
CONCATENATIVE PROGRAMMING
An Overlooked Paradigm in Functional Programming

Dominikus Herzberg
Department of Software Engineering, Heilbronn University

Max-Planck-Str. 39, 74081 Heilbronn, Germany
herzberg@hs-heilbronn.de

Tim Reichert
School of Computing, Engineering & Information Sciences, Northumbria University

Pandon Building, Camden Street, Newcastle Upon Tyne, United Kingdom
tim.reichert@unn.ac.uk

Keywords: language-oriented programming, functional programming, concatenative languages

Abstract: Based on the state of our ongoing research into Language-Driven Software Development (LDSD) and
Language-Oriented Programming (LOP) we argue that the yet relatively unknown paradigm of concatena-
tive programming is valuable for fundamental software engineering research and might prove to be a suitable
foundation for future programming. To be sound, we formally introduce Concat, our research prototype of a
purely functional concatenative language. The simplicity of Concat is contrasted by its expressiveness and a
richness of inspiring approaches. Concatenative languages contribute a fresh and different sight on functional
programming, which might help tackle challenges in LDSD/LOP from a new viewpoint.

1 INTRODUCTION

One of our main themes of research is Language-
Driven Software Development (LDSD) and
Language-Oriented Programming (LOP). It is
about how the creation and use of languages might
help us in building and engineering complex software
systems. As a matter of fact, LDSD/LOP is a growing
field of interest as is manifested by the research on
Domain Specific Languages (DSLs), Model-Driven
Development (MDD), generative software devel-
opment and software factories, to name just a few
areas.

In order to experiment with language layers and
domain specific specializations and to test our con-
ceptions and hypotheses, we made use of languages
which are regarded as flexible and easily adaptable.
Among these languages were Lisp/Scheme, Prolog
and Smalltalk. Their interactive nature and their late-
binding features due to dynamic typing turned out to
be helpful in the setting of a “laboratory situation” for
language experimentation. Still, some experiments
turned out to fail e.g. applying extreme refactoring
or attempting to uncover hidden design intentions in
code. We felt having something in our way; a problem
we could neither clearly pinpoint nor sketch a solution
for. There was something “wrong” with the languages

we used.
When we made contact with so-called concatena-

tive programming languages things began to fall into
place. As a result, we developed our own concate-
native language called Concat. We benefited a lot
from using the concatenative paradigm and still do;
our work on Concat is research in progress. Concat
is a language that is “as simple as possible, but no
simpler” – to paraphrase a quote attributed to Albert
Einstein – but still useful and practical.

Our claim is that concatenative languages are (a)
ideally suited for language experimentation and (b)
worth to be applied in software engineering because
of its unique features.

The features that characterize and distinguish
Concat in particular and concatenative languages in
general are:

• Concat is a functional language (no explicit
states) with static types and type inference. A
concatenative language can also be dynamically
typed and work without type inference; some vari-
ants are also functionally impure

• Concat is a language one can interactively work
with on the console; we regard interactivity as es-
sential for an experimental approach to LDSD and
LOP

herzberg
Textfeld
Accepted Paper Submission, 4th International Conference on Software and Data Technologies (ICSOFT),26-29 July, 2009, Sofia, Bulgaria (http://www.icsoft.org)

• Concat is homoiconic, i.e. code can be treated as
data and data as code

• Concat has a very simple syntax. Programs are
created by concatenating words and so-called
quotations, and there are just three tokens with
special meaning: whitespace, [and]

• Similarily, Concat has very simple semantics. We
distinguish the level of words and quotations from
the level of functions processing stacks

• Both levels of Concat maintain a relationship
called a homomorphism; that means that there is
a structure preserving mapping from the syntactic
level of words and quotations to the semantic level
of functions and stacks
There are immediate implications that follow from

these characteristics: (1) Concat has a sound mathe-
matical foundation, which enables formal treatment
and reasoning over programs. (2) There are no vari-
able bindings in Concat, that means there are no struc-
tural ties beyond the homomorphism mentioned. And
that has two other important consequences especially
for code engineering: (3) Concat supports macros out
of the box without further ado. (4) One can cut out
any fragment of code at whitespaces. Presumed that
you leave the code within squared brackets intact, any
such fragment still represents a valid program. This is
something, which is impossible in, say, Java, C#, Lisp
or Haskell. Concat enables code reuse and refactoring
of code to an extent unknown in other languages.

We think that Concat offers many interesting
properties. We formally define Concat in Sec. 3 after
we have briefly touched upon related work in Sec. 2.
We hold the view that concatenative languages de-
serve much more attention than is the case. They are
inspiring, usable and practical despite and because of
their simplicity, see Sec. 4 – a position surely debat-
able. We draw some conclusions in Sec. 5.

2 RELATED WORK

Much of the foundational work on concatenative lan-
guages was done by Manfred von Thun in conjunction
with the development of the Joy language.1 Today,
several implementations of concatenative languages
exist. Cat is a purely functional language that unlike
Joy and like Concat supports static type checking.2

Factor is a programming language designed for use
in practice. It has a concatenative core and supports
object-oriented programming.3

1http://www.latrobe.edu.au/philosophy/phimvt
2http://www.cat-language.com
3http://factorcode.org

Concatenative languages are closely related to
stack-based languages.4 The former are characterized
by the homomorphic relationship between words/
quotations and functions, the latter by the use of a
stack as the central concept in the execution model.
A language may be both stack-based and concatena-
tive, but this must not necessarily be the case. Forth
(Rather et al., 1996) and PostScript (Adobe Systems
Inc., 1999) are popular “high-level” stack-based lan-
guages that are not concatenative. Several assem-
bly and intermediate languages also use a stack-based
model of execution.

In a concatenative language, even those words
that may intuitively be perceived as data, for exam-
ple numbers and strings, denote functions. Thus, con-
catenative languages are not only functional in the
sense that functions have no side effects, but also in
the sense that “everything is a function”. This form of
purity and the non-existence of variables relates them
closely to function-level programming as defined in
(Backus, 1978) and the point-free style of functional
programming (Gibbons, 1999).

3 FORMAL FOUNDATIONS

In this section we will define the concatenative lan-
guage Concat. Due to space limitations we restrict our
presentation to a dynamically typed version of Con-
cat. Actually, Concat is statically typed enabling the
programmer to define arbitrary types as encodings.

A specialty of concatenative languages is that
there is the level of words and quotations (Sec. 3.1
and 3.2) and the level of functions and stacks (Sec. 3.3
and 3.4). Both levels have their own concepts and
their own semantics. However, the levels are con-
structed in such a way that there is a close relationship
between the two (Sec. 3.5).

3.1 Words and Quotations

On the syntactic level, Concat is defined by only
some few concepts: vocabularies of words, quota-
tions, stack pools, programs, concatenation and sub-
stitution.

Definition 3.1 (Vocabulary of Words) A vocab-
ulary is a set of elements V = {w1,w2, . . .}; its
elements are called words.

A quotation is recursively defined as:

Definition 3.2 (Quotation) Let [] be the empty quo-
tation. Given a vocabulary V of words, a quotation

4http://concatenative.org

q using V is a finite sequence of elements written as
q = [s1 s2 s3 . . .] with each element being either a
word of V or a quotation using V .

Definition 3.3 (Stack Pool) Given a vocabulary V ,
the stack pool SV is the set of all possible quotations
using V .

Definition 3.4 (Program) A program in a concate-
native language is an element p of the program space
PV , p ∈ PV ⊆ SV .

Any program is a quotation but not every quota-
tion is a (valid) program.

Definition 3.5 (Concatenation) The binary opera-
tion of concatenation ⊕ : SV × SV → SV corresponds
to list concatenation.

The concatenation of two programs results in a
new program. The following properties hold with
p, p′, p′′ ∈ SV :

p⊕ []⇔ []⊕ p⇔ p

(p⊕ p′)⊕ p′′⇔ p⊕ (p′⊕ p′′)⇔ p⊕ p′⊕ p′′

The first property declares the empty quotation as
the neutral element of concatenation, the second prop-
erty is the law of associativity. Programs and their
concatenation constitute a monoid.

For the sake of a simpler notation, we replace the
concatenation operator ⊕ by a whitespace character,
and do not use the outer squared brackets for pro-
grams.

Definition 3.6 (Substitution Rule) Given a vocabu-
lary V , a substitution rule r is a unique mapping from
one program to another program: r : Sn

V → Sm
V with

m,n ∈ N\{0}.
Now we have everything together to define a

generic substitution system that rewrites concatena-
tions. The execution semantics are fairly simple.

Definition 3.7 (Substitution Evaluation) Given
a sequence of substitution rules and a program,
substitution evaluation is defined as follows: walk
through the sequence of substitution rules, rewrite
the program if there is a match (probing from right
to left!) and repeat this process until no more
substitution rules apply.

Before we advance to the level of functions, we
would like to provide some simple examples of sub-
stitution rules. The attentive reader might notice that
the rules look very much like operators written in
postfix position. This is for a good reason, which
will become clear when we talk about the connection
to the function level. The rightmost position on the
left-hand side of a substitution rule almost always is a
word. Substitutions essentially dispatch from right to
left.

3.2 Examples of Substitution Rules

Substitution rules have a left-hand side (LHS) and a
right-hand side (RHS). Inside substitution rules, capi-
tal letters prefixed by a $, # or @ denote variables used
for matching words and quotations on the LHS and
for value replacement on the RHS. If prefixed by $,
the variable matches a single word only. If prefixed by
#, a single word or quotation is matched. If prefixed
by @, any number of words or quotations is matched.

The following rule defines a swap operation. Re-
member that the concatenation operator⊕ is replaced
by whitespace for improved readability and that the
outer squared brackets are implicit:

#X #Y swap ==> #Y #X

On the LHS #X and #Y match the two words or
quotations preceding swap in a given concatenation.
On the RHS, the recognized words or quotations are
inserted in their corresponding places. Take for exam-
ple the concatenation “2 [3 4] swap”, which is
resolved by applying the above rule to “[3 4] 2”.

The following substitution rules might help get an
idea how simple but powerful the substitution system
is.

[@REST #TOP] call ==> @REST #TOP
[@X] [@Y] append ==> [@X @Y]
true [@TRUE] [@FALSE] if ==> [@TRUE] call
false [@TRUE] [@FALSE] if ==> [@FALSE] call
#X dup ==> #X #X

The first rule, call, calls a quotation by dequoting
it i.e. by releasing the content of the quotation. Syn-
tactically, this is achieved by removing the squared
brackets. The second rule, append, takes two quota-
tions (including empty quotations) and appends their
content in a new quotation. The third and fourth rule
define the behavior of if. If there is a true followed
by two quotations, the quotation for truth is called; if
false matches, the failure quotation is called. Appar-
ently, quotations can be used to defer execution. The
last rule simply duplicates a word or quotation.

Due to space limitations we cannot show nor
prove that some few substitution rules suffice to have
a Turing complete rewriting system. Substitution
rules play the role macros have in other languages
such as Lisp/Scheme.

3.3 Functions and Stacks

The concepts on the semantic level of functions and
stacks parallel the concepts on the syntactic level. On
the one hand there are words, quotations and concate-
nations, on the other hand there are functions, quota-
tion functions and function compositions. The empty

quotation is mapped on the identity function. We will
discuss this structural similarity in Sec. 3.5.

Definition 3.8 (Pool of Stack Functions) Given a
stack pool SV , a pool of stack functions F (SV ,SV) is
the set of all stack functions f : SV → SV .

Definition 3.9 (Quotation Function) Given a quo-
tation q ∈ SV , the corresponding quotation function
fq ∈ F (SV ,SV) is defined to be

fq(s)→ s⊕q⊕ append ∀s ∈ SV

A function that throws its representation as a word
onto a stack is called constructor function or con-
structor for short.

Definition 3.10 (Function Composition) Given a
stack pool SV , the composition of two functions
f ,g ∈ F (SV ,SV) with f : A → B, g : B → C and
A,B,C ⊆ SV is defined by the composite function
g ◦ f : A → C. The following properties hold with
f ,g,h ∈ F (SV ,SV):

f ◦ Id⇔ Id ◦ f ⇔ f

(h◦g)◦ f ⇔ h◦ (g◦ f)⇔ h◦g◦ f

That means that Id is the neutral element of func-
tion composition and that function composition is as-
sociative. Function composition constitutes a monoid
as well.

From the above definition of function composition
we can deduce the definition of the identity function:

Definition 3.11 (Identity Function) For any vocab-
ulary V , the identity function Id ∈ F (SV ,SV) is de-
fined as Id(s)→ s for all s ∈ SV .

We can now compute results with a given compo-
sition of stack functions and quotation functions.

Definition 3.12 (Function Evaluation) Given
a stack pool SV , the evaluation of a function
f ∈ F (SV ,SV) with f : A → B and A,B ⊆ SV is
defined to be the application of f on some s ∈ A:
f (s).

3.4 Examples of Function Definitions

In the context of functions, we refer to quotations as
stacks. A function in Concat expects a stack and re-
turns a stack. It will take some values from the input
stack, do some computation and possibly leave some
results on the input stack to be returned.

Function definitions look like substitution rules.
The rightmost position on the LHS is a word denoting
the name of a function. Everything else that follows
to the left are pattern matchers picking up words and
quotations from the stack. The position next to the
function name stands for the top of the stack, then
comes the position underneath etc.

$X $Y + ==> #<(+ $X $Y)>#

In the example, $Y expects a word on top of the
stack and picks it up; $X picks up the word under-
neath. If there are more words or quotations on the
stack, they are left untouched. The RHS of a function
definition says that the top two values on the input
stack are replaced by a single new word or quotation,
which is the result of some computation enclosed in
#< and >#.

Within these delimiters a computation can be
specified in any suitable language; we use Scheme in
this example. Before the computation is executed, the
items picked up by $X and $Y are filled into the tem-
plate at the corresponding places.

A function definition can also be read as having a
so-called stack effect (and so can substitution rules):
The function + takes two words from the stack and
pushes a single word onto the stack. Looking at stack
effects helps in selecting functions that fit for func-
tion composition. A function or composite function
cannot consume more items from a stack than there
are.

If a suitable language for specifying computations
is used, function composition can be directly imple-
mented by combining and rewriting the templates.
That is one reason why we have chosen Scheme as
the specification language for functions. To provide
an example, take the definition to compute the inverse
of a number:

$X inverse ==> #<(/ 1 $X)>#

The concatenation “+ inverse” can – on the
functional level – be automatically derived as a com-
posite function:

$X1 $X2 + inverse ==> #<(/ 1 (+ $X1 $X2))>#

Here, $X1 and $X2 are automatically generated
by Concat. If template rewriting is too complicated
to achieve in another target language, the behavioral
effect of function composition can be simulated by
passing a stack step by step from one function to an-
other.

Any of the above substitution rules (Sec. 3.2) can
also be defined as function definitions. One example,
although rather trivial, demonstrates this for dup. The
two values pushed onto the stack are “computed” on
the function level.

#X dup ==> #< #X ># #< #X >#

3.5 Connecting the Levels

The previous section already indicates that the level
of words and quotations (the syntactic level of Con-
cat) and the level of functions and stacks (the semantic

level) are connected. As a matter of fact, we establish
a mapping from programs to functions and from con-
catenation to function composition. Mathematically
speaking, this is called a homomorphism.

There is a subtle detail. The homomorphism im-
plies that the search strategy looking for substitution
matches must scan a concatenation from right to left.
On each word or quotation we look through the list
of substitution rules top down for a match. After a
successful substitution has occurred, the search might
continue to the left or start over again at the right. The
first way (continuing) has the same effect, function
composition has. The second way (starting over) is
equivalent to passing a stack from function to func-
tion i.e. without really making use of function com-
position. Either way, the lookup for matching substi-
tutions has to restart top down again.

When writing programs in Concat, we have the
choice to either define substitutions that work on a
purely syntactical level by rewriting concatenations of
words and quotations. Or we define functions whose
operational behavior is outside the reach of Concat
– it is done in another computational world Concat
has only an interface with but no more. For Concat,
functions and composite functions are black boxes.
Interestingly, we can seamlessly combine substitution
and function evaluation.

The two approaches to interpret a given concate-
nation lead to two different readings. Take the follow-
ing example, a simple addition:

3 0 +

Notationally, all there is are words and quota-
tions. Assumed that there is the substitution rule
“$X 0 + ==> $X”, the result on the word/quotation
level is mechanically retrieved as 3. On the level of
functions, all there is are functions and stacks. So 3 is
a constructor function that takes a stack and pushes a
unique representation of itself – the word(!) 3 – onto
the stack and returns the changed stack. So does 0.
Taken together with the function +, function compo-
sition results in a function accepting some stack and
leaving 3 on top. On this level, we experience a stack
being passed from function to function. This is also
called trace mode.

A slightly more complicated example is the fol-
lowing concatenation:

6 5 dup [3 >] call [+] [*] if

The word dup duplicates 5 and call unquotes
[3 >], leading to 6 5 5 3 > [+] [*] if.
Assumed that a function definition for > (greater than)
is given, 5 3 > results in true. Now if rewrites
the concatenation to 6 5 [+] call. The result of
6 5 + is 11.

4 THINKING CONCATENATIVE

The following subsections aim to inspire the reader
of the richness that lurks behind the concatenative
paradigm. We barely scratch the surface on a subject
worth further investigation.

4.1 Pattern Recognition Agents

The input to Concat can be viewed as a static but
possibly very long sequence of words and quotations.
Substitution rules and function definitions could be
viewed as agents working on the input. Each agent
has some sensors that allow the agent to recognize
a set of specific subsequences of words/quotations
somewhere in a program. If a pattern is recognized,
the agent takes the input sensed, transforms it into a
new sequence of words and quotations and replaces
the input by the transformation.

Essentially, there is a pool of agents ready to pro-
cess any subsequence they find a match for. This
model has some similarities with biochemical pro-
cesses. Let us take protein biosynthesis in a cell of a
living organism as an example. After a copy of the
DNA has been created (transcription), complex or-
ganic molecules called ribosomes scan the code of the
DNA copy in a way comparable to pattern matching.
The ribosomes read a series of codons as an instruc-
tion of how to make a protein out of an sequence of
amino acids (translation). These processes could be
understood as numerous computing agents working
together.

It is an interesting observation that Concat can be
used in a way that is close to how nature works in
creating complex living systems. This might inspire a
lot of interesting and interdisciplinary research ques-
tions. Also cognitive processes rely very much on pat-
tern recognition.

4.2 Stream Processing

Another, dynamic view is to regard the input to Con-
cat being continuously filled with new words and quo-
tations at the outmost right and added to the top of the
stack, respectively. A continuous stream of words and
quotations flows in. With a certain lookahead Concat
applies substitution rules and function definitions as
usual. Any context information needed for process-
ing the stream must be either left on top of the stack.
Or we introduce a “meta-stack”, with the stream-stack
being on top, so that context information can be left
somewhere else on the meta-stack.

We have built a system called channel/filter/rule
(CFR) for advanced protocol analysis in computer

networks (Reichert et al., 2008). The incoming
stream of data stems from a recording or a live trace
of a monitoring device intercepting the communica-
tion of two or more interacting parties. Stateless se-
lection (filters) and stateful processing (rules) help in
abstracting and extracting information that represent
the information flow on the next protocol layer (chan-
nel). We suspect that such a stream processing system
can be easily realized with Concat. We have not done
a prototype, yet. This is research in progress.

4.3 Refinement & Process Descriptions

Refinement is a very important notion in computer
science, especially in the formal and theoretical
branch. As a matter of fact, refinement is a well-
understood concept. The formalization of refinement
dates back to the 1970s. Refinement is a means to
reduce underspecification. A specification S2 is said
to refine the behavior of a specification S1 if for each
input the output of S2 is also an output of S1. Seman-
tically, this notion is captured by logical implication.
The denotation [[S2]] implies [[S1]].

Programming languages typically do not support
refinement. However, it is trivial to provide refine-
ment in Concat, because it is built in: the notion of
refinement is captured by unidirectional substitution.

Some researchers bring the notion of refinement
and software development processes explicitly to-
gether; one prominent example is FOCUS (Broy and
Stølen, 2001). In a yet unpublished paper we show
that it is straight forward to formally describe devel-
opment processes in Concat using refinement. We be-
lieve Concat to be well-suited for process modeling.

4.4 Flexibility & Expressiveness

Another area for which we cannot take credit for is
a demonstration of the extreme flexibility of concate-
native languages – this is best shown by pointing to
Factor, a modern concatenative language implemen-
tation. Factor is dynamically typed and functionally
impure (for practical reasons) though functional pro-
gramming is a natural style in Factor. Its dominating
programming model is a stack being passed from one
function to the next.

Factor is powered by a kernel written in C++ of
about 13.000 lines of code. Everything else is writ-
ten in Factor itself. Factor’s syntax is extensible, it
has macros, continuations and a powerful collection
library.

Factor comes with an object system with inheri-
tance, generic functions, predicate dispatch and mix-
ins – all this is implemented in Factor. Lexical vari-

ables and closures are implemented as a loadable li-
brary – in Factor. An optimizing compiler outputs
efficient machine code – the compiler is written in
Factor. Bootstrapping the system helps all libraries
in Factor benefit from such optimizations. Right now,
Factor supports a number of OS/CPU combinations
among which are Windows, MacOS and Linux.

Programs in Factor are extremely short and com-
pact. Refactoring programs in Factor is easy as is in
any concatenative language: any fragment of words
can be factored out – hence the name “Factor”. These
features have helped the developers continuously im-
prove the code base and its libraries. Factor outper-
forms other scripting languages like Ruby, Groovy or
Python not only in runtime but also in the number of
features supported by the language.

5 CONCLUSIONS

Remarkably, the definition of Concat fits on a single
page of paper (Sec. 3.1/3.3). Yet, the concatenative
paradigm shows a lot of interesting features and in-
spiring approaches. We barely scratched the surface
of a subject worth further investigation and research.
We think that concatenative programming is a much
overlooked paradigm that deserves wider recognition.

ACKNOWLEDGEMENTS

Part of this work was supported by the Thomas
Gessmann-Stiftung.

REFERENCES
Adobe Systems Inc. (1999). PostScript language reference

(3rd ed.). Addison-Wesley.
Backus, J. (1978). Can programming be liberated from the

von Neumann style?: A functional style and its alge-
bra of programs. Commun. ACM, 21(8):613–641.

Broy, M. and Stølen, K. (2001). Specification and Devel-
opment of Interactive Systems: FOCUS on Streams,
Interfaces, and Refinement. Springer.

Gibbons, J. (1999). A pointless derivation of radix sort. J.
Funct. Program., 9(3):339–346.

Rather, E. D., Colburn, D. R., and Moore, C. H. (1996).
The evolution of Forth. History of programming lan-
guages, II:625–670.

Reichert, T., Klaus, E., Schoch, W., Meroth, A., and
Herzberg, D. (2008). A language for advanced proto-
col analysis in automotive networks. In Proceedings
of the 30th International Conference on Software En-
gineering (ICSE), pages 593–602. ACM.

