Finding software bugs with the Clang Static Analyzer

Ted Kremenek, Apple Inc.

Findings Bugs with Compiler Techniques

Findings Bugs with Compiler Techniques

Compile-time warnings

```
% clang t.c

t.c:38:13: warning: invalid conversion '%lb'
printf("%s%lb%d", "unix", 10, 20);
~~~^^~~~~
```

Findings Bugs with Compiler Techniques

Compile-time warnings

```
% clang t.c

t.c:38:13: warning: invalid conversion '%lb'
printf("%s%lb%d", "unix", 10, 20);
~~~^^~~~
```

Static Analysis

- Checking performed by compiler warnings inherently limited
- Find path-specific bugs
- Deeper bugs: memory leaks, buffer overruns, logic errors

Early discovery of bugs

- Find bugs early, while the developer is hacking on their code
- Bugs caught early are cheaper to fix

Early discovery of bugs

- Find bugs early, while the developer is hacking on their code
- Bugs caught early are cheaper to fix

Systematic checking of all code

Static analysis reasons about all corner cases

Early discovery of bugs

- Find bugs early, while the developer is hacking on their code
- Bugs caught early are cheaper to fix

Systematic checking of all code

Static analysis reasons about all corner cases

Find bugs without test cases

- Useful for finding bugs in hard-to-test code
- Not a replacement for testing

This Talk: Clang "Static Analyzer"

Clang-based static analysis tool for finding bugs

Supports C and Objective-C (C++ in the future)

Outline

- Demo
- How it works
- Design and implementation
- Looking forward

This Talk: Clang "Static Analyzer"

Clang-based static analysis tool for finding bugs

Supports C and Objective-C (C++ in the future)

Outline

- Demo
- How it works
- Design and implementation
- Looking forward

http://clang.llvm.org

Demo

• Can catch bugs with different degrees of analysis sophistication

- Can catch bugs with different degrees of analysis sophistication
- Per-statement, per-function, whole-program all important

- Can catch bugs with different degrees of analysis sophistication
- Per-statement, per-function, whole-program all important

```
int f(int y) {
  int x;

  if (y)
    x = 1;

  printf("%d\n", y);

  return x;
}
```

compiler warnings (simple checks)

```
% gcc -Wall -01 -c t.c
t.c: In function 'f':
t.c:5: warning: 'x' may be used uninitialized in
this function

% clang -warn-uninit-values t.c
t.c:13:12: warning: use of uninitialized variable
    return x;
```

```
int f(int y) {
  int x;

if (y)
    x = 1;

printf("%d\n", y);

return x;
}
```

control-flow graph

```
int f(int y) {
  int x;

  if (y)
    x = 1;

  printf("%d\n", y);

  return x;
}
```


control-flow graph

```
int f(int y) {
  int x;

  if (y)
    x = 1;

  printf("%d\n", y);

  return x;
}
```


control-flow graph

```
int f(int y) {
  int x;

  if (y)
    x = 1;

  printf("%d\n", y);

  return x;
}
```



```
int f(int y) {
  int x;

if (y)
    x = 1;

printf("%d\n", y);

return x;
}
```

```
int f(int y) {
  int x;

if (y)
    x = 1;

printf("%d\n", y);

if (y)
  return x;

return y;
}
```


Two feasible paths:

Two feasible paths:

• Neither branch taken (y == 0)


```
% gcc -Wall -O1 -c t.c
t.c: In function 'f':
t.c:5: warning: 'x' may be used uninitialized in
this function

% clang -warn-uninit-values t.c
t.c:13:12: warning: use of uninitialized variable
    return x;
```

Two feasible paths:

- Neither branch taken (y == 0)
- Both branches taken (y != 0)

Bogus warning occurs on infeasible path:

- Don't take first branch (y == 0)
- Take second branch (y != 0)

False Positives (Bogus Errors)

False Positives (Bogus Errors)

- False positives can occur due to analysis imprecision
 - False paths
 - Insufficient knowledge about the program

False Positives (Bogus Errors)

- False positives can occur due to analysis imprecision
 - False paths
 - Insufficient knowledge about the program
- Many ways to reduce false positives
 - More precise analysis
 - Difficult to eliminate false positives completely

• Flow-sensitive analyses reason about flow of values

$$y = 1;$$

 $x = y + 2;$ // $x == 3$

Flow-sensitive analyses reason about flow of values

```
y = 1;

x = y + 2; // x == 3
```

No path-specific information

Flow-sensitive analyses reason about flow of values

```
y = 1;

x = y + 2; // x == 3
```

No path-specific information

• LLVM's SSA form designed for flow-sensitive algorithms

Flow-Sensitive Analyses

Flow-sensitive analyses reason about flow of values

```
y = 1;

x = y + 2; // x == 3
```

No path-specific information

- LLVM's SSA form designed for flow-sensitive algorithms
- Linear-time algorithms
 - Used by optimization algorithms and compiler warnings

Reason about individual paths and guards on branches

• Reason about individual paths and guards on branches

- Uninitialized variables example:
 - Path-sensitive analysis picks up only 2 paths
 - No false positive

Reason about individual paths and guards on branches

- Uninitialized variables example:
 - Path-sensitive analysis picks up only 2 paths
 - No false positive
- Worst-case exponential-time
 - Complexity explodes with branches and loops
 - Lots of clever tricks to reduce complexity in practice

Reason about individual paths and guards on branches

- Uninitialized variables example:
 - Path-sensitive analysis picks up only 2 paths
 - No false positive
- Worst-case exponential-time
 - Complexity explodes with branches and loops
 - Lots of clever tricks to reduce complexity in practice
- Clang static analyzer uses flow- and path-sensitive analyses

Finding leaks in Objective-C code

Memory Management in Objective-C

Objective-C in a Nutshell

- Used to develop Mac/iPhone apps
- C with object-oriented programming extensions

Memory management

- Objective-C objects have embedded reference counts
- Reference counts obey strict ownership idiom
- Garbage collection also available... but there are subtle rules

Memory Leak: Colloquy

```
32
     - (void) interpretKeyEvents:(NSArray *) eventArray {
33
                                      [1] Method returns an object with a +1 retain count (owning reference).
              NSMutableArray *newArray = [[NSMutableArray allocWithZone:nil] init];
34
              NSEnumerator *e = [eventArray objectEnumerator];
35
              NSEvent *anEvent = nil;
36
37
             [2] Taking true branch.
              if( ! [self isEditable] ) {
38
                    [3] Object allocated on line 34 and stored into 'newArray' is no longer referenced after this point and has a retain count of +1
                    (object leaked).
39
                         [super interpretKeyEvents:eventArray];
                        return;
40
41
42
```


Miscellanea

Checker-specific issues

- Autorelease pools
- Objective-C 2.0 Garbage Collection
- API-specific ownership rules
- Educational diagnostics

Analysis issues

- Aliasing
- Plenty of room for improvement

Checker Results

- Used internally at Apple
- Announced in June 2008 (WWDC)
 - Hundreds of downloads of the static analyzer
 - Thousands of bugs found

Some Implementation Details

Why Analyze Source Code?

Bug-finding requires excellent diagnostics

- Tool must explain a bug to the user
- Users cannot fix bugs they don't understand
- Need rich source and type information

What about analyzing LLVM IR?

- Loss of source information
- High-level types discarded
- Compiler lowers language constructs
- Compiler makes assumptions (e.g., order of evaluation)

Clang Libraries

Clang Libraries

Clang Libraries

Intra-Procedural Analysis

- Source-level Control-Flow Graphs (CFGs)
- Flow-sensitive dataflow solver
 - Live Variables
 - Uninitialized Values
- Path-sensitive dataflow engine
 - Retain/Release checker
 - Logic bugs (e.g., null dereferences)
- Various checks and analyses
 - Dead stores
 - API checks

Path Diagnostics (Bug-Reporting)

- PathDiagnosticClient
 - Abstract interface to implement a "view" of bug reports
 - Separates report visualization from generation
 - HTMLDiagnostics (renders HTML, uses libRewrite)
- BugReporter
 - Helper class to generate diagnostics for PathDiagnosticClient

Looking Forward

- Richer Diagnostics
- Inter-procedural Analysis (IPA)
- Lots of Checks
- Scriptability
- Multiple Analysis Engines

Looking Forward

- Richer Diagnostics
- Inter-procedural Analysis (IPA)
- Lots of Checks
- Scriptability
- Multiple Analysis Engines

http://clang.llvm.org