NSASCIIStringEncoding];

// Pass ‘str’ to ‘foo’. ‘foo’ may increment the retain
// count, but we are still obligated to decrement the +1
// count we have because ‘str’ 1s an owning reference.
foo(str);

Ownership Idiom

// Allocate an NSString. Since the object 1s newly allocated,

// ‘str’ 1s an owning reference (+1 retain count).

NSString* str = [[NSString alloc] initWithCString:“hello world”
encoding:NSASCIIStringEncoding];

// Pass ‘str’ to ‘foo’. ‘foo’ may increment the retain
// count, but we are still obligated to decrement the +1
// count we have because ‘str’ 1s an owning reference.
foo(str);

// We’re done using str. Decrement our ownership count.
[str release];

Ownership Idiom

// Allocate an NSString. Since the object 1s newly allocated,

// ‘str’ 1s an owning reference (+1 retain count).

NSString* str = [[NSString alloc] initWithCString:“hello world”
encoding:NSASCIIStringEncoding];

// Pass ‘str’ to ‘foo’. ‘foo’ may increment the retain
// count, but we are still obligated to decrement the +1
// count we have because ‘str’ 1s an owning reference.
foo(str);

// We’re done using str. Decrement our ownership count.

Memory Leak: Colloquy

- (void) interpretKeyEvents: (NSArray *) eventArray {

[1] Method returns an object with a +1 retain count (owning reference). |

NSMutableArray *newArray = [[NSMutableArray allocWithZone:nil] 1init];
NSEnumerator *e = [eventArray objectEnumerator];
NSEvent *anEvent = nil;

| [2] Taking true branch. ‘|

if(! [self isEditable]) {

[3] Object allocated on line 34 and stored into 'newArray' is no longer referenced after this point and has a retain count of +1
(object leaked).

[super interpretKeyEvents:eventArray];
return;

Ownership DFA

Ownership DFA

Ownership DFA

retaln retaln retain
ﬁ

«—

Ownership DFA

retaln retaln retain
ﬁ
_

* release

[Released j

— (e

* release

[Released j

Ownership DFA

retain
—

release
_

any use
S

Use after
Release

retain
—

release

retain
s

release
_

— ()

* release

[Released j

Ownership DFA

retain
——

release
_

any use

Use after
Release

retaln retain
ﬁ

release release
_

A memory leak occurs when we no
longer reference an (@wned) pointer

Ownership DFA

N
retain retain retain
. - release release release
* release
Released any use Use after A memory leak occurs when we no
—_—) Release longer reference an (@wned) pointer
y,
\
(elly retam (elly
ﬁ ﬁ
-Owned
release release release
_ _
* release
Invalid A leak occurs when we no longer reference
Release a (Gowned) pointer with an excess retain count

Miscellanea

Checker-specific issues

* Autorelease pools
* Objective-C 2.0 Garbage Collection

* APl-specific ownership rules
* Educational diagnostics

Analysis issues

* Aliasing

* Plenty of room for improvement

Checker Results

» Used internally at Apple

* Announced in June 2008 (WWDC()
- Hundreds of downloads of the static analyzer

- Thousands of bugs found

Some Implementation Details

Why Analyze Source Code?

Bug-finding requires excellent diagnostics

* Tool must explain a bug to the user
» Users cannot fix bugs they don't understand
* Need rich source and type information

What about analyzing LLVM IR?

* Loss of source information

* High-level types discarded

« Compiler lowers language constructs

» Compiler makes assumptions (e.qg., order of evaluation)

Clang Libraries

Clang Libraries

Clang Libraries

Analysis

libAnalysis

libAnalysis

Intra-Procedural Analysis

* Source-level Control-Flow Graphs (CFGs)

* Flow-sensitive dataflow solver
= Live Variables

« Uninitialized Values

* Path-sensitive dataflow engine
« Retain/Release checker

- Logic bugs (e.g., null dereferences)

* Various checks and analyses
- Dead stores

« API checks

libAnalysis

libAnalysis

Path Diagnostics (Bug-Reporting)

* PathDiagnosticClient
- Abstract interface to implement a “view” of bug reports
- Separates report visualization from generation
- HTMLDiagnostics (renders HTML, uses libRewrite)

* BugReporter

- Helper class to generate diagnostics for
PathDiagnosticClient

Looking Forward

* Richer Diagnostics

* Inter-procedural Analysis (IPA)

 Lots of Checks

» Scriptability
* Multiple Analysis Engines

Looking Forward

* Richer Diagnostics
* Inter-procedural Analysis (IPA)

 Lots of Checks

» Scriptability
* Multiple Analysis Engines

http://clang.llvm.org

http://clang.llvm.org
http://clang.llvm.org

