
Finding software bugs with the
Clang Static Analyzer

Ted Kremenek, Apple Inc.

Findings Bugs with Compiler Techniques

Findings Bugs with Compiler Techniques
Compile-time warnings

% clang t.c

t.c:38:13: warning: invalid conversion '%lb'
 printf("%s%lb%d", "unix", 10, 20);
         ~~~~^~~~~



Findings Bugs with Compiler Techniques
Compile-time warnings

Static Analysis

• Checking performed by compiler warnings inherently limited
• Find path-specific bugs
• Deeper bugs: memory leaks, buffer overruns, logic errors

% clang t.c

t.c:38:13: warning: invalid conversion '%lb'
  printf("%s%lb%d", "unix", 10, 20);
         ~~~~^~~~~


Benefits of Static Analysis

Benefits of Static Analysis

Early discovery of bugs

• Find bugs early, while the developer is hacking on their code
• Bugs caught early are cheaper to fix

Benefits of Static Analysis

Early discovery of bugs

• Find bugs early, while the developer is hacking on their code
• Bugs caught early are cheaper to fix

Systematic checking of all code

• Static analysis reasons about all corner cases

Benefits of Static Analysis

Early discovery of bugs

• Find bugs early, while the developer is hacking on their code
• Bugs caught early are cheaper to fix

Systematic checking of all code

• Static analysis reasons about all corner cases

Find bugs without test cases

• Useful for finding bugs in hard-to-test code
• Not a replacement for testing

This Talk: Clang “Static Analyzer”

Clang-based static analysis tool for finding bugs

• Supports C and Objective-C (C++ in the future)

Outline

• Demo
• How it works
• Design and implementation
• Looking forward

This Talk: Clang “Static Analyzer”

Clang-based static analysis tool for finding bugs

• Supports C and Objective-C (C++ in the future)

Outline

• Demo
• How it works
• Design and implementation
• Looking forward

http://clang.llvm.org

http://clang.llvm.org
http://clang.llvm.org

Demo

How does static analysis work?

How does static analysis work?
• Can catch bugs with different degrees of analysis sophistication

How does static analysis work?
• Can catch bugs with different degrees of analysis sophistication
• Per-statement, per-function, whole-program all important

How does static analysis work?
• Can catch bugs with different degrees of analysis sophistication
• Per-statement, per-function, whole-program all important

compiler warnings (simple checks)

% gcc -Wall -O1 -c t.c
t.c: In function ‘f’:
t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c
t.c:13:12: warning: use of uninitialized variable
 return x;
 ^

int f(int y) {
 int x;

 if (y)
 x = 1;

 printf("%d\n", y);

 return x;
}

How does static analysis work?

int f(int y) {
 int x;

 if (y)
 x = 1;

 printf("%d\n", y);

 return x;
}

How does static analysis work?

int f(int y) {
 int x;

 if (y)
 x = 1;

 printf("%d\n", y);

 return x;
}

int x;
if (y)

x = 1;

printf(“%d\n”, y);
return x;

control-flow graph

How does static analysis work?

int x;
if (y)

x = 1;

printf(“%d\n”, y);
return x;

control-flow graph

int f(int y) {
 int x;

 if (y)
 x = 1;

 printf("%d\n", y);

 return x;
}

How does static analysis work?

int x;
if (y)

x = 1;

printf(“%d\n”, y);
return x;

control-flow graph

The bug occurs on this feasible path

int f(int y) {
 int x;

 if (y)
 x = 1;

 printf("%d\n", y);

 return x;
}

How does static analysis work?

int f(int y) {
 int x;

 if (y)
 x = 1;

 printf("%d\n", y);

}
 return x;

How does static analysis work?

int f(int y) {
 int x;

 if (y)
 x = 1;

 printf("%d\n", y);

 if (y)

}

 return x;

 return y; return x;

return y;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

How does static analysis work?

return y;

return x;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

% gcc -Wall -O1 -c t.c
t.c: In function ‘f’:
t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c
t.c:13:12: warning: use of uninitialized variable
 return x;
 ^

How does static analysis work?

return y;

return x;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

% gcc -Wall -O1 -c t.c
t.c: In function ‘f’:
t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c
t.c:13:12: warning: use of uninitialized variable
 return x;
 ^

Two feasible paths:

How does static analysis work?

return y;

return x;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

How does static analysis work?

return x;

return y;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

% gcc -Wall -O1 -c t.c
t.c: In function ‘f’:
t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c
t.c:13:12: warning: use of uninitialized variable
 return x;
 ^

Two feasible paths:

• Neither branch taken (y == 0)

How does static analysis work?

return x;

return y;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

% gcc -Wall -O1 -c t.c
t.c: In function ‘f’:
t.c:5: warning: ‘x’ may be used uninitialized in
this function

% clang -warn-uninit-values t.c
t.c:13:12: warning: use of uninitialized variable
 return x;
 ^

Two feasible paths:

• Neither branch taken (y == 0)

• Both branches taken (y != 0)

How does static analysis work?

return x;

return y;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

How does static analysis work?

return x;

return y;

printf(“%d\n”, y);
if (y)

int x;
if (y)

x = 1;

Bogus warning occurs on infeasible path:

• Don’t take first branch (y == 0)

• Take second branch (y != 0)

How does static analysis work?

False Positives (Bogus Errors)

False Positives (Bogus Errors)
• False positives can occur due to analysis imprecision

■ False paths
■ Insufficient knowledge about the program

False Positives (Bogus Errors)
• False positives can occur due to analysis imprecision

■ False paths
■ Insufficient knowledge about the program

• Many ways to reduce false positives
■ More precise analysis
■ Difficult to eliminate false positives completely

Flow-Sensitive Analyses

Flow-Sensitive Analyses
• Flow-sensitive analyses reason about flow of values

y = 1;
x = y + 2; // x == 3

Flow-Sensitive Analyses
• Flow-sensitive analyses reason about flow of values

• No path-specific information

y = 1;
x = y + 2; // x == 3

if (x == 0)
 ++x; // x == ?
else
 x = 2; // x == 2
y = x; // x == ?, y == ?

Flow-Sensitive Analyses
• Flow-sensitive analyses reason about flow of values

• No path-specific information

• LLVM’s SSA form designed for flow-sensitive algorithms

y = 1;
x = y + 2; // x == 3

if (x == 0)
 ++x; // x == ?
else
 x = 2; // x == 2
y = x; // x == ?, y == ?

Flow-Sensitive Analyses
• Flow-sensitive analyses reason about flow of values

• No path-specific information

• LLVM’s SSA form designed for flow-sensitive algorithms
• Linear-time algorithms

■ Used by optimization algorithms and compiler warnings

y = 1;
x = y + 2; // x == 3

if (x == 0)
 ++x; // x == ?
else
 x = 2; // x == 2
y = x; // x == ?, y == ?

Path-Sensitive Analyses

Path-Sensitive Analyses
• Reason about individual paths and guards on branches

if (x == 0)
 ++x; // x == 1
else
 x = 2; // x == 2
y = x; // (x == 1, y == 1) or (x == 2, y == 2)

Path-Sensitive Analyses
• Reason about individual paths and guards on branches

• Uninitialized variables example:
■ Path-sensitive analysis picks up only 2 paths
■ No false positive

if (x == 0)
 ++x; // x == 1
else
 x = 2; // x == 2
y = x; // (x == 1, y == 1) or (x == 2, y == 2)

Path-Sensitive Analyses
• Reason about individual paths and guards on branches

• Uninitialized variables example:
■ Path-sensitive analysis picks up only 2 paths
■ No false positive

• Worst-case exponential-time
■ Complexity explodes with branches and loops
■ Lots of clever tricks to reduce complexity in practice

if (x == 0)
 ++x; // x == 1
else
 x = 2; // x == 2
y = x; // (x == 1, y == 1) or (x == 2, y == 2)

Path-Sensitive Analyses
• Reason about individual paths and guards on branches

• Uninitialized variables example:
■ Path-sensitive analysis picks up only 2 paths
■ No false positive

• Worst-case exponential-time
■ Complexity explodes with branches and loops
■ Lots of clever tricks to reduce complexity in practice

• Clang static analyzer uses flow- and path-sensitive analyses

if (x == 0)
 ++x; // x == 1
else
 x = 2; // x == 2
y = x; // (x == 1, y == 1) or (x == 2, y == 2)

Finding leaks in Objective-C code

Memory Management in Objective-C

Objective-C in a Nutshell

• Used to develop Mac/iPhone apps
• C with object-oriented programming extensions

Memory management

• Objective-C objects have embedded reference counts
• Reference counts obey strict ownership idiom
• Garbage collection also available... but there are subtle rules

Ownership Idiom

Ownership Idiom

// Allocate an NSString. Since the object is newly allocated,
// ‘str’ is an owning reference (+1 retain count).
NSString* str = [[NSString alloc] initWithCString:“hello world”
 encoding:NSASCIIStringEncoding];

Ownership Idiom

// Allocate an NSString. Since the object is newly allocated,
// ‘str’ is an owning reference (+1 retain count).
NSString* str = [[NSString alloc] initWithCString:“hello world”
 encoding:NSASCIIStringEncoding];

// Pass ‘str’ to ‘foo’. ‘foo’ may increment the retain
// count, but we are still obligated to decrement the +1
// count we have because ‘str’ is an owning reference.
foo(str);

Ownership Idiom

// Allocate an NSString. Since the object is newly allocated,
// ‘str’ is an owning reference (+1 retain count).
NSString* str = [[NSString alloc] initWithCString:“hello world”
 encoding:NSASCIIStringEncoding];

// Pass ‘str’ to ‘foo’. ‘foo’ may increment the retain
// count, but we are still obligated to decrement the +1
// count we have because ‘str’ is an owning reference.
foo(str);

// We’re done using str. Decrement our ownership count.
[str release];

Ownership Idiom

// Allocate an NSString. Since the object is newly allocated,
// ‘str’ is an owning reference (+1 retain count).
NSString* str = [[NSString alloc] initWithCString:“hello world”
 encoding:NSASCIIStringEncoding];

// Pass ‘str’ to ‘foo’. ‘foo’ may increment the retain
// count, but we are still obligated to decrement the +1
// count we have because ‘str’ is an owning reference.
foo(str);

// We’re done using str. Decrement our ownership count.
// LEAK!

Memory Leak: Colloquy

7/29/08 11:08 PM/Users/resistor/Downloads/Colloquy/Views/MVTextView.m

Page 1 of 7file:///Volumes/Data/Users/kremenek/Desktop/ColloquyAnalysis/Colloquy/report-shpnE5.html#EndPath

[1] Method returns an object with a +1 retain count (owning reference).

[2] Taking true branch.

[3] Object allocated on line 34 and stored into 'newArray' is no longer referenced after this point and has a retain count of +1

(object leaked).

Bug Summary

File: Views/MVTextView.m

Location: line 39, column 3

Description: Memory Leak

Code is compiled without garbage collection.

Annotated Source Code

1 #import "MVTextView.h"

2 #import "JVTranscriptFindWindowController.h"

3

4 @interface MVTextView (MVTextViewPrivate)

5 - (BOOL) checkKeyEvent:(NSEvent *) event;

6 - (BOOL) triggerKeyEvent:(NSEvent *) event;

7 @end

8

9 #pragma mark -

10

11 @implementation MVTextView

12 - (id)initWithFrame:(NSRect)frameRect textContainer:(NSTextContainer *)aTextContainer {

13 if((self = [super initWithFrame:frameRect textContainer:aTextContainer]))

14 defaultTypingAttributes = [[NSDictionary allocWithZone:] init];

15 return self;

16 }

17

18 - (void) dealloc {

19 [defaultTypingAttributes release];

20 defaultTypingAttributes = ;

21

22 [_lastCompletionMatch release];

23 _lastCompletionMatch = ;

24

25 [_lastCompletionPrefix release];

26 _lastCompletionPrefix = ;

27

28 [super dealloc];

29 }

30

31 #pragma mark -

32

33 - (void) interpretKeyEvents:(NSArray *) eventArray {

34 NSMutableArray *newArray = [[NSMutableArray allocWithZone:] init];

35 NSEnumerator *e = [eventArray objectEnumerator];

36 NSEvent *anEvent = ;

37

38 if(! [self isEditable]) {

39 [super interpretKeyEvents:eventArray];

40 return;

41 }

42

43 while((anEvent = [e nextObject])) {

44 if([self checkKeyEvent:anEvent]) {

45 if([newArray count] > 0) {

46 [super interpretKeyEvents:newArray];

nil

nil

nil

nil

nil

nil

Ownership DFA

Ownership DFA

Owned (+1)

Ownership DFA

Owned (+2) Owned (+3)

retain

release

retain

release

retain

release
Owned (+1)

Ownership DFA

Released

release

Owned (+2) Owned (+3)

retain

release

retain

release

retain

release
Owned (+1)

Ownership DFA

Use after
Release

any useReleased

release

Owned (+2) Owned (+3)

retain

release

retain

release

retain

release
Owned (+1)

Ownership DFA

Use after
Release

any useReleased

release

Owned (+2) Owned (+3)

retain

release

retain

release

retain

release
Owned (+1)

A memory leak occurs when we no
longer reference an pointerOwned

Ownership DFA

Use after
Release

any useReleased

release

Owned (+2) Owned (+3)

retain

release

retain

release

retain

release
Owned (+1)

A memory leak occurs when we no
longer reference an pointerOwned

¬Owned ¬Owned (+1) ¬Owned (+2)

Invalid
Release

retain

release

retain

release

release

retain

release

A leak occurs when we no longer reference
a pointer with an excess retain count¬Owned

Miscellanea

Checker-specific issues

• Autorelease pools
• Objective-C 2.0 Garbage Collection
• API-specific ownership rules
• Educational diagnostics

Analysis issues

• Aliasing
• Plenty of room for improvement

Checker Results
• Used internally at Apple
• Announced in June 2008 (WWDC)

■ Hundreds of downloads of the static analyzer
■ Thousands of bugs found

Some Implementation Details

Why Analyze Source Code?

Bug-finding requires excellent diagnostics

• Tool must explain a bug to the user

• Users cannot fix bugs they don’t understand
• Need rich source and type information

What about analyzing LLVM IR?

• Loss of source information
• High-level types discarded
• Compiler lowers language constructs
• Compiler makes assumptions (e.g., order of evaluation)

Clang Libraries

Clang Libraries

App LibrariesCore Libraries

Analysis

Rewrite

AST

Parse

Lex

Basic

CLI Driver IDE ?

LLVMGen

Sema

App LibrariesCore Libraries

Analysis

Rewrite

AST

Parse

Lex

Clang Libraries

Basic

CLI Driver IDE ?

LLVMGen

Sema

libAnalysis

libAnalysis

Intra-Procedural Analysis

• Source-level Control-Flow Graphs (CFGs)
• Flow-sensitive dataflow solver

■ Live Variables
■ Uninitialized Values

• Path-sensitive dataflow engine
■ Retain/Release checker
■ Logic bugs (e.g., null dereferences)

• Various checks and analyses
■ Dead stores
■ API checks

libAnalysis

libAnalysis

Path Diagnostics (Bug-Reporting)

• PathDiagnosticClient
■ Abstract interface to implement a “view” of bug reports
■ Separates report visualization from generation
■ HTMLDiagnostics (renders HTML, uses libRewrite)

• BugReporter
■ Helper class to generate diagnostics for
PathDiagnosticClient

Looking Forward
• Richer Diagnostics
• Inter-procedural Analysis (IPA)
• Lots of Checks
• Scriptability
• Multiple Analysis Engines

Looking Forward
• Richer Diagnostics
• Inter-procedural Analysis (IPA)
• Lots of Checks
• Scriptability
• Multiple Analysis Engines

http://clang.llvm.org

http://clang.llvm.org
http://clang.llvm.org

