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The organisers asked me to explain V.Vatsal's theorem since it is a

beautiful application of Ratner's equidistribution theorem.

I Part I. Generalities.

I Part II. Proofs.

I Part III. How to catch the derivative?

I Part IV. What is a Landau-Siegel zero?

Thanks to Rodolphe Richard for enlighting discussions.

Part I

Description of the setting.

Main Theme.

Arithmetic data  Combinatorial data.

Asymptotic behaviour  Dynamics.



Data.

We give ourselves the following arithmetic data:

I A positive integer N. A modular newform f of level N and
weight 2. One may view it as a holomorphic 1-form on the
modular surface Γ0(N)\H.

I A fundamental negative discriminant D ≡ 1 mod 4. The
associated quadratic �eld K = Q(

√
D). χ an anticyclotomic

Grössencharacter of K .

L-functions.

One can construct the L-function L(s, f × χ). It is of degree 4. The
completed L-function has a functional equation relating the values
at s and 1− s by an epsilon factor,

Λ(s, f × χ) = ε(s, f × χ)Λ(1− s, f × χ).

Rough idea of the construction:

f lives on GL2/Q.
χ lives on GL1/K , and its associated theta series lives on GL2/Q.
The Rankin-Selberg convolution f × χ lives on GL4/Q.

In our situation, the root number is given by the Kronecker symbol,

ε(
1

2
, f × χ) = −(

D

N
) = ±1.

Langlands.

Huge machienery to create sequences of numbers (an) whose
generating functions

∑
n≥1

an
ns

- that are denoted L(s, π) - have

I nice properties: meromorphic continuation, �nite number of
poles, functional equation,

I deep properties: zero-free regions, Weyl's law, subconvex
bounds, special values,

I desperately expected properties: GRH, GRP.

The good object π appears to be a so called automorphic

representation of G (A) in L2(G (Q)\G (A)), where G is a reductive
group over Q.

Problematic.
The order of vanishing at the critical point is expected to have deep
arithmetic interpretation.
�An arithmetic property should be generically satis�ed unless there

is an obvious obstruction.�

From now on we place ourselves in the case

ε(
1

2
, f × χ) = +1,

and then there is no particular reason for L(1
2
, f × χ) to vanish, and

the conjecture is that it 'often' does not vanish. One needs to
specify sets of choices {(f , χ)} for the data, and make explicit what
is meant by 'often'.

remark: Another problem is worth mentioning. It is to exhibit an
L-function that does vanish. For example the following is not yet
proven:

There is an elliptic curve E/Q whose L-function vanishes to order

≥ 4 at the critical point.



We consider two interesting choices.
In both cases, f ∈ S2(N) is �xed while the Grössencharacter χ will
vary.

1. We consider the unrami�ed χ's. In other words χ is a
character of the class group ClD . Hence, for each D there are
hD such characters.
We want to estimate the number of nonvanishing twists when
D tends to −∞. Recall the size of the class group (Siegel's
bound)

|D|
1

2
−ε �ε hD � |D|

1

2 log |D|.

2. We �x the fundamental discriminant D and an auxilary prime
p. And we consider anticyclotomic Grössencharacters χ of
conductor pn. For each n, there are roughly hDp

n such
characters.
We want to estimate the number of nonvanishing twists as n
grows to in�nity.

Advertisement.

P. Michel, A. Venkatesh and myself have studied the �rst case and
obtained partial results. The methods rely on Duke's
equidistribution theorem and the tools are in the same �avour as
those seen in Harcos' lectures.

With the current technology we can only reach a nonvanishing for
|D|δ class group characters, which is weak compared to other
theorems on nonvanishing of lower degree L-functions. 'Usually' a
positive proportion of nonvanishing twists is achieved by mollifying

the family.

V. Vatsal's theorem

Theorem

If n is large enough, the critical values L(1
2
, f × χ) are nonzero for

all anticyclotomic Grössencharacters of conductor pn.

In other words, given the numbers (N,D, p), only a �nite number

of L(1
2
, f × χ) do vanish.

Asumptions.

The data (f ∈ S2(N),D, p) satisfy:

I (N,D) = 1.

I (p,ND) = 1.

I (D
N

) = −1.
Furthermore, we assume the following to simplify the exposition:

I p 6 |hD .
I D ≡ 1 (mod 4) and |D| is prime.

I N is the product of an odd number of inert primes.

I N ≡ 1 (mod 12).

I (D
p
) = −1.



Gross-Zagier formula.

I J-L. Walspurger prop.7 p.222 + local computations that no
one ever did!

I B. Gross and D. Zagier by an explicit computation.
Generalized by S-W. Zhang.

I K. Martin and D. Whitehouse using Jacquet's trace formula.

We have already seen the formula when f was a Maass form in
Harcos' lecture and the period here has the same shape.

Theorem

L(
1

2
, f × χ) =

c

|D|
1

2 · pn

∣∣∣∣∣∣
∑
σ∈Gn

χ(σ)ψ(zσ)

∣∣∣∣∣∣
2

.

c is a constant - which is roughly (f ,f )
(ψ,ψ) .

I'll explain what the ψ, Gn, z are in the next slides.

Eichler-Jacquet-Langlands correspondance.

Let B denote the quaternion algebra over Q rami�ed at ∞ and at
the primes dividing N. In terms of algebraic groups de�ned over Q,
B× is a compact inner form of GL2. Let's �x R0 a maximal order of
B .
The double coset

G := B×\B̂×/R̂0

×
,

is �nite and represents the set of conjugacy class of maximal orders
in B .
To give f ∈ S2(N) is equivalent to give a function

ψ : G → R.

Furthermore the fact that f is a cusp form translates into∑
v∈G

ψ(v) = 0.

Heegner points.

De�nition
A Heegner point z = (f ,R) of discriminant D is a B×-conjugacy
class of ring embeddings f : OK → R , where R is a maximal order
of B . f −1(R) is an order ODc2 in K whose level c is the level of z .

The Heegner points of discriminant D and level 1 on GL2 are the
ones we have seen in Harcos' lecture.

By forgetting the map f , we can associate to a Heegner point a
conjugacy class of maximal orders. We write ψ(z) for ψ(R) when
z = (f ,R).

The set of Heegner points of discriminant D and level pn is acted
upon freely and transitively by the group Gn. Hence after choosing
such a point z , {zσ}σ∈Gn

is the set of Heegner points of level pn.

Note that the period in the Gross-Zagier formula does not depend
on this choice.

One 'accident' explains why one can reach so strong a theorem.
If two characters are conjugate under Aut(C), then the algebraic

part of the L-values are also conjugate.

Because of this new symmetry if one nonvanishing forces the
nonvanishing of all the other conjugates.
With our asumptions, the set of characters of level pn whose
restriction to G1, χ|G1

is a �xed character χ1, are all conjugate
under Aut(C). We'll actually check that the sum is non-zero.

N :
.
=

∑
χ of level pn,
χ|G1

= χ1.

L(
1

2
, f × χ).

remark: The orbits of Aut(C) are very large. Indeed there are less
than hD(p + 1) orbits in Gn which is of size hD(p + 1)pn−1. On the
other hand, the characters of ClD ⊂ G1 need not be conjugate -
this reliers on the structure of the class group which is fairly
unknown. This explains why we only reach |D|δ nonvanishing of
class group characters in our setting 1.



Observation.

M :=
∑

χ of level ≤ pn,
χ|G1

= χ1.

(∗) L(1
2
, f × χ).

In preparing this talk, I found that one could simplify some technical
computations in V.Vatsal Inventiones' paper with the following

Proposition

If M has a limit as n tends to in�nity, then N does also and we

have:

lim
n→∞

N =
(p − 1)(p + 1)

p2
· [1− (

ap
p + 1

)2] · lim
n→∞

M .

Recall that the pth-Fourier coe�cient satis�es |ap| < p + 1 - a kind
of spectral gap - and for modular forms we have Ramanujan's
bound |ap| ≤ 2

√
p which is stronger.

The proof of the proposition follows the computations p.19, but
rearranging the terms in a better way.

By the Gross-Zagier formula, our partial average takes the form:

M
.
=

∑
χ : Gn → S1,
χ|G1

= χ1.

∣∣∣∣∣∣
∑
σ∈Gn

χ(σ)ψ(zσ)

∣∣∣∣∣∣
2

=

=
∑
τ∈G1

χ1(τ)
∑
σ∈Gn

ψ(zστ )ψ(zσ)
.
=:

∑
τ

χ1(τ)Mτ .

Proposition

(i) If τ = 1, (resp. FrobD) belongs to Gauss' genus group, then

Mτ → 1 (resp.
aD

D + 1
),

(ii) and if not,

Mτ → 0,

where all the limits are taken as n grows to in�nity.

This implies that M has a positive limit using again the spectral
bound |aD | < D + 1 and this implies Vatsal's theorem, as discussed
before - this dichotomy between diagonal - τ = 1 - and non
diagonal terms -τ 6= 1 - is very common in Analytic Number Theory.

Iwasawa's anticyclotomic setting.

OD = Z +
1 +

√
D

2
Z = {a + b

√
D

2
, a ≡ b (mod 2)}

is the ring of integers or the unique maximal order of K , while

ODp2n = {a + bpn
√
D

2
, a ≡ b (mod 2)}

is the order of level pn.

Gn = Pic(ODp2n) = K×\K̂×/Ô×
Dp2n

= Gal(Hn/K ).

One has G0 = ClD and |Gn| = hD(p + 1)pn−1. Recall that χ is an
anticyclotomic Grössencharacter of Q(

√
D) of level pn. We can

now explain what that means:

χ is a character of Gn that does not factor through Gn−1.

More about galois groups.

G0 = ClD .

Gn = G1 × Z/pn−1Z.

I ClD = G0 = Gal(HK/K ), where HK is the Hilbert class �eld.

I G1 has size hD(p + 1). It is the torsion subgroup of G in our
case.

I Gn = Pic(ODp2n). Gn ' G1 × Z/pn−1Z.
I In is the inertia group. It acts on Heegner points by 'rotation'.

I G = lim
→

Gn ' G1 × Zp.

HG1

∞ is called the anticyclotomic Zp-extension of K.

Class Field Theory provides a complete description of abelian
extension of number �elds.



p-Unfolding.
For the moment we have not taken into account enough the given
prime p. We now focus on this aspect.

Strong approximation shows that

G = B×\B̂×/R̂0

×
= Γ\PGL2(Qp)/PGL2(Zp),

where Γ = (R ⊗Z Z[ 1
p
])× is a lattice in PGL2(Qp).

The symmetric space T = PGL2(Qp)/PGL2(Zp) is the
Bruhat-Tits tree. It is the in�nite p + 1-regular tree. In this way,
the set G inherits the structure of a �nite graph.
We have already seen this kind of construction when Elon was
considering

PGL2(Z[
1

p
])\PGL2(R)×PGL2(Qp)/PGL2(Zp) ' PGL2(Z)\PGL2(R).

He projected everything on the real place. In our case, the group is
compact and the real place is not interesting and we instead project
to the place at p.

Aside.
The adgency matrix of a k-regular graph G, is the matrix indexed
by the vertices whose entries are given by the edges. It is
symmetric. All its eigenvalues are in [−k , k]. The eigenvalue k
exists and is simple i� the graph is connected. The eigenvalue −k
exists i� the graph is bi-partite. It has to be thought as the

Laplacian or the Hecke operator.

De�nition
A k-regular graph is called Ramanujan i� the non-trivial eigenvalues
λ of its adgency matrix satisfy |λ| ≤ 2

√
k − 1.

De�nition
Let δ > 0 and k be �xed. A family of (δ,k)-expander graphs is an
in�nite family of k-regular graphs whose non-trivial eigenvalues λ
satisfy |λ| ≤ k − δ.

Any in�nite family of Ramanujan graphs is expanding.
They were called Ramanujan because this spectral bound is
deduced from the Ramanujan conjecture for the Fourier coe�cients
of modular forms of arbitrary integral weight, proven by P. Deligne.
The condition |λ| ≤ 2

√
k − 1 is best possible. (J. Friedman)

Expanders.

They are heavily used in applied mathematics (networks). The
problem of their existence and explicit construction is a very
interesting one. Its solution intricates group theoretic and
arithmetic methods.

I They are shown to exist by a counting argument.

I First explicitely constructed by G. Margulis using Kazhdan's
(T) property of semisimple groups of rank ≥ 2.

I Ramanujan's graphs constructed before.

I Recently more combinatoric constructions have been provided
by Reingold-Vadhan-Widgerson or by
Bourgain-Gamburg-Sarnak.

[] A.Lubotzky Discrete groups, expanding graphs and invariant

measures.

To avoid loops, multi-edges and non-free actions, one can replace Γ
by a congruence sublattice. This is what V. Vatsal did - there is
some confusion in Vatsal's paper at this point, but if one takes the
integer M very large, everything is �ne.

Note also that in our case the lattice Γ does act freely because of
our asumption N ≡ 1 (mod 12). That's why we do not have any
weights wR corresponding to the order of the stabilizer in the
Gross-Zagier formula.

Let's recall two theorems of Ihara (see e.g. [Serre, Trees])

I A group acts freely on a tree i� it is free.

I A lattice in PGL2(Qp) is cocompact.



Normal forms.

We do the same construction for the Heegner points by 'unfolding
the Gross curve', a construction due to Bertolini-Darmon and
Vatsal. In a certain sense, one can view Heegner points as vertices
of the Bruhat-Tits tree. We do not get into the details but shall
describe the situation in the next slide.

T
∪

Gn 	 Heegner

The 'galois' action cannot be lifted to the whole symmetric space.
However one can do it partially. It is a very key point.

�Ergodic methods can be applied e�ciently if and only if the galois

action 'extends' or 'looks like' a geometric action on the whole

space.�

I guess A. Venkatesh will elaborate on this point next week.

We �x a Heegner point z of conductor pn.

Gn = In · G1.

We write an element of Gn as στ , τ ∈ G1, σ ∈ In. This is not
unique and introduces some redundance, but it doesn't matter
since G1 ∩ In has �x cardinality.

I We view In acting by rotation on z around a �xed vertex 0.

I For each τ ∈ G1, we can pick a good element gτ ∈ PGL2(Qp)
such that the Heegner point zστ is then represented by gτ · zσ,
for any σ ∈ In.

Summary.

We are left with the following objects

I A �nite graph covered by a p + 1-regular tree,
T → G = Γ\T .

I A 'modular form' ψ : G → R. Tpψ = ∆ψ = apψ.

I A vertex 0 and a point z at distance n. The points {zσ}σ∈In
are all the vertices at distance n from 0.

I Elements gτ ∈ PGL2(Qp), τ ∈ G1 that act on the tree.

We need to evaluate, for each τ ∈ G1, the expression

Mτ
.
=

∑
σ∈In

ψ(zσ)ψ(gτ · zσ),

as n grows to in�nity.

Γ and gτΓg
−1
τ are commensurable i� τ = 1 or Frob(D).

Part II

Proofs. (given on the blackboard)



Diagonal terms.

To prove the �rst assertion of the proposition, when τ = 1, one
needs to prove he following

Claim 1: The Heegner points {zσ}σ∈In equidistributes on G as n
tends to in�nity.

Proof. One interprets these Heegner points as the endpoints of
nonbacktracking path of length n from the origin. Then the claim
follows from properties of the adgency matrix A(G ), which uses
only the fact that the regular graph G is connected and not
bipartite.

The analysis when τ = FrobD is the same and we now turn to the
remaining cases where τ 6= 1,FrobD so that Γ and gτΓg

−1
τ are not

commensurable.

Non-diagonal terms.
Claim 2: The Heegner points {(zσ, gτ · zσ)}σ∈In equidistributes on
G × G as n tends to in�nity.

Proof. Let's introduce the lattice Γ′ := Γ× gτΓg
−1
τ in

G = PGL2(Qp)× PGL2(Qp) and the homogeneous space Γ′\G .
We'll make use later of the action of the following 1-parameter
unipotent subgroup,

{
(

1 x

0 1

)
, x ∈ Qp} ⊂ PSL2(Qp) ⊂ PSL2(Qp)×PSL2(Qp) ⊂ G ,

where the middle inclusion of PSL2(Qp) is the diagonal one. We
also introduce the compact group PGL2(Zp) that we also include
diagonaly in G and note for the moment that our main quantity
may be expressed as

Mτ
.
=

∫
PGL2(Zp)

(ψ × ψ)(k ·
(

pn 0
0 1

)
)dk.

Long circles.

This last integral is reminiscent to others seen in di�erent lectures
(Eskin's convention is G/Γ while ours is Γ\G .)

I In Eskin's talk about quantitative Oppenheim (prop. 7.12
p.50), ∫

K

f̃ (atk∆Q)dk,

I about moduli space of translation surfaces (eq. (110) p.81),∫ 2π

0

f̂ (gtrθS)dθ,

I in Marklof's talk, (E (x) vary in a compact group while Φt is
the action of a diagonal matrix),∫

Ω
f ((1, α)(M,O)(E (x), 0)Φt) dλ(x).

Unipotent �ow.

The proof that it converges to
∫
Γ′\G ψ × ψ dHaar is the same: the

long circle are well approximate by horocycles to which we apply
Ratner. However our case is much simpler since our p-adic
homogeneous space is compact, and no extra analysis of
integrability nor use of Dani-Margulis theorem is needed.

To be precise, our claim 2 is a consequence of the following which
is a consequence of Ratner's measure classi�cation and
equidistribtution theorems.
Claim 3: For almost every k ∈ PGL2(Zp),

{k ·
(

1 p−n · u
0 1

)
}u∈Z×p equidistributes on Γ′\G .

Proof. The main point is to exclude periodic orbits under the
diagonal embedded PSL2(Qp), which is achieved by showing that
for almost every k , the conjugate kΓ′k−1 ∩ PSL2(Qp) is not a
lattice in PSL2(Qp).



Part III

ε = −1. The special derivative L′(1
2
, f × χ).

Two proofs are available by C. Cornut and V. Vatsal. We'll present
the quickest one that relies on the previous theorem on special
values.([Vatsal, Duke. Math. Journ.]).
I shall present brie�y the steps of this rather indirect proof in order
to show how tricky it is to catch the derivative.

Theorem (V. Vatsal and C. Cornut ; Mazur conjecture)

Let (N,D, p) with ε = −(N
D

) = −1 be given.

Then the critical derivatives L′(1
2
, f × χ) are non-zero for all but a

�nite number of anticyclotomic Grössencharacters χ on Q(
√
D) of

level a power of p.

Step 1.

A Gross-Zagier formula relates the critical derivative to the
canonical Néron-Tate height of a Heegner point on the modular
curve viewed as an algebraic curve over Q.
The derivative vanishes ⇔ the height vanishes ⇔ the Heegner
point is torsion as divisor class.
Hence we need to prove that the Heegner point is not torsion.

Step 2.

We take a suitably chosen auxilary large prime `.
To check that the Heegner point is not torsion, it is enough to
prove that it is not torsion (mod `).



Step 3.

We choose another auxilary prime q. We also choose a modular
form g of level Nq that is congruent to f (mod `). The theory of
p-adic modular forms proves that many such examples indeed exist.
(see e.g. [Serre])
For the modular form, the sign of the functional equation is +1 as
in part I and we can look at the algebraic part of the special value.
Then V. Vatsal proved Jochnowitz congruences in this setting:
the Heegner point (mod `) is 'related' to this special value
(mod `).

Step 4.

One needs to prove that the special value is a `-adic unit for almost
all caracters. To achieve this, V. Vatsal redoes all the proof of part
I, but takingthe p-adic L-function instead of the classical one.

Part IV

D → −∞. Laudau-Siegel zero.

One main di�culty in dealing with the family of class group
characters is that we do not know precisely the size of the class
number hD .
One can reverse the logic and say that if we gather enough
informations about L-functions, we might be able to say something
about the size of hD .
This is what H. Iwaniec and P. Sarnak did ([Isr. Jour. of Math.,
2000]). Motivated by this goal, they invented a large number of
new methods that are now standard in solving subconvexity and
nonvanishing problems.



Theorem

(i) (Dirichlet) For any Dirichlet character χ, L(1, χ) 6= 0.

(ii) (Landau) There exists a constant c - e�ectively computable -

such that for any positive integer q, the L-functions L(s, χ) for
χ a Dirichlet character of conductor q have no zero in the

region

σ > 1− c

log(q(|T |+ 1))
, s = σ + iT ,

except perhaps for the real (=quadratic) character. If it

happens, the zero is real and simple.

(iii) (Siegel) For any ε > 0 there exists a constant cε - not

e�ectively computable when ε < 1
2
- such that the quadratic

Dirichlet L-functions L(s, (D· )) have no zero on the interval

s > 1− cε · |D|−ε, s ∈ R.

A Laudau-Siegel zero is a potential zero of an L-function that lies
in Laudau's region s > 1− c

log q
. It is however bounded away from

1 by Siegel's bound s < 1− cε · q−ε.
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