Maxim > App Notes > POWER-SUPPLY CIRCUITS
Keywords: SEPIC Equations and Component Ratings
Apr 23, 2002

APPLI CATI ON NOTE 1051

SEPIC Equations and Component Ratings

Lithium batteries, power-factor converters, and improved low-ESR capacitors are giving a new shine to the classic SEPIC topology. A SEPIC (single-ended primary inductance converter) is distinguished by the fact that its input voltage range can overlap the output voltage. Because SEPIC literature is pretty thin, however, a design engineer not expert in energy converters may feel helpless when asked to design one of these circuits.

This article provides an understanding of basic SEPIC equations, and proposes clear and simple formulas for rating the main components and predicting performance.

Lithium batteries have been very successful, thanks mostly to their impressive energy density. A single lithium cell provides an open voltage of 4.2 V when fully charged, and replaces (almost) three of its NiCd or NiMH counterparts. This voltage depends somewhat on residual capacity, and the cell still retains some energy down to 2.7 V . Such input voltage ranges above and below the output of many DC/DC converters, and thereby eliminates the possibility of using an exclusively step-up or step-down type of converter.

SEPICs also find application in the power supplies for power-factor converters (PFCs). Most such circuits use a simple step-up converter as the input stage, implying that the stage output must exceed the peak value of the input waveform. AC inputs of $240 V_{\text {RMS }} \pm 20 \%$, for example, impose an output of at least 407 V , forcing the following converters to work with elevated input voltages. By accepting medium to low input voltages, the SEPIC topology provides a more compact and efficient design. It provides the required output level even if the peak input voltage is higher.

Basic Equations

The boost (often called step-up) topology (Figure 1) is the basis for the SEPIC converter. The boost-converter principle is well understood: first, switch Sw closes during T_{ON}, increasing the magnetic energy stored in inductance L1. Second, the switch opens during Toff, offering D1 and Cout as the only path for stored magnetic energy to flow. Cout filters the current pulse generated by L1 through D1. When $\mathrm{V}_{\text {OUT }}$ is relatively low, you can improve the efficiency by using a Schottky device with low forward voltage (about 400 mV) for D1. Vout must be higher than $\mathrm{V}_{\text {IN }}$. In the opposite case ($\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{OUT}}$) D1 is forward biased, and nothing prevents current flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$.

Figure 1. This boost-converter topology is the basis for SEPIC power-supply circuits.
The SEPIC scheme of Figure 2 removes this limitation by inserting a capacitor (Cp) between L1 and D1. This
capacitor obviously blocks any DC component between the input and output. D1's anode, however, must connect to a known potential. This is accomplished by connecting D1 to ground through a second inductor (L2). L2 can be separate from L1 or wound on the same core, depending on the needs of the application. Because the latter configuration is simply a transformer, one might object that a classical flyback topology is more appropriate in that case. The transformer leakage inductance, however, which is no problem in SEPIC schemes, often requires a "snubber" network in flyback schemes. The main parasitic resistances $R_{L 1}, R_{L 2}, R_{S W}$, and $R_{C p}$ are associated with L_{1}, L_{2}, S_{W}, and $C p$ respectively.

Figure 2. An advantage of the SEPIC circuit, besides buck/boost capability, is a capacitor (Cp) that prevents unwanted current flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$.

Though it has very few elements, the operation of a SEPIC converter is not so simple to abstract into equations. We assume that the values of current and voltage ripple are small with respect to the DC components. To start, we express the fact that at equilibrium there is no DC voltage across the two inductances L1 and L2 (neglecting the voltage drop across their parasitic resistances). Therefore, Cp sees a DC potential of V_{IN} at one side, through L1, and ground on the other side, through L2. The DC voltage across Cp is:
$\left(\mathrm{V}_{\mathrm{Cp}}\right)_{\text {mean }}=\mathrm{V}_{\mathrm{IN}}$
(Eq. 1)
"T" is the period of one switching cycle. Call α the portion of T for which Sw is closed, and 1- α the remaining part of the period. Because the mean voltage across L1 equals zero during steady-state conditions, the voltage seen by L1 during $\alpha \mathrm{T}$ (Ton) is exactly compensated by the voltage seen during (1- α) T (Toff):
$\alpha T V_{\text {IN }}=(1-\alpha) T\left(V_{\text {OUT }}+V_{D}+V_{C p}-V_{\text {IN }}\right)=(1-\alpha) T\left(V_{\text {OUT }}+V_{D}\right)$.
V_{D} is D1's forward voltage drop for a direct current of (IL1 $+I L 2$), and $V_{C p}$ is equal to $V_{\text {IN }}$:
$\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}\right) / \mathrm{V}_{\text {IN }}=\alpha /(1-\alpha)=\mathrm{Ai}$
(Eq. 2)
Ai is called the amplification factor, where " i " represents the ideal case for which parasitic resistances are null. Neglecting V_{D} with respect to $\mathrm{V}_{\text {OUT }}$ (as a first approximation), we see that the ratio of $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$ can be greater than or less than 1 , depending on the value of α (with equality obtained for $\alpha=0.5$). This relationship illustrates the peculiarity of SEPIC converters with respect to the classical stepup or stepdown topologies. The more accurate expression A_{a} accounts for parasitic resistances in the circuit:
$A_{a}=\left[V_{\text {out }}+V_{d}+I_{\text {out }}\left(A_{i} R_{c p}+R_{L 2}\right)\right] /\left[V_{\text {in }}-A_{i}\left(R_{L 1}+R_{\text {sw }}\right) I_{\text {out }}-R_{\text {sw }} I_{\text {out }}\right]$
(Eq. 3)
This formula lets you compute the minimum, typical and maximum amplification factors for $V_{I N}\left(A_{a m i n}, A_{a t y p}\right.$,
and $\mathrm{A}_{\text {amax }}$). The formula is recursive (" A " appears in both the result and the expression), but a few iterative calculations lead to the solution asymptotically. The expression neglects transition losses due to the switch Sw and reverse current in D1. Those losses are usually negligible, especially if Sw is a fast MOSFET and its drainvoltage excursion ($\mathrm{V}_{\text {IN }}+\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}$) remains under 30V (the apparent limit for today's low-loss MOSFETs).

In some cases, you should also account for losses due to the reverse current of D1, and for core losses due to high-level induction gradients. You can extrapolate the corresponding values of α from Eq. 2:
$\alpha x x x=A_{a x x x} /\left(1+A_{a x x x}\right)$, where $x x x$ is min, typ or max.
(Eq. 4)
The DC current through Cp is null, so the mean output current can only be supplied by L2:
$I_{\text {OUT }}=I$ L2
(Eq. 5)
L2's power-dissipation requirement is eased, because the mean current into L2 always equals I ${ }_{\text {OUT }}$ and does not depend on variations of $\mathrm{V}_{I N}$. To calculate the current into L1 (IL1), express the fact that no DC current can flow through Cp . Thus, the coulomb charge flowing during $\alpha \mathrm{T}$ is perfectly balanced by an opposite coulomb charge during (1- α) T. When the switch is closed (for an interval $\alpha \mathrm{T}$) the node A potential is fixed at 0 V . According to Equation 1, the node B potential is $-\mathrm{V}_{I N}$, which reverse-biases D1. Current through Cp is then IL2. When the switch is open during (1- α)T, IL2 flows through D1 while IL1 flows through $\mathrm{Cp}: \alpha \mathrm{T} \times \mathrm{IL} 2=(1-\alpha) \mathrm{T} \times \mathrm{IL} 1$. Knowing that IL2 $=I_{\text {OUT }}$,

IL1 $=A_{\text {axxx }} \times I_{\text {OUT }}$
(Eq. 6)
Because input power equals output power divided by efficiency, IL1 depends strongly on $\mathrm{V}_{\text {IN }}$. For a given output power, IL1 increases if $\mathrm{V}_{\text {IN }}$ decreases. Knowing that IL2 (hence $\mathrm{I}_{\text {OUT }}$) flows into Cp during $\alpha \mathrm{T}$, we choose Cp so that its ripple $\Delta \mathrm{V}_{\mathrm{Cp}}$ is a very small fraction of $\mathrm{V}_{\mathrm{Cp}}(\gamma=1 \%$ to $5 \%)$. The worst case occurs when $\mathrm{V}_{I N}$ is minimal.
$\mathrm{Cp} \geq \mathrm{I}_{\text {OUT }} \alpha_{\text {min }} \mathrm{T} /\left(\gamma \mathrm{V}_{\text {INmin }}\right)$
(Eq. 7)
The combination of high-frequency controller operation and recent progress in multilayer ceramic capacitors (MLCs) allows the use of small, non-polarized capacitors for Cp . Be sure that Cp is able to sustain the power dissipation Pcp due to its own internal resistance (Rcp):
$\mathrm{Pcp}=\mathrm{A}_{\text {amin }}$ Rcp $\mathrm{I}_{\text {OUT }^{2}}$
(Eq. 8)
Rsw, consisting usually of the MOSFET switch drain-to-source resistance in series with a shunt for limiting the maximum current, incurs the following loss:

Psw $=A_{\text {amin }}\left(1+A_{\text {amin }}\right)$ Rsw $I_{\text {OUT }}{ }^{2}$
(Eq. 9)
Losses Prl1 and Prl2 due to the internal resistances of L1 and L2 are easily calculated:
PrII $=\mathrm{A}_{\mathrm{amin}^{2}}{ }^{\text {RII }} \mathrm{I}_{\mathrm{OUT}}{ }^{2}$
(Eq. 10)
$\operatorname{Prl2}=$ RL2 $\mathrm{I}_{\mathrm{OUT}}{ }^{2}$
(Eq. 11)
When calculating the loss due to D1, take care to evaluate V_{D} for the sum of IL1 + IL2:

PD1 $=V_{D} \times I_{\text {OUT }}$
(Eq. 12)
L1 is chosen so its total current ripple ($\Delta \mathrm{IL} 1$) is a fraction ($\beta=20 \%$ to 50%) of IL1. The worst case for β occurs when $\mathrm{V}_{\text {IN }}$ is maximum, because DIL1 is maximum when IL1 is minimum. Assuming $\beta=0.5$:
$\mathrm{L}_{\text {min }}=2 \mathrm{~T}\left(1-\alpha_{\text {max }}\right) \mathrm{V}_{\text {INmax }} / I_{\text {OUT }}$
(Eq. 13)
Choose a standard value nearest to that calculated for L1, and make sure its saturation current meets the following condition:
$\mathrm{IL1}_{\text {sat }} \gg \mathrm{IL1}+0.5 \Delta \mathrm{IL1}=\mathrm{A}_{\text {amin }} \mathrm{I}_{\mathrm{OUT}}+0.5 \mathrm{~T} \alpha_{\text {min }} \mathrm{V}_{\text {INmin }} / \mathrm{L1}$
(Eq. 14)
The calculation for L 2 is similar to that for L1:
$\mathrm{L} 2_{\text {min }}=2 \mathrm{~T} \alpha_{\text {max }} \mathrm{V}_{\text {INmax }} / \mathrm{I}_{\text {OUT }}$
(Eq. 15)
$\mathrm{IL2} 2_{\text {sat }} \gg \mathrm{IL} 2+0.5 \Delta \mathrm{IL} 2=\mathrm{I}_{\text {OUT }}+0.5 \mathrm{~T} \alpha_{\max } \mathrm{V}_{\text {INmax }} / \mathrm{L} 2$
(Eq. 16)
If L1 and L2 are wound on the same core, you must choose the larger of the two values. A single core compels the two windings to have the same number of turns and therefore the same inductance values. Otherwise, voltages across the two windings will differ and Cp will act as a short circuit to the difference. If the winding voltages are identical, they generate equal and cumulative current gradients. Thus, the natural inductance of each winding should equal only half of the value calculated for L1 and L2.

Because no great potential difference exists between the two windings, you can save costs by winding them together in the same operation. If the windings' cross sections are equivalent, the resistive losses will differ because their currents (IL1 and IL2) differ. Total loss, however, is lowest when losses are distributed equally between the two windings, so it is useful to set each winding's cross section according to the current it carries. This is particularly easy to do when the windings consist of splitted wire for counteracting skin effects. Finally, the core size is chosen to accommodate a saturation current much greater than (IL1 $+\mathrm{IL} 2+\Delta \mathrm{ILL}$) at the highest core temperature anticipated.

The purpose of the output capacitor ($\mathrm{C}_{\mathrm{OUT}}$) is to average the current pulses supplied by D1 during Toff. The current transitions are brutal, so $\mathrm{C}_{\text {OUt }}$ should be a high-performance component like the one used in a flyback topology. Fortunately, today's ceramic capacitors provide low ESR. The minimum value for $\mathrm{C}_{\text {Out }}$ is determined by the amount of ripple ($\Delta \mathrm{V}_{\text {OUT }}$) that can be tolerated:
$\mathrm{C}_{\text {OUT }}>=\mathrm{A}_{\text {amin }} \mathrm{I}_{\text {OUT }} \alpha \min \mathrm{T} / \Delta \mathrm{V}_{\text {OUT }}$
(Eq. 17)
The value of an actual output capacitor may need to be much larger, especially if the load current is composed of high-energy pulses. The input capacitor can be very small, thanks to the filtering properties of the SEPIC topology. Usually, C_{IN} can be ten times smaller than $\mathrm{C}_{\mathrm{OUT}}$:
$\mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }} / 10$
(Eq. 18)
Overall efficiency η can be predicted from $V_{I N}$ and $A a$. The result can be optimistic, however, because it doesn't account for the switch-transition losses or core losses:
$\eta=\mathrm{V}_{\text {OUT }} / \mathrm{Aa} \mathrm{V}_{\text {IN }}$
(Eq. 19)
Finally, the switch SW and diode D1 should be rated for breakdown voltages respectively greater than V_{DS} and V_{R} :
$\mathrm{V}_{\mathrm{DS}}>1.15\left(\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\text {IN }}\right)$
(Eq. 20)
$\mathrm{V}_{\mathrm{R}}>1.15\left(\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}\right)$
(Eq. 21)
As an example, consider component ratings in the following low-power application: $\mathrm{V}_{\text {INmin }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {INtyp }}=3.5 \mathrm{~V}$, and $\mathrm{V}_{\text {INmax }}=5 \mathrm{~V}$, for $\mathrm{V}_{\text {OUT }}=3.8 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=0.38 \mathrm{~A}, \mathrm{~T}=2 \mu \mathrm{~S}$, and $\mathrm{V}_{\mathrm{D}}=0.4 \mathrm{~V}$. A round of initial estimates gives the following approximate values: L 1 and $\mathrm{L} 2=47 \mu \mathrm{H}, \mathrm{RL1}=\mathrm{RL2}=120 \mathrm{~m} \Omega, \mathrm{Rcp}=50 \mathrm{~m} \Omega$, and $\mathrm{Rsw}=170 \mathrm{~m} \Omega$.
Figure 3 shows the resulting IL1 and IL2 waveforms at different $\mathrm{V}_{\text {IN }}$ values.

Figure 3. In Figure 2, the current waveforms through L 1 and L 2 vary with V_{IN} as shown.
Using Equation 2, you first calculate the ideal amplification factors Ai corresponding to minimum, typical, and maximum $\mathrm{V}_{1 N}$ as $1.555,1.2$, and 0.84 . Using these values in Equation 3, you obtain the more-accurate Aaxxx values of $1.735,1.292$, and 0.88 respectively. The corresponding duty cycles are deduced from Equation 4 as $0.634,0.563$, and 0.468 .

The L2 current (IL2) equals 0.38 A according to Equation 5, and IL1 varies according to V_{IN}. Using Equation 6, we obtain IL1 values of $0.659 \mathrm{~A}, 0.491 \mathrm{~A}$ and 0.334 A as $\mathrm{V}_{\text {IN }}$ varies from minimum to maximum.

We obtain a minimum Cp value of $3.5 \mu \mathrm{~F}$ by fixing $\gamma=5 \%$ in Equation 7. The voltage rating of Cp is deduced from Equation 1. If the input voltage is not to exceed 5 V , a $6.8 \mu \mathrm{~F}$ ceramic capacitor rated at 6.3 V should do the job. Modern MLC capacitors easily meet the expected $50 \mathrm{~m} \Omega$ Rcp, and they easily sustain the 12.5 mW power loss deduced from Equation 8.

The following parameters are computed at the worst case, which is minimal V_{IN} :

- A $170 \mathrm{~m} \Omega$ switch must dissipate 116.5 mW according to Equation 9, which allows for the external transistor a SOT23 package or even the smaller SC70.
- Equations 10 and 11 give losses of 52.2 mW and 17.3 mW for L1 and L2. We verify here that the copper
cross-section of L1 should be larger than that of L2.
- Using Equation 12 to calculate the power loss of D1 at 152 mW , we see that D1 is the main source of loss. It is therefore important to choose an efficient rectifier, if not a synchronous rectifier.
- For L1, Equation 13 suggests a minimum value of $28 \mu \mathrm{H}$, which is close to the estimated value of $47 \mu \mathrm{H}$. For normal operation with an L1 value of $47 \mu \mathrm{H}$, Equation 14 predicts a peak current of 0.69A. A device rated at 1A provides a reasonable margin. Make sure that D1 can sustain current pulses at high temperature equal to $\mathrm{ILI}+\mathrm{I}_{\text {OUT }}=1.04 \mathrm{~A}$, and a mean current of $\mathrm{I}_{\text {OUT }}=0.38 \mathrm{~A}$.
- Similarly, Equation 15 leads to a minimum L2 value of $24.6 \mu \mathrm{H}$. Again, $47 \mu \mathrm{H}$ is a reasonable value. According to Equation 16, L2 should sustain current peaks of 0.43 A .
- For $\Delta \mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {OUT }} / 100\right)$ of 38 mV , Equation 17 says the output capacitor should be at least $22 \mu \mathrm{~F}$. Equation 18 says $2 \mu \mathrm{~F}$ should be sufficient for $\mathrm{C}_{I N}$.
- Despite high-valued parasitic components, Equation 19 predicts a respectable efficiency of 81% for the worst case, in which input voltage is minimum. When transition losses are taken into account, the actual value is a bit lower.

A similar version of this article appeared in the February 2001 issue of REDE magazine.

Application Note 1051: http://www.maxim-ic.com/an1051
More I nformation
For technical questions and support: http://www.maxim-ic.com/support
For samples: http://www.maxim-ic.com/samples
Other questions and comments: http://www.maxim-ic.com/contact
AN1051, AN 1051, APP1051, Appnote1051, Appnote 1051
Copyright © by Maxim Integrated Products
Additional legal notices: http://www.maxim-ic.com/legal

