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Abstract
JavaScript provides useful client-side computation facilities, enabling richer and more dynamic web

applications. Unfortunately, the power and ubiquity of JavaScript has also been exploited to launch var-
ious browser-based attacks. Our previous work proposed a theoretical framework applying policy-based
code instrumentation to JavaScript. This paper further reports our experience carrying out the theory
in practice. Specifically, we discuss how the instrumentation is performed on various JavaScript and
HTML syntactic constructs, present a new policy construction method for facilitating the creation and
compilation of security policies, and document various practical difficulties arose during our prototyping.
Our prototype currently works with several different web browsers, including Safari Mobile running on
iPhones. We report our results based on experiments using representative real-world web applications.
Although discussing a particular prototype, we believe the techniques therein will also be useful to other
studies on JavaScript security.

1 Introduction

Web browsing is becoming an indispensable part of our daily lives. Besides providing instant access to
various information, the Web is also evolving into a major software and service platform. Users access the
platform, and sometimes participate in service building, through web browsers running on client machines,
including some mobile devices.

The success of the Web can be contributed partly to the use of client-side scripting languages, such as
JavaScript [3]. Programs in JavaScript are deployed in HTML documents. They are interpreted by web
browsers on the client machine, helping to make web pages richer, more dynamic, and more “intelligent.”

As a form of mobile code, JavaScript programs are often provided by parties not trusted by web users,
and their execution on the client systems raises serious security concerns. The extent of the problem is well
known [2, 16], ranging from relatively benign annoyances (e.g., popping up advertising windows, altering
browser configurations) to criminally serious attacks (e.g., XSS [13], phishing [15]).

In previous work [21], we formally studied the application of program instrumentation to enforcing
security policies on JavaScript programs. Specifically, we clarified the execution model of JavaScript (par-
ticularly, higher-order script—script that generates other script at runtime), presented its instrumentation as
a set of syntactic rewriting rules, and applied edit automata [12] as a framework of policy management.
Focusing on articulating the generic instrumentation techniques and proving their correctness, the previous
work is necessarily abstract on several implementation aspects, and can be realized differently when facing
different tradeoffs. For example, among other possibilities, the instrumentation process can be carried out
either by a browser on the client machine or by a proxy sitting on the network gateway.

In this paper, we discuss the practical application of the above theory to real-world scenarios. Specif-
ically, we have completed a relatively mature prototype following a proxy-based architecture. In this pro-
totype, both the instrumentation process and the policy input are managed by a proxy program, which is
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situated on the network gateway (or an enterprise firewall) and is maintained separately from the JavaScript
programs of concern. The browser is set up to consult the proxy for all incoming traffic, and the proxy sends
instrumented JavaScript programs (and HTML documents) to the browser.

Such an architecture provides centralized interposition and policy management through the proxy, thus
enabling transparent policy creation and update for the end user. It requires no change to the browser
implementation; therefore, it is naturally applicable to different browsers, modulo a few browser-specific
implementation issues. As part of our experiments, we applied our proxy to the Safari Mobile browser on
an iPhone [1]. The instrumentation and security protection worked painlessly, even though no software or
browser plug-in can be installed on an iPhone. Furthermore, the proxy-based architecture poses minimal
computation requirement on the client device for securely rendering web pages (as shown in our experi-
ments, some popular web pages contain several hundred kilobytes of JavaScript code; their instrumentation
takes a nontrivial amount of time). It is thus suitable for deployment with the use of mobile browsers.

There has been other work (e.g., BrowserShield [17], AjaxScope [9]) on JavaScript instrumentation.
Although similar in nature to our work, they are motivated differently and, as a result, differ in the overall
design. BrowserShield provides automatic vulnerability filtering on a firewall. Part of the rewriting and inter-
position logic is carried out on the client machine with help of a browser plug-in. In addition, its policies are
directly written in the form of JavaScript functions, and mainly target security experts who develop vulnera-
bility signatures and patches. AjaxScope, on the other hand, provides debugging help to JavaScript program
developers. It thus targets non-malicious code, and does not address the handling of dynamically generated
code (higher-order script). In contrast, our work uniquely targets user policies and their enforcement on mo-
bile devices, across different browsers, without the installation of any client-side software or plug-ins. Two
of our major differentiating factors include usable policy management (we use a policy compiler to compile
browser-based security policies into rewriting rules) and proxy-centric runtime instrumentation (leveraging
the proxy’s computation power, we trade on-device computation with on-demand communication with the
proxy).

We have successfully run our prototype with several browsers: Firefox, Konqueror, Opera, Safari, and
Safari Mobile on an iPhone [1]. IE is currently only partially supported, because its behaviors on certain
JavaScript code are significantly different than those of the other tested browsers (details will be discussed in
Section 5.4). For the experiments, we applied a selected set of policies, which triggered the instrumentation
of a variety of JavaScript constructs. We hand-picked some representative real-world web pages as the
instrumentation target. Measurements are made on both the proxy overhead and the client overhead. The
initial numbers matched our expectations, noting that our prototype had not been optimized for performance.

The remainder of this paper is organized as follows. Section 2 reviews the formal theory of JavaScript
instrumentation, and clarifies some key aspects of the realization effort to be expanded upon in the next three
sections. Section 3 presents the application of the theoretical instrumentation method to the actual JavaScript
language. Section 4 details how we use some domain-specific abstractions for policy construction. Section 5
describes a few interesting implementation issues raised by the proxy-centric requirements. Experiments are
discussed in Section 6. We compare with related work in Section 7, and finally conclude in Section 8.

2 Background

2.1 Previously: a Theoretical Framework

The generic theoretical framework for JavaScript instrumentation is illustrated in Figure 1 (reused from
previous work [21]). Beyond the regular JavaScript interpreter provided in a browser, three modules are
introduced to carry out the instrumentation and policy enforcement. A rewriting module ι serves as a proxy
between the browser and the network traffic. Any incoming HTML document D, possibly with JavaScript
code embedded, must go through the rewriting module first before reaching the browser.

2



A′

instr(E)

JavaScript

Interpreter

(Browser)

Special

Instruction
(instr)

ι(D) Dv

check(A)

D′

Rewriting

Module

(ι)

Policy

Module

(Π )

ι(D′)

ι(D′)

D

Figure 1: JavaScript instrumentation for browser security

send-to-any
send-to-

origin

readCookie

loadURL(l)/safe-loadURL(l)

Figure 2: Example edit automaton for a cookie policy

The rewriting module identifies security-relevant actions A out of the document D and produces in-
strumented code check(A) that monitors and confines the execution of A. This part is not fundamentally
different from conventional instrumentation techniques [20, 4]. However, this alone is not sufficient for
securing JavaScript code, because of the existence of higher-order script (e.g., document.write(E), which
evaluates E and use the result as part of the HTML document to be rendered by the browser)—some code
fragments (e.g., those embedded in the value of E) may not be available for inspection and instrumentation
until at runtime. To address this, the rewriting module wraps higher-order script (e.g., E) inside a special
instruction (e.g., instr(E)), which essentially marks it to be instrumented on demand at runtime.

With the rewriting module as a proxy, the browser receives an instrumented document ι(D) for ren-
dering. The rendering proceeds normally using a JavaScript interpreter, until either of the two special calls
inserted by the rewriting module is encountered. Upon check(A), the browser consults the policy module
Π, which is responsible for maintaining some internal state used for security monitoring, and for providing
a replacement action A′ (a secured version of A) for execution. Upon instr(E), the implementation of the
special instruction instr will evaluate E to D′ and invoke the rewriting module at runtime to perform the
necessary rewriting on higher-order script. The instrumented ι(D′) will then be sent back to the browser for
rendering, possibly with further invocations of the policy module and special instruction as needed.

The policy module Π essentially manages an edit automaton [12] at runtime for security enforcement.
A simple policy is illustrated in Figure 2, which restricts URL loading to prevent potential information leak
after cookie is read. Following this, the policy module updates the automaton state based on the input actions
A that it receives through the policy interface check(A), and produces output actions A′ based on the re-
placement actions suggested by the automaton. For example, if the current state is send-to-origin, and
the input action is loadURL(l), then the current state remains unchanged, and the output action becomes
safe-loadURL(l), which performs necessary security checks and user promptings before loading a
web page. Interested readers are referred to the previous work [21] for why edit automata serve as a suitable
policy framework, what their capabilities are, and how to support their combination and update.
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Figure 3: A proxy-centric realization

2.2 This Paper: a Proxy-Centric Realization

Focusing on the formal aspects and correctness of policy-based instrumentation on higher-order script, the
previous work is largely abstract on the implementation aspects. Subsequently, we have conducted thorough
prototyping and experiments on the practical realization of the formal theory. Several interesting topics were
identified during the process, which we believe will serve as useful contributions to related studies.

Overall, we have opted for a proxy-centric realization for its browser independence and low computation
overhead on client devices, as has been discussed in Section 1. This can be viewed as an instantiation of
the framework in Figure 1 for a specific usage scenario—the use with multiple mobile browsers. The
instantiated architecture is more accurately depicted in Figure 3. The basic requirement here is that the
proxy takes care of the rewriting and policy input, without changing the browser implementation. As a
result, the tasks of the policy module Π and the special instruction instr in Figure 1 have to be carried out
in part by regular JavaScript code (the Security Module in Figure 3). Such JavaScript code is inserted into
the HTML document by the proxy based on some policy input.

The rewriting process is carried out on the proxy using a parser, two rewriters, and a code generator. The
rewriters work by manipulating abstract syntax trees (ASTs) produced by the parser. Transformed ASTs
are converted into HTML and JavaScript by the code generator before fed to the browser that originally
requested the web pages. The actual proxy contains also a processor for handling outgoing requests from
the client browser, which is largely straightforward, thus omitted from the figure.

The rewriting rules direct the rewriters to put in different code for the security module when addressing
different policies. On the one hand, the rewriters need to know what syntactic constructs to look for in the
code and how to rewrite them. Therefore, they require low-level policies to work with syntactic patterns.
On the other hand, human policy designers should think in terms of high-level actions and edit automata,
not low-level syntactic details. We use a policy compiler to bridge this gap, which is a stand-alone program
that can be implemented in any language. Note that policy compilation happens statically (off-line).
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We now summarize three major technical aspects of this proxy-centric realization. These will be ex-
panded upon in the next three sections, respectively.

The first and foremost challenge is raised by the flexibility of the JavaScript language. Much effort is
devoted to identifying security-relevant actions out of JavaScript code—there are many different ways of
carrying out a certain action, hence many different syntactic constructs to inspect. We introduce a notion of
rewriting templates to help managing this at a somewhat abstract level. Policy designers instantiate rewriting
templates to rewriting rules, which in turn guides the instrumentation. This allows us to stick to the basic
design without being distracted by syntactic details. A similar aspect is on the identification of JavaScript
code out of HTML documents, as well as higher-order script out of JavaScript code. These can both be
handled uniformly using rewriting templates.

Next, the rewriting templates can be viewed as an interface for policy writing, because they essentially
specify rewriting rules and replacement actions. However, they are still too low-level to manage in practice.
In contrast, the theoretical framework used edit automata for policy management. We support edit automata
using an XML representation, and compile them into rewriting rules. As a result, we can handle all policies
allowed by the theoretical framework. Nonetheless, edit automata are general-purpose, and browser-based
security policies could benefit further from domain-specific abstractions. We have identified some useful
patterns of policies during our experiments. We organize these patterns as policy templates, which are
essentially templates of specialized edit automata. We again use an XML representation for policy templates,
which enables a natural composition of simple templates to form compound ones.

Finally, using a proxy, we avoid changing the browser implementation. This provides platform inde-
pendence and reduces the computation overhead on the client devices. As a tradeoff, there are some other
difficulties. In particular, the interfaces to the special instruction instr and the policy module Π have to
be implemented in regular JavaScript code and inserted into the HTML document during instrumentation.
Such code must be able to call the proxy at runtime, interact with the user in friendly and meaningful ways,
and be protected from malicious modifications (it resides in the same environment as incoming, potentially
malicious JavaScript code). Furthermore, different browsers sometimes behave differently on the same
JavaScript code, an incompatibility that we have to address carefully during instrumentation.

3 Rewriting JavaScript and HTML

We now describe the details of the instrumentation. Recall that the instrumentation is carried out by trans-
forming abstract syntax trees (ASTs). Specifically, the proxy identifies pieces of the AST to be rewritten,
and replaces them with new ones that enforce the desired security policies. Both action replacement (from
A to check(A)) and higher-order script handling (from E to instr(E)) are addressed during the process.

3.1 Action Replacement via Rewriting Templates

Although a clean process in Figure 1, action replacement in the actual JavaScript language raises interesting
issues due to the flexible and dynamic nature of the language. Specifically, actions A in Figure 1 exhibit
themselves in JavaScript and HTML through various syntactic forms. Some common examples include
property access, method calls, and event handlers. Therefore, upon different syntactic categories, the in-
strumentation should produce different target code, as opposed to the uniform check(A). We specify what
syntactic constructs to rewrite and how to rewrite them using rewriting rules (see Figure 3).

We summarize some commonly used rewriting rules for various syntactic constructs in Table 1 as rewrit-
ing templates. The first column of the table shows the template names and parameters. The second shows
the corresponding syntactic forms of the code pieces to be rewritten (which correspond to actions A). The
third shows the target code pieces used to replace the original ones (which correspond to check(A)). These
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Table 1: Rewriting templates
Rewriting templates Sample Code patterns Rewritten code (redirectors) Sample instantiation

(Get, obj, prop)
obj.prop
obj[“prop”] sec.GetProp(obj, prop)

(Get, document, cookie)
(Get, window, alert)

(Call, obj,meth)
obj.meth(E, . . . )
obj[“meth”](E, . . . ) sec.CallMeth(obj,meth,Ei, . . . ) (Call, window, open)

(GetD, dprop) dprop sec.GetDProp(dprop) (GetD, location)

(CallD, dmeth) dmeth(E, . . . )
sec.isEval(dmeth) ?
eval(sec.instrument(Ei, . . . )) :
sec.CallDMeth(dmeth,Ei, . . . )

(CallD, open)

(Set, obj, prop)

obj.prop = E
obj[“prop”] = E
obj.prop += E
obj[“prop”] += E

sec.SetProp(obj, prop,Ei)

sec.SetPropPlus(obj, prop,Ei)

(Set, document, cookie)
(Set, window, alert)

(SetD, dprop)
dprop = E
dprop += E

sec.SetDProp(dprop,Ei)
sec.SetDPropPlus(dprop,Ei)

(SetD, location)
(SetD, open)

(Event, tag, attr) <tag attr=“E”> <tag attr=“sec.Event(this,Ei)”> (Event, button, onclick)

(FSrc)

<img src=“U ”
onerror=“E”>

<iframe src=“U ”
onload=“E”>

<img src=“ ” onerror=“setAttribute(onerror, “Ei”);
sec.FSimg(this, U)”>

<iframe src=“ ” onload=“setAttribute(onload, “Ei”);
sec.FSiframe(this,U )”>

templates are to be instantiated to rewriting rules using relevant JavaScript entities and code. Some exam-
ples are given in the last column. Given instantiated rewriting rules, the rewriters will identify patterns of
the second column, and produce instrumented code according to the third column.

For example, the first row (Get, obj, prop) specifies how to rewrite syntactic constructs of reading prop-
erties (both fields and methods). Get is the name of the template, and obj and prop are parameters to be
instantiated with the actual object and property. Two sample instantiations are given. The first is on the
field access document.cookie. This is useful if one wishes to monitor cookie access for identifying cookie
stealing behaviors. Based on (Get, document, cookie), the JavaScript rewriter will look for all AST pieces
of property access (i.e., those of the shape obj.prop and obj[“prop”]), and replace them with a call to a
redirector function sec.GetProp. Here sec is a JavaScript object inserted by our proxy; it corresponds to
the “Security Module” in Figure 3. Among other tasks, sec maintains a list of private references to relevant
JavaScript entities, such as document.cookie. The body of the redirector above will inspect the parameters
obj and prop at runtime to see if they represent document.cookie (if obj and prop are statically known to
be document and cookie, respectively, the inspection code is omitted for efficiency). If yes, the redirector
proceeds to carry out a replacement action supplied during template instantiation.

The implementation of the replacement action is the topic of Section 4. For now, it suffices to understand
the replacement action simply as JavaScript code. It can perform computation and analysis on the arguments
of the redirector, provide helpful promptings to the user, and/or carry out other relevant tasks. One typical
task that it carries out is to advance the monitoring state of the edit automaton used by the security policy.

The second example of the Get category is on accessing window.alert. Note that JavaScript allows
a method to be accessed in the same way as a field. For example, var f = window.alert assigns the
method window.alert to a variable f. This is handled during rewriting using the same Get category as
described above, and the body of sec.GetProp can monitor such access and implement related policies
(e.g., to replace the access to window.alert with the access to an instrumented version sec.alert).

The remainder of the table follows the same intuition. (Call, obj,meth) tells the JavaScript rewriter
to look for syntactic categories relevant to method calls (e.g., obj.prop(E, . . . ), obj[”prop”](E, . . . )) in
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the AST and produce a call to a redirector sec.CallMeth. The argument E to the method invocation is
rewritten to Ei following the same set of rewriting rules (the same also applies to most other cases in the
table). For the sample instantiation (Call, window, open), as is the case of the field access example earlier,
the redirector inspects the parameters obj and prop at runtime to see if they match the template parameters
window and open, and carries out the replacement action specified by the security policy.

(GetD, dprop) and (CallD, dmeth) are for accessing default properties and calling default methods.
They are similar to the Get and Call templates, except they require only one parameter. (Set, obj, prop)
and (SetD, dprop) are for setting object properties and default properties. Although it is possible to treat
+= and other similar constructs as syntactic sugars and expand them carefully (think side-effects) during
the parsing phase, we chose to directly handle them in the rewriting rules for efficiency.

Sometimes relevant actions are coded as event handlers of certain HTML tags. For example, the code
<button onclick = “alert()”> raises an alert window whenever the button is clicked. The template
(Event, tag, attr) captures such event handling constructs. The redirector sec.Event takes the instru-
mented expression Ei and the parent object this of the attribute as arguments. The exact implementation
of the redirector depends on the security policy. Typically, the internal state of the policy edit automaton is
updated while entering and exiting the corresponding event.

The last template (FSrc) is on the loading of external resources, such as those initiated by<img src=“E”>
and <iframe src=“E”>. Instead of directly loading such an external resource, we use an event handler
with a redirector for interposition. The src attribute is modified from the original URL U to a space char-
acter to trigger immediately a corresponding event (e.g., onerror for img, onload for iframe). In the
rewritten event handler, after binding the original event handler (rewritten from E to Ei) back to the event
for execution later, we call a redirector function (e.g., sec.FSimg, sec.FSiframe). Although this (FSrc)
template takes no parameter, one must still provide proper code to implement the redirector. For example,
the redirector may check the target domain name of the URL U to identify where the HTTP request is sent,
perform other URL filtering, and/or present user prompting. In general, this rule is also applicable to some
other cases of HTTP requests (e.g.,<a href = “U ”>), except different event handlers (e.g., onclick) and
redirectors (e.g., sec.FShref) are used accordingly.

3.2 Higher-Order Script and Built-in Rules

Although designed mainly for rewriting actions (A), the rewriting templates are also applicable for handling
higher-order script. For example, document.write(E) should be rewritten using sec.instrument1 (the re-
alization of the instr of Figure 1). This can be represented using the Call template as (Call, document, write).
Some code is provided in companion as the body of the corresponding redirector; that code feeds Ei (stati-
cally rewritten from E) into the rewriting interface sec.instrument (to be sent to the proxy and rewritten
at runtime). Similar observation applies to some other forms of higher-order script, such as those through
eval and innerHTML. In our prototype, however, the handling of higher-order script is directly coded in
the rewriter for efficiency, since it is always performed regardless of what the security policy is.

There are some other cases where built-in rewriting rules are applied. Selected ones are given in Table 2.
Most of the cases are designed to handle script that is not available statically, but rather generated or loaded
at runtime. Others are for facilitating error handling and instrumentation transparency.

(HOScript) captures common cases of higher-order script as discussed above. Note that our parser
pieces together consecutive document.write statements by concatenation their string arguments.

(NewObj) is used because JavaScript code may be introduced through function object creation. For
example, f = new Function(“JavaScript code goes here”) creates an object f as an executable function.
Naturally, the code introduced as the string argument must also be instrumented. Following rule (NewObj),

1The prototype uses two functions to instrument HTML and JavaScript. We refer to them uniformly as sec.instrument.
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Table 2: Selected built-in rewriting rules
Rewriting rules Sample Code patterns Rewritten code

(HOScript)
document.write(E)
eval(E) eval(sec.instrument(Ei))

(NewObj) new obj(E, . . . ) sec.NewObj(obj, Ei, . . . )
(JSURL) <a href=“javascript : E”> <a href=“javascript : Ei”>
(ExtScript) <script src=“d .p”></script> <script src=“d .pi”></script>

(Chunk) <script>E</script>
<script>
ChunkBegin(); Ei ; ChunkEnd()
</script>

(ForIn) for (prop in obj ) {E} for (prop in sec.ForIn(obj )) {Ei}
(With) with (obj ) {E} eval(sec.instrument(obj ,Ei))

a redirector sec.NewObj is applied to perform function object creation without by-passing necessary rewrit-
ing. In particular, sec.instrument will be called at appropriate places for higher-order script.

JavaScript code may also appear where a URL is expected (a JavaScript pseudo-protocol). For instance,
<a href=“javascript : E”>, when activated, executes the code E. This is handled by (JSURL).

(ExtScript) handles the inclusion of external JavaScript files through<script src=”d .p”></script>,
where d is a domain (e.g., usenix.org) and p is a path to a JavaScript file (e.g., xyz.js). We rewrite the
access to target a corresponding file on the proxy, which is an instrumented version of the original source.

(Chunk) identifies script chunks from an HTML document, and inserts prologues and epilogues. This is
to prevent malicious ungrammatical script from circumventing the instrumentation, such as in the following:

<script>document.write(“<script>malicious code goes here</scr′′);<script>ipt>

Since the argument of document.write() is not a well-formed piece of JavaScript code, our proxy will treat
it as a string and thus not instrument it. Nonetheless, chunkEnd() will insert a special character at the end
of the script chunk. As a result, the string argument of document.write() will not be pieced together with
the underlined part when rendered by the browser, thus avoiding the execution of the malicious code.

In the proxy-based architecture, we have to load the redirectors (the embodiment of the security policies)
into the same execution environment as the instrumented document. All the redirectors are organized in the
sec module, which is attached to incoming document as a property of the window object. The for...in
construct provides access to all properties of an object. Therefore, incoming JavaScript may use it to access
the sec module, either maliciously or unintentionally. The ForIn template rewrites for...in constructs to
avoid such access. Specifically, the redirector ForIn returns a list of properties that does not contain sec.

The final rule (With) is for with statements. It is tempting to treat with as pure syntactic sugars, for
example, expanding with (a) {x = 1; } to a.x = 1; and perform the rewriting therefrom. Unfortunately,
this may fail to produce the right behavior in the presence of higher-order script, such as in the following:

with (a) { eval(“x = 1; ”) }

A variable x appears in the argument of eval as a string. In general, the string may not be available for
analysis until at runtime. Therefore, such a with statement cannot be fully expanded statically. In essence,
with adds its argument obj onto the current scope chain, and evaluates its body E using the new scope chain.
Therefore, when the (With) rule passes the argument Ei (statically rewritten from E) to sec.instrument
for runtime instrumentation, an additional parameter obj is provided. As a result, sec.instrument appends
obj onto the current scope chain before feeding Ei to the proxy. Naturally, the scope chain is an important
piece of input to the proxy. We have elided this detail so far for ease of understanding, since no other
rewriting case requires any nontrivial handling of the scope chain.
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In summary, the proxy performs rewriting by syntax-directed pattern matching on ASTs, and redirec-
tors are used to implement appropriate interposition logic and security polices. Built-in rewriting rules are
always applied, but a policy designer may customize action replacement using rewriting templates. If the
same rewriting template is instantiated multiple times on different entities, a single rewriting rule with a
merged function body for the redirector is produced. The proxy only rewrites cases described by the given
rewriting rules. If a certain security policy only uses one rewriting template (e.g., get, possibly with multi-
ple instantiations), then only one rewriting rule is produced, and only the corresponding syntactic constructs
(e.g., obj.prop, obj[“prop”]) are rewritten. This avoids unnecessary rewriting and execution overhead.

4 Policy Writing and Management

The rewriting templates and their redirector code in Section 3.1 serve as a low-level policy mechanism.
It allows policy designers to focus on the abstract notion of “actions” without being distracted by the id-
iosyncrasies of JavaScript syntax. However, it provides little help on encoding edit automata. If used for
construction, a policy designer needs to implement states and transitions of policy automata in the redirec-
tors.

We now discuss a more manageable policy framework that directly accommodates the notion of edit
automata, allowing policy designers to focus more on implementing replacement actions (e.g., insertion of
runtime checks). The key of this framework is the policy compiler in Figure 3, a stand-alone program that
compiles high-level policies into rewriting rules off-line.

4.1 Edit Automata

In essence, an edit automaton concerns a set of states (with one as an initial state), a set of actions, and a set
of state transitions. In any state, an input action determines which transition to take and which output action
to produce. We use an XML file to describe all these aspects for an edit automaton as a security policy.

For example, the edit automaton of Figure 2 is represented in XML as shown in Figure 4. This edit au-
tomaton consists of an initial state and some transitions. Each transition describes a single edge in Figure 2.
The first transition has three components: an (input) action, a from-state, and a to-state. Upon an input action
that matches the rewriting template (Get, document, cookie) described by the action, if the current state is
s1, then the edit automaton goes to state s2. Since the particular edit automaton specifies no replacement
action for this transition, the original action will be carried out. In general, however, a replacement action
may also be specified, as is the case of the second transition. Note that the code for the replacement action
may refer to the formal parameters of the corresponding redirector as specified in Table 1.

The compilation from a such represented edit automaton to rewriting rules goes as follows. The input
action is identified by the template name and parameters. Based on Table 1, there will be a corresponding
rewriting template to instantiate and a redirector to supply code as the body. The code performs state
transition based on the from/to states, and invokes the replacement action. More specifically, for the above
discussed transition, the policy compiler would produce the rewriting rule (Get, document, cookie) and
insert into the redirector sec.GetProp some code of the following shape:

if (sec.compare(obj .prop, “document.cookie”)) {
if (sec.state == s1) sec.state = s2;

}
return obj.prop;

Here obj and prop stands for the formal parameters of sec.GetProp. sec.compare is a utility function
called at runtime to decide the identity of obj.prop. The string “document.cookie” is used for clarity here,
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<EA>
<initial> s1 </initial>
<transition>
<action>
<category> Get </category>
<object> document </object>
<property> cookie </property>

</action>
<from> s1 </from>
<to> s2 </to>

</transition>
<transition>
<action>
<category> fsrc </category>

</action>
<from> s2 </from>
<to> s2 </to>
<replacement>
. . . code of safeloadURL . . .

</replacement>
</transition>

</EA>

Figure 4: An edit automaton in XML

some_state

( Get, obj, prop) / ... filtering code... <template name = “ReadAccessFiltering”>
<object> obj </object>
<property> prop </property>
<states> some state </states>
<replacement>
. . . filtering code . . .

</replacement>
</template>

Figure 5: Read access filtering

but the actual implementation works directly with a private reference to document.cookie. sec.state is
the state of the edit automaton maintained by the security module, and s1 and s2 are state constants. The
state transition from s1 to s2 applies if obj.prop is indeed document.cookie. The original action obj.prop
is carried out unconditionally, because the edit automaton specifies no replacement action for this case.

After the edit automaton is compiled into rewriting rules and redirectors, the rewriters described in
Section 3 takes cover, rewriting all relevant syntactic constructs using the corresponding redirectors.

4.2 Policy Templates

During our policy experiments, we identified several commonly used patterns of edit automata. We organize
these as policy templates. Instead of always describing an edit automaton from scratch, a policy designer
may instantiate a relevant template to quickly obtain a useful policy. We illustrate this with examples.

One pattern is on filtering read access to object properties (both fields and methods). The (fragment of)
edit automaton is shown in Figure 5, together with an XML representation. Note that this is essentially a
template to be instantiated using a specific object, property, state, and filtering code. It captures a common
pattern where the property access is filtered without applying any state transition.
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some_state

( Call, obj, meth) / ... filtering code... <template name = “CallFiltering”>
<object> obj </object>
<property> meth </property>
<states> some state </states>
<replacement>
. . . filtering code . . .

</replacement>
</template>

Figure 6: Call filtering

s1
(not accessed)

s2
(accessed)

( Set, obj, prop)

<template name = “WriteAccessTracking”>
<object> obj </object>
<property> prop </property>
<states> s1 , s2 </states>

</template>

Figure 7: Write access tracking

One may also filter method calls in a similar pattern (Figure 6). This is typically used to insert security
checks for method calls. Again, the template is to be instantiated with specific entities.

Another pattern is on tracking write access to properties (Figure 7). This tracks the execution of property
writing by transitioning the state of the automaton. The replacement action is the same as the input action.
The corresponding policy template specifies two states, but no replacement action.

We have implemented a total of 14 policy templates, including four on tracking property access (object
and default properties; read and write access), four on filtering property access (object and default prop-
erties; read and write access), four on method calls (tracking and filtering; object and default methods),
one on tracking inlined event handlers (e.g., <body onunload=“window.open(); ”>), and one on filter-
ing implicit HTTP requests (e.g., images and inlined frames). These policy templates proved useful during
our experiments, but new ones can always be constructed. The policy compiler expands instantiated policy
templates into edit automata, and further compilation follows as introduced earlier.

4.3 Compound Templates

The above templates each describe a particular aspect of security issue. It is often the case that multiple tem-
plates are used together to enforce a useful policy. As an example, consider a simple policy of adding a prefix
“Security Module : ” to the alert text produced by window.alert. Naturally, we implement a replacement
action myAlert as follows: function myAlert(s) { window.alert(“Security Module : ” + s); } .

This obviously requires some filtering on read access and calls to window.alert, as illustrated in
Figures 5 and 6. For example, the former is applicable to rewriting code from f = window.alert to
f = myAlert, and the latter is applicable to rewriting code from window.alert(“Hello”) to myAlert(“Hello”).

An additional complication is that JavaScript code in the incoming document may choose to rewrite
window.alert for other functionalities:

window.alert = function(s) {};
window.alert(”a debugging message to be ignored”);

Here, window.alert is redefined as an “ignore” function. It would be undesirable to perform the same filter-
ing after the redefinition. Therefore, a more practical policy is to filter read access and calls to window.alert
only if it has not been redefined.2 This can be addressed using write access tracking as in Figure 7.

2Readers might wonder if this could be exploited to circumvent the instrumentation. The answer is no, because the function
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s1
(not accessed)

s2
(accessed)( Set, window, alert)

( Call, window, alert) / ... filtering code...
( Get, window, alert) / ... filtering code...

<policy>
<initial> s1 </initial>
<template name = “ReadAccessFiltering”>
<object> window </object>
<property> alert </property>
<states> s1 </states>
<replacementAction>
. . . filtering code returns myAlert . . .

< /replacementAction>
</template>
<template name =′′ CallFiltering”>
<object> window </object>
<property> alert </property>
<states> s1 </states>
<replacementAction>
. . . filtering code calls myAlert . . .

< /replacementAction>
</template>
<template name = “WriteAccessTracking”>
<object> window </object>
<property> alert </property>
<states> s1 , s2 </states>

</template>
</policy>

Figure 8: Function replacement

A compound edit automaton can be obtained by combining read access filtering, call filtering, and
write access tracking, as shown in Figure 8. Note that this is a direct combination of the three instanti-
ated templates. This is in fact a very common pattern, because any methods could be redefined in incoming
JavaScript code. Therefore, we use a compound template FuncReplacement (shown below) to directly rep-
resent this pattern. The actual policy on window.alert can then be obtained by instantiating this compound
template with the corresponding parameters.

<template name = ”FuncReplacement”>
<object> obj </object>
<property> prop </property>
<states> s1 , s2 </states>
<replacementAction> . . . filtering code . . . < /replacementAction>

</template>

We have also implemented some other compound templates to represent common ways of template
composition. Examples include one on filtering default function calls up to redefinition and one on tracking
the invocation of global event handlers.

As a summary, instantiated policy templates are expanded into edit automata, which in turn are compiled
into rewriting rules and redirectors. The XML-based representation supports arbitrary edit automata for
expressiveness, and some domain-specific templates are introduced to ease the task of policy construction.

body of the new definition would be instrumented as usual, if it involves relevant actions.
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Security Module Instrumented Document

Replacement Actions

Transition Functions

Redirector Functions

Utility Functions

Security Module

Rewritten Code

(relevant actions
replaced with

various redirectors)

Figure 9: Structure of an instrumented document

5 Runtime Interaction with Proxy and with Client

5.1 Structure of instrumented documents

We have described two stand-alone components—one is the proxy for the instrumentation of incoming
contents at runtime, the other is a policy compiler compiling high-level security policies (edit automata) into
low-level rewriting rules off-line. These two components collaborate to complete the instrumentation tasks.

The structure of an instrumented document is shown in Figure 9. Based on the rewriting rules provided
by the policy compiler, the proxy replaces relevant syntactic constructs in the incoming content with calls
to redirectors. The proxy also inserts a security module, which contains the realization of the special in-
struction instr and policy module Π in Figure 1. Specifically, instr exhibits itself as a utility function
sec.instrument (more in Section 5.2), and the policy module Π is interfaced through the redirectors.
The redirectors call certain transition functions for maintaining edit automata at runtime, and invoke some
replacement actions provided by policy designers. These functions may also refer to other utility functions
as needed. We will discuss one such utility function on user notification in Section 5.3—upon a policy viola-
tion, notifyPolicyViolation is called to interact with the user effectively. Other commonly used utility
functions include those for IP normalization, URL filtering, and policy object embedding and manipulation.

Since the security module is realized as regular JavaScript code, it resides in the same execution envi-
ronment as incoming contents, and thus must be protected from malicious exploits. For example, malicious
JavaScript code may modify the implementation of the security module by overwriting the functions of se-
curity checks. We organize the security module in a designated object named sec, and rename all other
objects that could cause conflicts (i.e., changing sec into sec, sec into sec, and so on).

Although sec is usually inserted by the proxy during rewriting, sometimes a window could be created
without going through the proxy at all. For example, the incoming content may use window.open() to open
up an empty new window without triggering the proxy. Once the window is open, its content could be
updated by the JavaScript code in the parent window. In response, we explicitly load a sec object into the
empty new window when needed, so as to correctly enforce its future behaviors.

Another potential concern is that the incoming code could modify the call sites to the redirectors through
JavaScript’s flexible reflection mechanisms. Suppose the rewritten document contains a node that calls
sec.GetProp. Using features such as innerHTML, incoming script could attempt to overwrite the node
with some different code, such as exploit. This is in fact one form of higher-order script, and it is correctly
handled, provably [21], following the theoretical framework of Figure 1. In particular, the runtime-generated
script exploit will be sent back to the proxy for further instrumentation before executed; therefore, it
cannot circumvent the security policy. In essence, the effect of using the runtime-generated code exploit
as above is not different from statically using exploit in the original content directly.
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5.2 Calling Proxy at Runtime

The utility function instrument needs to call the proxy at runtime to handle higher-order script. Therefore,
we need to invoke the rewriters on the proxy from within the JavaScript code on the client. This is done with
help of the XMLHttpRequest object [19] (or ActiveX in IE), which allows us to send runtime-generated
JavaScript/HTML code to the proxy and receive their rewritten result. Although XMLHttpRequest is popu-
larly known for its use in Ajax [7] (Asynchronous JavaScript and XML), we use it in a synchronous manner.

An interesting subtlety is that XMLHttpRequest is restricted to communicate only with servers that
reside in the same domain as the origin of the current document. We use a specially encoded HTTP request,
targeting the host of the current document, as the argument to XMLHttpRequest. Since all HTTP requests
go through the proxy, the proxy is able to intercept relevant requests based on the path encoding and respond
with the instrumentation result. Some key code, simplified (e.g., the handling of the scope chain is omitted)
from the actual implementation for ease of reading, is given below for illustration:

// This function sends str to the proxy for instrumentation.
// str is either HTML or JavaScript code, depending on type.
function instrument (type, str) {
var xhr = new XMLHttpRequest();
var url = “http://” + location.hostname + “/? proxy /”

+ type + “&url = ” + escape(location.href);
try{
xhr.open(”POST”, url, false); // false specifies synchronous communication.
xhr.send(str);

}catch(e){...}
return xhr.responseXML; // The result of the instrumentation is in XML.

}

5.3 User Interaction

Effective user interaction upon a policy violation is important for practical deployment. A simple notification
mechanism such as a dialogue box may not appear sufficiently friendly or informative to some users. Upon
most policy violations, we overlay the notification messages on top of the rendered content (Figure 10). This
better attracts the user’s attention, disables the user’s access to the problematic content, and allows the user
to better assess the situation by comparing the notification message with the rendered content.

This would be straightforward if we were to change the browser implementation. However, in the
proxy architecture, we need to implement such notification in HTML. To enable the overlaying effect,
we use a combination of JavaScript and Cascading Style Sheets (CSS) to provide the desired font, color,
visibility, opacity and rendering areas. An interesting issue occurs, however, because such functionality
works by directly manipulating the HTML document tree. This manipulation normally happens after the
entire document is loaded, e.g., by using an onload event handler. Unfortunately, a policy violation may
occur before the onload event happens. In this case, we apply one of the following “fall-back” mechanisms,
based on different code and error scenarios.

The first is to notify the user immediately upon a policy violation using a regular dialogue box. Although
less friendly looking than the overlaying approach, the blocking nature of the dialogue box desirably delays
the rendering of any further content until receiving the user’s instruction. A user could choose either to allow
the action, to suppress the action and continue with the remainder content, or to stop rendering altogether. A
slight variation of this is to directly stop the rendering of any further content and present error notification.
This is mainly applicable to severe violations, such as upon identified phishing sites.

14



Figure 10: Overlaid user notification upon a policy violation

The second is mainly applicable to relatively “mild” violations, such as pop-up windows. It suppresses
the policy violating action, proceeds with the rendering of the remainder content, and presents the notifica-
tion when the entire document is loaded. This allows us to present the notification in the friendly overlaid
manner. However, there may be multiple actions suppressed when loading the content, thus the rendered
content may not be as expected if not applied carefully.

The last is designed for special cases where the above are not suitable. For example, when a policy
violation is caused by script within an inlined frame, the corresponding rendering area could be too small
or even hidden, preventing the notification to be shown as expected. We thus present error messages by
redirecting to a special web page supplied by the proxy.

5.4 Supporting Multiple Browsers

In theory, the proxy-centric architecture of Figure 3 is browser-independent, and the proxy should work
naturally for all browsers. In practice, however, different browsers sometimes behave differently when
interpreting the same JavaScript code. This is usually due to either implementation flaws or ambiguity and
incompleteness of the JavaScript language specification [3] (e.g., some behaviors are undefined).

First, different browsers have different tolerance on various types of obfuscated or malformed JavaScript
and HTML code. For example, upon an assignment to the window object, IE throws an exception, Firefox,
Konqueror and Safari ignore the assignment, and Opera allows the assignment. As another example, con-
sidering the following code: x = document.write; x(“ . . . ”). Although triggering an exception on most
browsers, this code will be rendered on IE. Our proxy does not currently handle such peculiarities correctly.

Next, some innocent-looking code may also result in different browser behaviors. Consider the fol-
lowing: var location = “ . . . ”; . Whereas most browsers create a local variable shadowing the native
location variable (the one holding the URL of the current document), Firefox ignores the local declaration
of var and updates the native location variable instead.

Furthermore, different browsers support different DOM APIs. For instance, Firefox supports some con-
venient APIs such as document.defaultView, document. parent , location. parent , and func.apply.
At some point, we used these APIs inside our security policies. Unfortunately, these APIs are not supported
by some other browsers such as IE.
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Table 3: Micro-benchmarks: Firefox rendering time (average)
Get Call GetD CallD Set SetD NewObj ForIn

time before (µs) 0.53 1.71 12.40 1.98 1.26 0.31 5.27 17.73
time after (µs) 9.44 36.81 100.57 23.65 240.75 33.37 37.75 66.40
ratio 17.8 21.5 8.1 11.9 191.1 107.6 7.2 3.7

Most of these browser-dependent behaviors are not of great importance to instrumentation. Nonetheless,
it is useful to have the proxy behave consistently across different browsers. Therefore, we must instrument
carefully using “robust” code—code that is treated uniformly by different browsers. Consider the (FSrc)
template in Table 1 as an example. A space character is used as the rewritten value of the src attribute. If
an empty string is used instead, some browsers will trigger the relevant event handler, but others will not.

In summary, it would be trivial having the proxy work with multiple browsers in an ideal world where all
browsers behave in a standard way. In reality, however, one must address some browser-dependent issues.

6 Experiments

We have run our proxy with several browsers: Firefox, Konqueror, Opera, Safari, Safari Mobile on iPhone,
and (partially) IE. During experiments, we manually confirmed that appropriate error notifications were
given upon policy violations. In this section, we report some performance measurements on well-behaved
web pages to demonstrate the overhead caused by the proxy. These measurements were made mainly
using Firefox as the rendering browser, with help of the Firebug [8] add-on. Specifically, we profiled
JavaScript execution in target web pages without counting in certain network-relevant activities, such as
those due to the loading of inlined frames and external JavaScript sources, and the communication through
XMLHTTPRequest. We have also conducted experiments using other browsers. Due to the lack of mature
profiling tools for those browsers, we manually inserted timer functions in the target web pages. The result-
ing measurements were more fluctuating, but overall showed a fair match with the results on Firefox, and
did not suggest specific new findings.

Two machines were used in the experiments—one as the proxy, the other as the client. Both machines
have the same configuration: Intel Pentium 4, clock rate 3.2GHz, 1.5 GB of RAM, running FreeBSD 6.2.

6.1 Micro-benchmarks

In several rewriting cases of Table 3, simple JavaScript constructs are rewritten using redirectors. We expect
this to be one major reason of performance penalties. Therefore, we crafted web pages to test such over-
head on the browser with respect to the applicable rewriting cases. Specifically, we measured the browser
rendering time before and after the instrumentation. Each case was measured by executing a minimal (thus
the overhead is “exemplified”) piece of code 7000-9000 times, and the entire process was repeated 10 times,
whose average result is presented in Table 3. The slowdown ratios for Firefox ranged from under 10 to
over 100. Note that these numbers are somewhat worst case scenarios, because in actual web pages, the
cost will be amortized among additional computation that does not require nontrivial rewriting. The set
case (property write) showed the biggest slowdown. By inspection, however, we did not see any significant
structural difference in the rewritten code in comparison with the get case (property read).

There are a few rewriting cases not measured in the above micro-benchmarks, because they involve
nontrivial interactions (e.g., event triggering or network requests). The associated performance penalties for
those cases are better measured and understood based on the macro-benchmarks shown next.
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Table 4: Policy set and coverage of rewriting cases
Get Call GetD CallD Set SetD Event FSrc

Cookie X
IFrame X X
IP-URL X X X
Pop-up X X X X X X
URL-Event X X X X

Table 5: Target applications and various performance measurements
DoCoMo LinkedIn WaMu MSN YouTube MSNBC GMap GMail

(corporate) (social) (bank) (portal) (video) (news) (map) (email)
size before (B) 24,433 97,728 156,834 170,927 187,324 404,311 659,512 899,840
size after (B) 28,047 144,646 141,024 252,004 232,606 495,568 959,097 1,483,577
ratio 1.15 1.48 0.90 1.47 1.24 1.23 1.45 1.65
proxy time (ms) 614 1,724 2,453 3,933 4,423 7,290 10,570 14,570
time before (ms) 94 82 553 402 104 2,832 1,369 4,542
time after (ms) 143 143 688 695 167 3,719 1,783 7,390
time ratio 1.52 1.74 1.24 1.73 1.61 1.31 1.30 1.63
time diff (ms) 49 61 135 293 63 887 414 2,848

6.2 Macro-benchmarks

To learn how the instrumentation works under typical browsing behaviors, we run macro-benchmarks using
a selected set of policies and some popular web applications.

6.2.1 Policy Set

We crafted a set of policies to serve together as the policy input to the proxy, as listed in Table 4. The policies
are selected based on both relevance to security and coverage of rewriting rules. The Cookie policy warns
against the loading of dynamic foreign links after a cookie access [10], helping preventing XSS. The IFrame
policy warns against foreign links serving as iframe sources, helping preventing a form of phishing. The
IP-URL policy disallows dynamic IP URLs so as to prevent incoming script from analysing the presence of
hosts on the local network. The Pop-up policy sets a limit on the number of pop-up windows, and restricts
the behaviors of unwieldy (e.g., , very small/large, out-of-boundary, and respawning) pop-ups. Finally, the
URL-Event policy inspects certain event handlers (e.g., onclick) to prevent malicious code from updating
target URLs unexpectedly (e.g., redirection to a phishing site after a linked is clicked). These together
cover all the rewriting cases of Table 1. Note that the built-in rewriting rules of Table 2 are always applied
regardless of what policy is in use.

6.2.2 Target Applications and Overheads

We hand-picked a variety of web pages as the target applications. These applications and their “code”
sizes (for contents that require rewriting, including JavaScript and various HTML constructs, but excluding
images, etc) before and after the instrumentation are listed in the top portion of Table 5. A variety of sizes
are included, ranging from about 24KB to nearly 900KB. Recall that the proxy produces rewritten code and
inserts a security module. The sizes in Table 5 are about the rewritten code only. The security module is
always the same once we fix the policy set. For our policy set, the security module is 16,202 bytes; it is
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automatically cached by the browser, thus reducing network cost.
The ratio row shows how much the code size grew after instrumentation. In most cases, the growth was

less than 50%. The worst case was the inbox of GMail, where the nearly 900KB of code grew by 65%.
Interestingly, the WaMu code reduced by about 10% after instrumentation. By inspection, we found out that
there was a significant amount of code commented out in the WaMu page, which was removed by the proxy.

The middle row of the table shows the time the proxy spent on rewriting. It was calculated based on the
average of 50 runs. The figures are roughly proportional to the code sizes. The proxy spent a few seconds
for smaller applications but over ten seconds for bigger ones. Since there was usually multiple code chunks
processed, the client side perceptual delay was alleviated, because part of the content had started rendering
even before the rewriting was done.

The bottom portion is Firefox interpretation time of the code before and after rewriting. The ratio and
diff columns show the proportional and absolute time increases for rendering the instrumented code. For
most applications, the absolute increase is negligible with respect to user perception. For GMail, the increase
is nearly three seconds.

6.3 Safari Mobile on iPhone

Finally, we briefly report our experience of web browsing using Safari Mobile on iPhone. Although there
has been some fluctuation of traffic in the WLAN, the numbers we collected still seems useful in describing
the perceptual overhead introduced by the proxy.

When directly loading the applications of Table 5 without using the proxy, almost all pages started show-
ing within 7-12 seconds, and finished loading (as indicated by a blue progress bar) within 11-24 seconds.
The only exception was the inbox of GMail, which took well over a minute to be rendered. When loading
the applications through the proxy, almost all pages started showing within 9-14 seconds (with exceptions
described below). The finish time of the loading varied from 15 seconds to over a minute.

A few special cases are worth noting. MSNBC used a special page for rendering on iPhones; it took on
average about 11 seconds for the entire page to be loaded without the proxy, and 15 seconds with the proxy.
For GMap, we further experimented with the address searching functionality. It took on average 17 seconds
to render the resulting map without the proxy, and 34 seconds with the proxy. When trying to render the
inbox of GMail through the proxy, we got an error message of “method not allowed,” because the proxy
does not currently support the CONNECT protocol [14] for tunnelling the SSL’ed login information. In
contrast, our tested desktop browsers were set up to use direct connections for SSL’ed contents.

7 Related Work

There has been work applying code instrumentation to the security of machine code and Java bytecode.
SFI [20] prevents access to memory locations outside of predefined regions. SASI [4] generalizes SFI
to enforce security policies specified as security automata. Program Shepherding [11] restricts execution
privileges on the basis of code origin, monitors control flow transfers to prevent the execution of data or
modified code, and ensures that libraries are entered only through exported entry points. Naccio [6] en-
forces policies that place arbitrary constraints on resource manipulations as well as policies that alter how a
program manipulates resources. PoET [5] applies inlined reference monitors to enforces EM policies [18]
on Java bytecode. As pointed out by several studies [4, 17, 21], the above work is not directly applicable
to JavaScript instrumentation for user-level security policies. Some notable problems include the pervasive
use of reflection and higher-order script in JavaScript, the lack of flexible and usable policy management,
and the difficulty of interpositioning a prototype-based object model.

The prototype in this paper is built based on the theoretical work of CoreScript instrumentation [21].
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CoreScript focuses on formalizing the JavaScript execution model, the technique of instrumenting higher-
order script, and the end-to-end proof of policy enforcement, and is largely abstract on the implementation
aspects. Specifically on action rewriting, CoreScript has a designated syntactic category called actions,
therefore syntax-directed rewriting is straightforward. This paper details the exact rewriting rules for various
JavaScript syntactic constructs, introduces a policy compiler for generating syntactic rewriting rules from
edit automata policies and templates, and discusses the subtle difficulties of proxy-based realization.

A closely related work is BrowserShield [17], which applies runtime instrumentation to rewrite HTML
and JavaScript. Designed mainly as a vulnerability-driven filtering mechanism to defend browser vulnera-
bilities prior to patch deployment, the policies of BrowserShield are mainly about vulnerability signatures,
and are written directly as JavaScript functions. After initial rewriting at an enterprise firewall, rewriting
logic is injected into the target web page and executed at browser rendering time. A browser plug-in is used
to enable the parsing and rewriting on the client.

In contrast, we target general user-level policies, and much of our work has been on practical policy man-
agement. Specifically, domain-specific abstractions are used for policy construction, and a policy compiler
is engaged to translate such constructed policies to syntactic rewriting rules. Different syntactic categories
are rewritten based on different policies. For simple policies, only one or two kinds of syntactic constructs
are rewritten, although a composite policy typically requires the rewriting of more. All the rewriting (both
load-time and run-time) happens on a proxy. The rewritten page interacts with the proxy at runtime using
XMLHttpRequest. No software or plug-in is required on the client. Therefore, our architecture is naturally
applicable to work with multiple web browsers, even if software/plug-in installation is not allowed.

JavaScript instrumentation has also been applied to the monitoring of client-side behaviors of web appli-
cations. Specifically, the AjaxScope [9] proxy applies on-the-fly parsing and instrumentation of JavaScript
code as it is sent to users’ browsers, and provides facilities for reducing the client-side overhead and giving
fine-grained visibility into the code-level behaviors of the web applications. Targeting the development and
improvement of non-malicious code (e.g., during debugging), AjaxScope does not instrument code that is
generated at runtime (i.e., higher-order script). Therefore, the rewriting is simpler and, as is, not suitable as
a security protection mechanism against malicious code.

8 Conclusion and Future Work

We have presented a JavaScript instrumentation prototype for browser security. Specifically, we reported ex-
periences on instrumenting various JavaScript constructs, composing user-level security policies, and using
a proxy to enable runtime rewriting. Our proxy enables flexible deployment scenarios. It naturally works
with multiple browsers, and does not require software installation on the client. It provides a centralized
control point for policy management, and poses relatively small computation requirement on the client.
Although not optimized, our prototype yields promising results on the feasibility of the approach.

We plan to further extend the experimental work in the future. For example, we plan to conduct more
experiments based on real-world web browsing patterns (e.g., top URLs from web searches) and improve
the support on popular browsers (most notably IE). We also plan to study the instrumentation of plug-
in contents. For example, VBScript and Flash are both based on the ECMAScript standard [3], thus our
instrumentation techniques are also applicable.

Our proxy-based architecture does not directly work with encrypted contents (e.g., SSL). Some of our
tested web pages (e.g., GMail) uses SSL, but only for transmitting certain data, such as the login information.
If the entire page was transmitted through SSL (as is the case of many banking sites), then the proxy cannot
perform rewriting. This can be addressed by either decrypting on the proxy (if a trusted path between the
proxy and the browser can be established), having the browser sending decrypted content back to the proxy,
or directly implementing the instrumentation inside the browser.
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Although the proxy-based architecture enables flexible deployment scenarios, a browser-based imple-
mentation may also be desirable. Some of our difficulties supporting multiple browsers have been due to
their inconsistent treatment on undefined JavaScript behaviors. If implemented inside the browser, the same
parsing process would be applied to both the rendering and the instrumentation, thus avoiding extra parsing
overhead and problems caused by specific semantic interpretations.
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