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Modeling the change in the electrostatics of organic molecules upon moving from vacuum into
solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values
for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy;
however, it has generally been difficult to determine these quantities for a polar molecule in water.
A theoretical approach introduced by Onsager �J. Am. Chem. Soc. 58, 1486 �1936�� used vacuum
properties of small molecules, including polarizability, dipole moment, and size, to predict
experimentally known permittivities of neat liquids via the Poisson equation. Since this important
advance in understanding the condensed phase, a large number of computational methods have been
developed to study solutes embedded in a continuum via numerical solutions to the
Poisson-Boltzmann equation. Only recently have the classical force fields used for studying
biomolecules begun to include explicit polarization in their functional forms. Here the authors
describe the theory underlying a newly developed polarizable multipole Poisson-Boltzmann
�PMPB� continuum electrostatics model, which builds on the atomic multipole optimized energetics
for biomolecular applications �AMOEBA� force field. As an application of the PMPB methodology,
results are presented for several small folded proteins studied by molecular dynamics in explicit
water as well as embedded in the PMPB continuum. The dipole moment of each protein increased
on average by a factor of 1.27 in explicit AMOEBA water and 1.26 in continuum solvent. The
essentially identical electrostatic response in both models suggests that PMPB electrostatics offers
an efficient alternative to sampling explicit solvent molecules for a variety of interesting
applications, including binding energies, conformational analysis, and pKa prediction. Introduction
of 150 mM salt lowered the electrostatic solvation energy between 2 and 13 kcal/mole, depending
on the formal charge of the protein, but had only a small influence on dipole moments. © 2007
American Institute of Physics. �DOI: 10.1063/1.2714528�

I. INTRODUCTION

Modeling the change in the electrostatic moments of or-
ganic molecules upon moving from vacuum to solvent has a
long history, with an important initial contribution from On-
sager, who in 1936 identified the difference between the cav-
ity field and reaction field.1 The approach used was to treat
the solvent as a high dielectric continuum surrounding a
spherical, low dielectric solute with a dipole moment, which
was considered to be a sum of permanent and induced con-
tributions. Using the vacuum dipole moment, molecular po-

larizability, and an estimate of molecular size, a prediction of
the experimentally observable liquid permittivity was
achieved for a range of molecules. Through the use of com-
puters, this approach has been extended in order to treat sol-
utes with arbitrary geometry and charge distributions by nu-
merically solving the Poisson-Boltzmann equation using
finite-difference, finite element, and boundary element
methods.2 An advantage of using a continuum solvent over
explicit representation of solvent molecules is alleviation of
the need to sample over water degrees of freedom in order to
determine the mean solvent response. Applications that have
benefited from using continuum solvent approaches include
predictions of pKas, redox potentials, binding energies, mo-
lecular design, and conformational preferences.
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An accurate implicit solvation model does not necessi-
tate any loss of solute thermodynamic information.3 For most
implicit solvent models, the total solvation energy �Wsolvation

as a function of solute conformation is separated into contri-
butions due to nonpolar �Wnp and electrostatic �Welec ef-
fects,

�Wsolvation = �Wnp + �Welec. �1�

Here we concentrate on the electrostatic contribution, moti-
vated by recent work on improving the accuracy of force
field electrostatic models through the incorporation of polar-
izable multipoles.4–7 This requires revisiting the theory un-
derlying the electrostatic component of implicit solvent mod-
els, including those based on solving the linearized Poisson-
Boltzmann equation �LPBE�

� · ���r� � ��r�� − �̄2�r���r� = − 4���r� , �2�

where the coefficients are a function of position r, ��r� is
the potential, ��r� the permittivity, �̄2�r� the modified
Debye-Hückel screening factor, and ��r� is the solute charge
density. For an introduction to Poisson-Boltzmann based
methodology and applications, see the review of Honig and
Nicholls8 or those of Baker.2,9

In spite of the fact that the dipole moment of a polar
solute can increase by 30% or more during transfer from gas
to aqueous phase, empirical potentials have typically ne-
glected explicit treatment of polarization for reasons of com-
putational efficiency. However, ab initio implicit solvent
models, including the polarizable continuum model intro-
duced in 1981 by Tomasi and co-workers,10,11 the conductor-
like screening model of Klamt,12 the distributed multipole
approach of Rinaldi et al.,13 and the SMx series of models
introduced in the early 1990s by Cramer and Truhlar14 have
long incorporated self-consistent reaction fields �SCRFs�.10,15

These models allow the solute, described using a range of ab
initio or semiempirical levels of theory, and continuum sol-
vent to relax self-consistently based on their mutual interac-
tion. The principle advantage of the present polarizable mul-
tipole Poisson-Boltzmann �PMPB� model over these existing
formulations is computational savings resulting from a
purely classical representation of the solute Hamiltonian,
which facilitates the study of large systems. However, each
of these models demonstrates that there continues to be
broad interest in coupling highly accurate solute potentials
with a continuum treatment of the environment.

For example, there is growing evidence that current
goals of computational protein design, including incorpora-
tion of catalytic activity and protein-protein recognition, may
require a more accurate description of electrostatics than has
been achieved by fixed partial charge force fields used in
conjunction with implicit solvents.16 For example, it has
been shown that both Poisson-Boltzmann and generalized
Born models used with the CHARMM22 �Ref. 17� potential
tend to favor burial of polar residues over nonpolar ones.18 It
is important to note that this behavior may not be directly
due to the treatment of solvation electrostatics, but could
result from inaccuracies in the underlying protein force field
or the nonpolar component of the solvation model. However,

the fixed charge nature of traditional protein potentials may
also contribute to such discrepancies. Polar residues elicit a
solvent field that increases their dipole moment via polariza-
tion relative to a nonpolar environment, which has a favor-
able energetic consequence that cannot be captured by a
fixed charge force field even when using explicit water.

Along with the atomic multipole optimized energetics
for biomolecular applications �AMOEBA� force field, other
efforts toward developing polarizable force fields for biomo-
lecular modeling are also under way, for example, see the
review of Ponder and Case.7 Here we comment more thor-
oughly on the polarizable force field �PFF� of Maple and
co-workers,19 since it has recently been incorporated into a
continuum environment. Specifically, there are a number of
salient differences between AMOEBA and PFF, including
facets of the underlying polarization model and the use of
permanent quadrupoles in AMOEBA. Significantly,
AMOEBA allows mutual polarization between atoms with
1–2, 1–3, and 1–4 bonding arrangements, which is crucial
for reproducing molecular polarizabilities.

The current work addresses a number of issues raised in
the description of the PFF solvation model. First, discretiza-
tion procedures previously reported for mapping partial
charges onto a source grid are inadequate for higher order
moments. Instead, we present a multipole discretization pro-
cedure using B-splines that leads to essentially exact energy
gradients. Furthermore, we provide a rigorous demonstration
of the numerical precision of our approach, similar in spirit
to the work of Im et al. with respect to partial charge
models.20 We also show that divergence of the polarization
energy is not possible due to use in AMOEBA of Thole-style
damping at short range.21

Formulation of consistent energies and gradients based
on the LPBE has been reported previously for partial charge
force fields.20,22–24 Gilson et al. pointed out limitations in
previous approaches using variational differentiation of an
electrostatic free energy density functional.23 Later Im et al.
showed that it is possible to begin the derivation based upon
the underlying finite-difference calculation used to solve the
LPBE.20 This approach leads to a formulation with optimal
numerical consistency and will be adopted here.

II. BACKGROUND

In order to describe the total electrostatic energy of the
PMPB model, specifically of an AMOEBA solute in a LPBE
continuum solvent, it is first necessary to present the energy
in vacuum using a convenient notation. We will also summa-
rize the previously developed procedure for determining ro-
bust energies and gradients for fixed charge force fields in a
LPBE continuum.20,23 Given this background, the theoretical
infrastructure required to implement the PMPB model is mo-
tivated and presented in a self-contained fashion.
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A. AMOEBA vacuum electrostatic energy

Following Ren and Ponder,5 each permanent atomic
multipole site can be considered as a vector of coefficients
including charge, dipole, and quadrupole components

Mi = �qi,di,x,di,y,di,z,�i,xx,�i,xy,�i,xz, . . . ,�i,zz�t, �3�

where the superscript t denotes the transpose. The interaction
energy between two sites i and j separated by distance sij can
then be represented in tensor notation as

U�sij� = Mi
tTijM j = �

qi

di,x

di,y

di,z

�i,xx

]

�
t

�
1 �/�xj �/�yj �/�zj ¯

�/�xi �2/�xi�xj �2/�xi�yj �2/�xi�zj ¯

�/�yi �2/�yi�xj �2/�yi�yj �2/�yi�zj ¯

�/�zi �2/�zi�xj �2/�zi�yj �2/�zi�zj ¯

] ] ] ] �

� 1

sij�
qj

dj,x

dj,y

dj,z

� j,xx

]

� . �4�

Each site may also be polarizable, such that an induced di-
pole �i proportional to the strength of the local field is
present

�i = �iEi = �i��
j�i

Td,ij
�1� M j + �

k�i

Tik
�11��k	 . �5�

Here �i is an isotropic atomic polarizability and Ei is the
total field, which can be decomposed into contributions from
permanent multipole sites and induced dipoles, and the sum-
mations are over Ns multipole sites. Later, this expression
will be modified to include the solvent reaction field. The
interaction tensors Td,ij

�1� and Tik
�11� are, respectively,

Td,ij
�1� = ��/�xi �2/�xi�xj �2/�xi�yj �2/�xi�zj ¯

�/�yi �2/�yi�xj �2/�yi�yj �2/�yi�zj ¯

�/�zi �2/�zi�xj �2/�zi�yj �2/�zi�zj ¯

� 1

sij

�6�

and

Tik
�11� = ��2/�xi�xk �2/�xi�yk �2/�xi�zk

�2/�yi�xk �2/�yi�yk �2/�yi�zk

�2/�zi�xk �2/�zi�yk �2/�zi�zk
� 1

sik
, �7�

where the subscript d in Td,ij
�1� indicates that masking rules for

the AMOEBA group-based polarization model are
applied.4–7 This linear system of equations can be solved via
a number of approaches, including direct matrix inversion or
iterative schemes such as successive over-relaxation �SOR�.
Note that at short range the field is damped via the Thole
model, which is not included above for clarity and is dis-
cussed elsewhere.5 The total vacuum electrostatic energy
Uelec

v includes pairwise permanent multipole interactions and
many-body polarization

Uelec
v = 1

2 �MtT − ��v�tTp
�1��M , �8�

where the factor of 1 /2 avoids double counting of permanent
multipole interactions in the first term and accounts for the
cost of polarizing the system in the second term. Further-
more, M is a column vector of 13Ns multipole components

M = �
M1

M2

]

MNs

� . �9�

T is a Ns	Ns supermatrix with Tij as the off-diagonal ele-
ments

T = �
0 T12 T13 ¯

T21 0 T23 ¯

T31 T32 0 ¯

] ] ] �

� , �10�

�v is a 3Ns column vector of converged induced dipole com-
ponents in vacuum

�v = �

1,x


1,y


1,z

]


Ns,z

� , �11�

and Tp
�1� is a 3Ns	13Ns supermatrix with Tp,ij

�1� as off-
diagonal elements

Tp
�1� = �

0 Tp,12
�1� Tp,13

�1�
¯

Tp,21
�1� 0 Tp,23

�1�
¯

Tp,31
�1� Tp,32

�1� 0 ¯

] ] ] �

� . �12�

The subscript p denotes a tensor matrix that operates on the
permanent multipoles to produce the electric field in which
the polarization energy is evaluated, while the subscript d
was used above to specify an analogous tensor matrix that
produces the field that induces dipoles. The differences be-
tween the two are masking rules that scale short-range
through-bond interactions in the former case and use the
AMOEBA group-based polarization scheme for the latter.4
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B. LPBE energies and gradients for fixed partial
charge force fields

LPBE solvation energies and gradients have been deter-
mined previously by a number of groups for fixed partial
charge force fields.22,23 We will briefly restate the results of
Im et al. to introduce the approach extended here for use
with the PMPB model.20 The solvation free energy �G of a
permanent charge distribution is

�Gelec = 1
2 ��s

t − �v
t �q , �13�

where q is a column vector of fractional charges, �s
t is the

transpose of a column vector containing the electrostatic po-
tential of the solvated system, and �v

t is the corresponding
vacuum potential. The number of components in each vector
is equal to the number of grid points used to represent the
system. In the present work the grid will always be cubic,
and as discussed in the section on multipole discretization
must use equal grid spacing in each dimension, although the
number of grid points along each axis can vary. The potential
can be determined numerically using a finite-difference rep-
resentation of the LPBE,20,25,26 which can be formally de-
fined as a linear system of equations

A� = − 4�q , �14�

where A is a symmetric matrix that represents the linear
operator �differential and linear term�. An equivalent, but
more cumbersome representation that makes clear the under-
lying finite-difference formalism is given in Appendix A.
Solving Eq. �14� for the potential

� = − 4�A−1q �15�

highlights that A−1 is Green’s function with dimensions Nr

	Nr, where Nr is the number of grid points. By defining
Green’s function for the solvated As

−1 and Av
−1 homogeneous

cases, the electrostatic hydration free energy is

�Gelec = 1
2 �− 4�qt��As

−1 − Av
−1�q . �16�

The derivative with respect to movement of the � coordinate
of atom j is

��Gelec

�sj,�
= − 2�
 �qt

�sj,�
�As

−1 − Av
−1�q + qt��As

−1 − Av
−1�

�sj,�
q

+ qt�As
−1 − Av

−1�
�q

�sj,�
� . �17�

This expression can be simplified by noting that the deriva-
tive of the homogeneous Green’s function is zero every-
where

�Av
−1

�sj,�
= 0, �18�

and the derivative of the solvated Green’s function can be
substituted for using a standard relationship of matrix alge-
bra

As
−1As = I ,

�As
−1

�sj,�
As + As

−1 �As

�sj,�
= 0, �19�

�As
−1

�sj,�
= − As

−1 �As

�sj,�
As

−1.

Finally, due to the symmetry of Green’s function, the first
and third terms of Eq. �17� are equivalent

�qt

�sj,�
�As

−1 − Av
−1�q = qt�As

−1 − Av
−1�

�q

�sj,�
. �20�

Using the relationships in Eqs. �18�–�20�, Eq. �17� becomes

��Gelec

�sj,�
= − 4�qt�As

−1 − Av
−1�

�q

�sj,�

+
1

8�
�4�qtAs

−1�
�As

�sj,�
�4�As

−1q� . �21�

Finally, the two products of Green’s functions with source
charges in the second term on the right-hand side can be
replaced by the resulting potentials using Eq. �15� to give

��Gelec

�sj,�
= ��s − �v�t �q

�sj,�
+

1

8�
�s

t �As

�sj,�
�s. �22�

In the limit of infinitesimal grid spacing and infinite grid
size, it was shown that this solution is equivalent to the
forces derived by Gilson et al.20,23 To generalize this result
for permanent atomic multipoles, the derivative �q /�sj,� re-
mains to be defined and is discussed below. Additionally, all
moments except the monopole are subject to torques, which
are equivalent to forces on the local multipole frame defining
sites.

III. METHODOLOGICAL DEVELOPMENTS

Based on the AMOEBA electrostatic energy in vacuum
and previous work in obtaining the energy and gradients for
a solute represented by a fixed partial charge force field de-
scribed above,20 we now derive the formulation needed to
describe the electrostatic solvation energy within the PMPB
model. First, we consider the steps necessary to express the
LPBE on a grid, including discretization of the source mul-
tipoles or induced dipoles, assignment of the permittivity,
assignment of the modified Debye-Hückel screening factor,
and estimation of the potential at the grid boundary. A variety
of techniques are available to solve the algebraic system of
equations that result, although this work uses an efficient
multigrid approach implemented in the software package
PMG �Ref. 26� and used via the APBS software package.27

Second, given the electrostatic potential solution to the
LPBE, we describe how to determine the electrostatic solva-
tion energy and its gradient. In fact, at least four LPBE so-
lutions are required to determine the PMPB electrostatic sol-
vation energy, and at least six to determine energy gradients.
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For comparison, fixed charged models typically require at
most two LPBE solutions, the vacuum and solvated states, as
outlined in the previous background section, although formu-
lations that eliminate the self-energy exist.28 The reasons and
implications for the increased number of solutions of the
LPBE required for the PMPB model will be discussed below.

A. Atomic multipoles as the source charge density

An important first step to expressing the LPBE in finite-
difference form is discretization of an ideal point multipole
onto the source charge grid. We begin by recalling that an
ideal multipole arises from a Taylor series expansion of the
potential in vacuum at a location R due to n charges near the
origin, each with a magnitude and position denoted by ci and
ri, respectively.29

V�R� = �
i=1

n
ci

�R − ri�
. �23�

In performing the expansion, the convention for repeated
summation over subscripts is utilized and we truncate after
second order

V�R� = �
i=1

n

ci
 1

R
− ri,���

1

R
+

1

2
ri,�ri,�����

1

R
� , �24�

where the � and � subscripts each denote an x, y, or z com-
ponent of a position vector or differentiation with respect to
that coordinate. Based on this expansion, the monopole q,
dipole d, and traceless quadrupole � moments are defined as

q = �
i=1

n

ci,

d� = �
i=1

n

ri,�ci, �25�

��� = �
i=1

n
3

2
ri,�ri,�ci −

1

2
ri

2
��.

There are various ways to define the quadrupole moment
because only five quadrupole components are independent.

This particular formulation ensures that the diagonal compo-
nents are traceless, which simplifies many formulas because
summations over the trace vanish.29 Substitution into the po-
tential gives

V�R� = q� 1

R
	 − d���� 1

R
	 +

1

3
�������� 1

R
	 . �26�

The reverse operation, representation of an ideal multipole
by partial charges at grid sites �or charge density over finite
volumes�, is degenerate. However, some necessary properties
reduce the space of practical solutions. These include local
support �region of nonzero values on the grid� and smooth
derivatives for the change in charge magnitude due to move-
ment of a multipole site with respect to the grid. For fixed
partial charges a normalized cubic basis spline, or B-spline,
has been used successfully for discretizing monopole charge
distributions �delta functions� on finite-difference grids. For
quadrupole moments at least fourth order continuity is re-
quired such that a normalized fifth order B-spline N5�x�,
which is a piecewise polynomial �Fig. 1�, is appropriate.30

N5�x� =

1
24x4, 0 � x � 1

− 1
8 + 1

6x + 1
4 �x − 1�2 + 1

6 �x − 1�3 − 1
6 �x − 1�4, 1 � x � 2

− 13
24 + 1

2x − 1
4 �x − 2�2 − 1

2 �x − 2�3 + 1
4 �x − 2�4, 2 � x � 3

47
24 − 1

2x − 1
4 �x − 3�2 + 1

2 �x − 3�3 − 1
6 �x − 3�4, 3 � x � 4

17
24 − 1

6x + 1
4 �x − 4�2 − 1

6 �x − 4�3 + 1
24�x − 4�4, 4 � x � 5

0 otherwise.

� �27�

FIG. 1. Normalized fifth order B-spline on the interval �0, 5�.
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The sum of this function evaluated at any five evenly spaced
points between 0 and 5 is unity. Appendix B gives a rigorous
demonstration that B-splines satisfy the properties of the
delta functional and therefore can be used to implement a
gradient operator.

To illustrate this approach, the fraction of charge that a
grid point with coordinates ri will receive from a charge site
with coordinates si will now be described. We use r to denote
an Nr	3 matrix containing all grid coordinates, while s is an
Ns	3 matrix containing the coordinates of multipole sites.
Elements of both matrices will be specified using two sub-
scripts, the first is an index and the second is a dimension.
We first consider the x dimension, which requires the relative
distance of nearby y-z planes from the charge site in dimen-
sionless grid units �ri,x−sj,x� /h, where h is the grid spacing.
The B-spline domain is centered over the charge site by
shifting its domain from �0,5� to �−2.5,2.5� by adding 2.5 to
its argument. Therefore, the weights of the five closest y-z
planes to the charge site will be nonzero and sum to 1, where
each weight is given by

W�ri,x,sj,x� = N5� ri,x − sj,x

h
+ 2.5	 . �28�

If the charge site is located on a y-z grid plane, then the
maximum of the B-spline will be assigned to that plane.
Repeated partitioning in the y and z dimensions leads to a
tensor product description of the charge density

B�ri,s j� = W�ri,x,sj,x�W�ri,y,sj,y�W�ri,z,sj,z� . �29�

A further useful property of nth order B-splines is that
their derivative can be formulated as a linear combination of
n−1 order B-splines.30

�Nn�x�
�x

= Nn−1�x� − Nn−1�x − 1� . �30�

For example, the first derivative of the normalized fifth order
B-spline can be constructed from two of fourth order, sug-

gesting a dipole basis or gradient stencil for determining the
electric field from the potential grid, as shown in Fig. 2.

�N5�x�
�x

= N4�x� − N4�x − 1� . �31�

Similarly, the second derivative can be constructed from a
linear combination of third order B-splines, suggesting an
axial quadrupole basis as well as an axial second potential
gradient stencil as in Fig. 3.

�2N5�x�
�x2 = N3�x� − 2N3�x − 1� + N3�x − 2� . �32�

For notational convenience we define a matrix B with
dimension Nr	Ns which is used to convert a collection of Ns

permanent atomic multipole sites into grid charge density
over the Nr grid points

B = � B�r1,s1� ¯ B�r1,sNs
�

] � ]

B�rNr
,s1� ¯ B�rNr

,sNs
� � . �33�

Only 125 entries per column will have nonzero coefficients,
due to each multipole being partitioned locally among 53

grid points.
Given the matrix B, the charge density at all grid points

due to the permanent multipoles of an AMOEBA solute is

qM = Bq −
1

h
��Bd� +

1

3h2����B���, �34�

where q ,dx ,dy ,dz ,�xx ,�xy ,�xz , . . . ,�zz are column vectors
and h normalizes for grid size. This is, in effect, the inverse
operation to the original Taylor expansion by which the mul-
tipole moments were defined from a collection of point

FIG. 2. The sum of two fourth order B-splines �dashed� equal the first
derivative of a normalized fifth order B-spline �solid�.

FIG. 3. The sum of three third order B-splines �dashed� equal the second
derivative of a normalized fifth order B-spline �solid�.
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charges. All atomic multipole moments are exactly con-
served to numerical precision as long as equal grid spacing is
used in each dimension. While most finite-difference meth-
ods can be generalized to nonuniform Cartesian meshes,26

the nature of traceless multipoles requires uniform Cartesian
mesh discretizations. If unequal grid spacing is used, then the
trace will be nonzero due to inconsistent coupling between
the axial quadrupole components.

The gradient of the charge density at grid sites with re-
spect to an atomic coordinate can be written as

�qM

�sj,�
=

�B

�sj,�
q −

1

h
��

�B

�sj,�
d� +

1

3h2����

�B

�sj,�
���. �35�

A more compact notation is needed for derivations pre-
sented below, and can be achieved by defining a matrix TB of
size Nr	13Ns

TB = � B�r1,s1� − �1/h���B�r1,s1�/�s1,x� ¯ �1/3h2���2B�r1,s1�/�s1,z
2 � ¯ �1/3h2���2B�r1,sNs

�/�sNs,z
2 �

] ] � ] � ]

B�rNr
,s1� − �1/h���B�rNr

,s1�/�s1,x� ¯ �1/3h2���2B�rNr
,s1�/�s1,z

2 � ¯ �1/3h2���2B�rNr
,sNs

�/�sNs,z
2 � � . �36�

The matrix product �tTB, where � is a column vector of
length Nr containing the potential from a numerical solution
to the LPBE, produces the same tensor components �i.e., the
potential, field, and field gradient� as MtT in Eq. �8� for the
AMOEBA vacuum electrostatic energy. Using this notation
allows manipulation of reaction potentials and intramolecu-
lar potentials to be handled on equal footing. The same ap-
proach is appropriate for induced dipoles.

There is a trade-off between higher order B-splines and
the goal of maintaining the smallest possible support for the
multipoles. As the support grows, the charge density is less
representative of the ideal multipole limit. Additionally,
placement of solute charge density outside the low-dielectric
cavity should be avoided. This restriction of charge density
to the solute interior places an upper bound on acceptable
grid spacings for use with finite-difference discretizations of
higher order B-splines. If, for example, the solute cavity for
a hydrogen atom ends approximately 1.2 Å from its center,
then the maximum recommended grid spacing when using
fifth order B-splines is 0.48 Å �1.2/2.5�, whereas for third
order B-splines a value of 0.80 Å is reasonable �1.2/1.5�.
Therefore, the use of quintic B-splines requires a smaller
upper bound on grid spacing than cubic B-splines.

B. Permittivity and modified Debye-Hückel screening
factor

The permittivity ��r� and modified Debye-Hückel
screening factor �̄2�r� functions are defined through a char-
acteristic function H�ri ,s�, where ri represents the coordi-
nates of a grid point and s the coordinates of all multipole
sites. Inside the solute cavity the characteristic function is 0,
while in the solvent it is 1. For the homogeneous calculation
the permittivity is set to unity over all space, while for the
solvated state it takes the value of 1 inside the solute, �s in
solvent, and intermediate values over a transition region

��ri� = 1 + ��s − 1�H�ri,s� . �37�

The modified Debye-Hückel screening factor is zero every-
where for the vacuum calculation and for the solvated calcu-
lation is defined by

�̄2�ri� = �̄b
2H�ri,s� , �38�

where �̄b
2=�s�b

2 is the modified bulk screening factor and is
related to the ionic strength I= 1

2�iqi
2ci via �b

2=8�I /�skBT.
Here qi and ci are the charge and number concentration of
mobile ion species i, respectively, kB is the Boltzmann con-
stant, and T the absolute temperature. The characteristic
function itself can be formulated as the product of a radially
symmetric function applied to each solute atom

H�ri,s� = �
j=1,Ns

Hj��ri − s j�� , �39�

where Hj�r� must allow for a smooth transition across the
solute-solvent boundary to achieve stable Cartesian energy
gradients.20,31 This is a result of terms that depend on the
gradient of the characteristic function with respect to an
atomic displacement. A successful approach to defining a
differentiable boundary is the use of a polynomial switch
Sn�r� of order n, although other definitions have been sug-
gested based on atom centered Gaussians.32 For any atom j,
Hj�r� takes the form

Hj�r� = 
0, r � b

Sn�r,b,e� , b � r � e

1, e � r ,
� �40�
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where b is the beginning of the transition between solute and
solvent and e the end of the transition. For the permittivity,
the switch begins and ends at

b = � j − w ,

�41�
e = � j + w ,

where � j is the radius of atom j and w indicates how far the
smoothing window extends radially inward and outward. For
the modified Debye-Hückel screening factor the radius of the
largest ionic species �ion is also taken into account,

b = � j + �ion − w ,

�42�
e = � j + �ion + w .

For fixed partial charge force fields, a cubic switch S3 has
been used with success. However, a characteristic function
with higher order continuity has been found to improve en-
ergy conservation at a given grid spacing. Table I reports
representative examples of this effect. By using a seventh
order polynomial switch S7,

S7�r,b,e� =
�c7r7 + c6r6 + c5r5 + c4r4 + c3r3 + c2r2 + c1r + c0�

− b7 + 7b6e − 21b5e2 + 35b4e3 − 35b3e4 + 21b2e5 − 7be6 + e7 ,

c0 = b4�− b3 + 7b2e − 21be2 + 35e3� ,

c1 = − 140b3e3,

c2 = 210b2e2�b + e� ,

�43�
c3 = − 140be�b2 + 3be + e2� ,

c4 = 35�b3 + 9b2e + 9be2 + e3� ,

c5 = − 84�b2 + 3be + e2� ,

c6 = 70�b + e� ,

c7 = − 20,

the first three derivatives of the characteristic function can be
constrained to zero at the beginning and end of the switching
region. The cubic, quintic, and heptic volume exclusions
functions are shown in Fig. 4.

C. Boundary conditions

Single Debye-Hückel �SDH� and multiple Debye-
Hückel �MDH� boundary conditions for a solute are two
common approximations to the true potential used to specify

Dirichlet boundary conditions for nonspherical solutes de-
scribed by a collection of atomic multipoles.2 SDH assumes
that all atomic multipole sites are collected into a single mul-
tipole at the center of the solute, which is approximated by a
sphere. MDH assumes the superposition of the contribution
of each atomic multipole considered in the absence of all
other sites that displace solvent. Therefore, to construct the
Dirichlet problem for a solute described by an arbitrary num-
ber of atomic multipole sites, the potential outside a solvated
multipole located at the center of a sphere is required.

TABLE I. The norm of the gradient sum over all atoms �kcal/mole/Å� for three different solutes is shown for
cubic, quintic, and heptic characteristic functions at two grid spacings. A norm of zero, indicating perfect
conservation of energy, is nearly achieved for acetamide and ethanol at 0.11 Å grid spacing using a heptic
characteristic function. Conservation of energy is improved by reducing grid spacing and also by increasing the
continuity of the solute-solvent boundary via the characteristic function.

Grid spacing

Acetamide Ethanol CRN

0.21 0.11 0.22 0.11 0.32 0.18

Cubic 2.48 0.46 0.77 0.29 18.82 2.58
Qunitic 1.93 0.23 0.32 0.15 9.38 2.42
Heptic 0.88 0.06 0.21 0.06 6.27 1.26
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For solvent described by the LPBE

�2��r� = �b
2��r� , �44�

a solution was first formulated by Kirkwood.33 This form of
the LPBE is simplified relative to Eq. �2� since there is no
fixed charge distribution and no spatial variation in either the
permittivity or Debye-Hückel screening factor. Inside the
cavity, the Poisson equation is obeyed

�2��r� = −
4���r�

�
, �45�

where the charge density ��r� may contain moments of arbi-
trary order. The boundary conditions are enforced by requir-
ing the potential and dielectric displacement to be continuous
across the interface between the solute and solvent via

��r�in = ��r�out �46�

and

�
���r�in

�r
= �out

���r�out

�r
, �47�

respectively. Additional requirements on the solution are that
it be bounded at the origin and approach an arbitrary con-
stant at infinity, usually chosen to be zero.

In presenting the solution, it is convenient for our pur-
poses to continue using Cartesian multipoles, rather than
switching to spherical harmonics, although there is a well-
known equivalence between the two approaches.34 The po-
tential at r due to a symmetric, traceless multipole in a ho-
mogeneous dielectric � is

���rij� = �T��tM j

=��
1

− �/�x

− �/�y

− �/�z

�1/3���2/�x�x�
]

�1/�rij�
t

�
qj


x,j


y,j


z,j

�xx,j

]

� , �48�

where rij =ri−s j might be the difference between a grid lo-

cation and a multipole site. The potential inside the spherical
cavity is the superposition of the homogeneous potential and
the reaction potential

�in�rij� = ��I + Rin�T��tM j , �49�

where I is the identity matrix and Rin is a diagonal matrix
with diagonal elements

�cin�0�,cin�1�,cin�1�,cin�1�,cin�2�, . . . � �50�

that are based on coefficients for multipoles of order n to be
determined by the boundary conditions

cin�n� = �n� rij

a
	2n+1

. �51�

Similarly, the potential outside the cavity is

�out�rij� = �RoutT��tM j , �52�

where Rout is a diagonal matrix with diagonal elements

�cout�0�,cout�1�,cout�1�,cout�1�,cout�2�, . . . � �53�

based on a second set of coefficients for multipoles of order
n also determined by the boundary conditions

cout�n� =
�

�out
�rij�nkn��rij�� rij

a
	n

, �54�

where kn�x� is the modified spherical Bessel function of the
third kind

kn�x� =
�e−x

2x
�
i=0

n
�n + i�!

i!�n − i�!�2x�i . �55�

Kirkwood first solved Eqs. �44� and �45� subject to the
boundary conditions in Eqs. �46� and �47� to determine �n

and �n as

�n =
�2n + 1�/�a

nkn��a�/�̂ − �akn���a�
�56�

and

�n =
�n + 1�kn��a�/�̂ + �akn���a�

kn��a�/�̂ − �akn���a�
, �57�

where kn��x� is the derivative of kn�x� and �̂ is the ratio of the
permittivity in solvent to that inside the sphere �out /�.33 We
only require the potential outside the cavity to construct SDH

TABLE II. Explicit values for the functions �n�x� and kn�x� up to quadru-
pole order.

n �n�x� / �2 exp�x� /�� kn�x� / �� / �2 exp�x���

0 1/ �1+x� 1/x
1 3�̂x / �1+x+ �̂�2+2x+x2�� �1+x� /x2

2 5�̂x2 / �2�3+3x+x2�+ �̂�9+9x+4x2+x3�� �3+3x+x2� /x3

FIG. 4. Comparison of cubic, quintic, and heptic characteristic functions for
an atom with radius of 3 Å using a total window width of 0.6 Å.
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and MDH boundary conditions and therefore we provide
specific values of �n and kn through quadrupole order, as
shown in Table II. As the ionic strength goes to zero, the
Laplace equation is obeyed in solvent. For multipoles
through quadrupole order, the difference between the LPBE
and Laplace potentials outside the cavity is summarized in
Table III.

D. Permanent atomic multipole solvation energy
and gradient

The PMPB permanent atomic multipole �PAM� solva-
tion energy and gradient are very similar to those for fixed
partial charge force fields. Based on Eqs. �15� and �34� the
PAM vacuum, solvated and reaction potentials are, respec-
tively,

�v
M = − 4�Av

−1qM ,

�s
M = − 4�As

−1qM , �58�

�M = �s
M − �v

M .

The expression for the permanent electrostatic solvation en-
ergy is then identical to that for a fixed partial charge force
field given in Eqs. �13� and �16�, except the source charge
density is based on PAM via qM

�GM = 1
2 ��M�tqM = 1

2 �− 4�qM�t�As
−1 − Av

−1�qM . �59�

Derivation of the energy gradient is identical to Eqs.
�17�–�22� and yields

��GM

�sj,�
= ��M�t �qM

�sj,�
+

1

8�
��s

M�t �As

�sj,�
�s

M . �60�

There are, however, some important differences between
achieving smooth gradients for a fixed partial charge force
field and one based on PAM. First, as discussed in the section

on multipole discretization, quadrupoles require at least fifth
order B-splines to guarantee continuous derivatives of the
source charge density with respect to movement of a multi-
pole site

�qM

�sj,�
=

�TB

�sj,�
M . �61�

Second, we have found that if a third order polynomial is
used to define the transition between solute and solvent for
purposes of assigning the permittivity and the modified
Debye-Hückel screening factor, energy conservation is
achieved only for very fine grid spacing. As discussed earlier,
use of a seventh order polynomial improves energy conser-
vation for coarser grids. Details of the numerical realization
of Eq. �60�, including torques, are presented in Appendix C.

E. Self-consistent reaction field

A SCRF protocol is used to achieve numerical conver-
gence of the coupling between a polarizable solute and con-
tinuum solvent. The starting point of the iterative conver-
gence is the total “direct” field Ed at each polarizable site.
This is defined by the sum of the PAM intramolecular field

Ed = Td
�1�M , �62�

where Td
�1� is analogous to the tensor matrix used in deriving

the AMOEBA vacuum energy in Eq. �12�, and the PAM
reaction field

ERF
M = − DB

t �M , �63�

where DB is a matrix of B-spline derivatives of size Nr by
3Ns

DB = −
1

h�
�B�r1,s1�

�s1,x

�B�r1,s1�
�s1,y

�B�r1,s1�
�s1,z

¯

�B�r1,sNs
�

�sNs,z

] ] ] � ]

�B�rNr
,s1�

�s1,x

�B�rNr
,s1�

�s1,y

�B�rNr
,s1�

�s1,z

¯

�B�rNr
,sNs

�

�sNs,z

� �64�

TABLE III. Explicit values of the coefficients used to calculate the potential at the grid boundary of LPBE and
Poisson equation calculations, respectively, under the SDH or MDH approximation. The LPBE coefficients
reduce to the Poisson equation coefficients as salt concentration goes to zero.

n �r�n��a�kn��r��r /a�n lim�→0��r�n��a�kn��r��r /a�n�

0 exp���a−r�� / �1+�a� 1
1 3�̂ exp���a−r���1+�r� / �1+�a+ �̂�2+2�a+ ��a�2�� 3�̂ / �1+2�̂�
2 5�̂ exp���a−r���3+3�r+ ��r�2� / �2�3+3�a+ ��a�2�+ �̂�9

+9�a+4��a�2+ ��a�3��
5�̂ / �2+3�̂�
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that produces the reaction field at induced dipole sites given
a potential grid. The induced dipoles are determined as the
product of the direct field Ed with a vector of isotropic
atomic polarizabilities �,

�d = �Ed = ��Td
�1�M − DB

t �M� . �65�

We define the direct model of polarization to consist of in-
duced dipoles not acted upon by each other or their own
reaction field. Although this is a nontrivial approximation,
the direct model requires little more work to compute ener-
gies than a fixed partial charge force field since the limiting
factor in both cases is two numerical LPBE solutions. Energy
gradients under the direct model require three pairs of LPBE
solutions and are therefore a factor of 3 more expensive than
for a fixed charge solute. The direct model is expected to be
quite useful for many applications. For example, a geometry
optimization might utilize the direct polarization model ini-
tially, then switch to the more expensive mutual polarization
model described below as the minimum is approached.

In contrast to the direct model, the total solvated field E
has two additional contributions due to the induced dipoles
and their reaction field,

E = Td
�1�M + T�11�� − DB

t ��M + �
� , �66�

for a sum of four contributions. The procedure for determin-
ing the vacuum and solvated and reaction potentials, respec-
tively, due to the induced dipoles is identical to that of the
PAM

�v

 = − 4�Av

−1q
,

�s

 = − 4�As

−1q
, �67�

�
 = �s

 − �v


,

except the source charge density is

q
 = DB� . �68�

The induced dipoles

� = ��Td
�1�M + T�11�� − DB

t ��M + �
�� �69�

can be determined in an iterative fashion using SOR to ac-
celerate convergence.35 The SCRF is usually deemed to have
converged when the change in the induced dipoles is less
than 10−2 rms D between steps. This generally requires four
to five cycles and therefore the mutual polarization model
necessitates eight to ten additional numerical solutions of the
LPBE to determine the PMPB solvation energy. Although
calculation of the direct polarization energy is no more ex-
pensive than that for fixed multipoles, mutual polarization
energies that depend on SCRF convergence are approxi-
mately a factor of 5 more costly.

F. PMPB electrostatic solvation energy

Having described the PAM solvation energy and gradi-
ents and our approach for determining the induced dipoles, it
is now possible to discuss the total solvated electrostatic en-
ergy for the PMPB model,

Uelsc = 1
2 �MtT − �tTp

�1� + �tTB�M , �70�

where � is the LPBE reaction potential for the converged
solute charge distribution

� = �M + �
. �71�

The total electrostatic energy in solvent is similar to the
vacuum electrostatic energy of Eq. �8�, with an important
difference. The vacuum induced dipoles �v change in the
presence of a continuum solvent by an amount represented
by ��, such that the SCRF induced moments � can be de-
composed into a sum

� = �v + ��. �72�

The change in the potential, field, etc., within the solute is
not only a result of the solvent response, but also due to
changes in intramolecular polarization. By definition, the
electrostatic solvation energy �Gelec is the change in total
electrostatic energy due to moving from vacuum to solvent

�Gelec = Uelec − Uelec
v = 1

2 �− ����tTp
�1� + �tTB�M . �73�

In practice, it is convenient to compute the total solvated
electrostatic energy Uelec and vacuum electrostatic energy
Uelec

v using the SCRF � and vacuum �v induced dipole mo-
ments, respectively. The electrostatic solvation energy �Gelec

is then determined as the difference.

G. Polarization energy and gradient

As described previously, the induced dipoles are deter-
mined using an iterative SOR procedure until a predeter-
mined convergence criterion is achieved. Since this is a lin-
ear system, it is possible to solve for the induced dipoles
directly, which facilitates derivation of the polarization en-
ergy gradient with respect to atomic displacements. Substi-
tution for the reaction potential due to the induced dipoles �v

from Eq. �67� with the expression for the induced dipoles in
Eq. �69� makes clear all dependencies on �.

� = ��Td
�1�M − DB

t �M + T�11�� − 4�DB
t �As

−1

− Av
−1�DB�� . �74�

Collecting all terms containing the induced dipoles on the
left-hand side gives

��−1 − T�11� + 4�DB
t �As

−1 − Av
−1�DB�� = Td

�1�M − DB
t �M .

�75�

For convenience, a matrix C is defined as

C = ��−1 − T�11� + 4�DB
t �As

−1 − Av
−1�DB� , �76�

which is substituted into Eq. �75� to show the induced di-
poles are a linear function of the PAM M

� = C−1�Td
�1�M − DB

t �M� = C−1�Ed + ERF
M � . �77�

The first term results from the intramolecular interaction ten-
sor Td

�1� that implicitly contains the AMOEBA group-based
polarization scheme, and the second term is the permanent
reaction field.
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The polarization energy can now be described in terms
of the permanent reaction field and permanent intramolecular
solute field Ep

U� = − 1
2 �Ep + ERF

M �t� . �78�

To find the polarization energy gradient, we wish to avoid
terms that rely on the change in induced dipoles with respect
to atomic displacement. Therefore, the induced dipoles in
Eq. �78� are replaced using Eq. �77� to yield

U� = − 1
2 �Ep + ERF

M �tC−1�Ed + ERF
M � . �79�

By the chain rule, the polarization energy gradient is

�U�

�sj,�
= −

1

2

� �Ep

�sj,�
+

�ERF
M

�sj,�
	t

C−1�Ed + ERF
M �

+ �Ep + ERF
M �t�C−1

�sj,�
�Ed + ERF

M �

+ �Ep + ERF
M �tC−1� �Ed

�sj,�
+

�ERF
M

�sj,�
	� . �80�

For convenience a mathematical quantity � is defined as

� = �Ep + ERF
M �C−1, �81�

which is similar to �. We can now greatly simplify Eq. �80�
using Eqs. �77� and �81� along with the identity �C−1 /�sj,�

=−C−1��C /�sj,��C−1 to give

�U�

�sj,�
= −

1

2

� �Ep

�sj,�
	t

� + �t �Ed

�sj,�
+ � �ERF

M

�sj,�
	t

�

+ �t�ERF
M

�sj,�
− �t �C

�sj,�
�� . �82�

1. Direct polarization gradient

Under the direct polarization model, C is an identity
matrix whose derivative is zero, and therefore Eq. �82� sim-
plifies to

�U�d

�sj,�
= −

1

2

� �Ep

�sj,�
	t

� + �t �Ed

�sj,�
+ � �ERF

M

�sj,�
	t

� + �t�ERF
M

�sj,�
� .

�83�

The first two terms on the right-hand side �RHS� appear in
the polarization energy gradient even in the absence of a
continuum reaction field and are described elsewhere.4 The

third and fourth terms are specific to LPBE calculations and
will now be discussed. The derivative of the LPBE reaction
field due to permanent multipoles with respect to movement
of any atom has a similar form to the analogous derivative of
the potential. Substitution for the field using Eq. �63� into the
third term of Eq. �83� gives

� �ERF
M

�sj,�
	t

� = −
�DB

t �M

�sj,�
� . �84�

Substitution of the permanent multipole potential from Eq.
�58� into Eq. �84� yields

� �ERF
M

�sj,�
	t

� = 4�
�

�sj,�
�DB

t �As
−1 − Av

−1�TBM�� , �85�

which is differentiated by applying the chain rule

� �ERF
M

�sj,�
	t

� = 4�
 �DB
t

�sj,�
�As

−1 − Av
−1�TBM + DB

t �As
−1

�sj,�
TBM

+ DB
t �As

−1 − Av
−1�

�TB

�sj,�
M�� . �86�

The same simplifications described in Eqs. �18�–�22� are ap-
plied to Eq. �86�, except that in this case the first and third
terms are not equivalent and cannot be combined

� �ERF
M

�sj,�
	t

� = − ��
�t �TB

�sj,�
M −

1

4�
��s


�t �As

�sj,�
�s

M

− �t �DB
t

�sj,�
�M . �87�

The fourth term on the RHS of Eq. �83� leads to a result
analogous to Eq. �87� using similar arguments

�t�ERF
M

�sj,�
= − ����t �TB

�sj,�
M −

1

4�
��s

��t �As

�sj,�
�s

M

− �t �DB
t

�sj,�
�M . �88�

2. Mutual polarization gradient

In addition to the implicit difference due to the induced
dipoles being converged self-consistently, the full mutual po-
larization gradient includes an additional contribution be-
yond the direct polarization gradient. Specifically, the deriva-
tive of the matrix C leads to four terms

TABLE IV. As grid spacing decreases, the numerical solution to the Poisson equation approaches the analytic
solution for four canonical test cases including a charge, dipole, polarizable dipole, and quadrupole. Each test
case involved a 3 Å sphere of dielectric 1 and solvent dielectric of 78.3 with a step-function transition between
solute and solvent �kcal/mole�.

Grid points
Grid

spacing charge dipole
Polarizable

dipole Quadrupole

33	33	33 0.313 −55.6514 −5.3556 −5.8011 −1.8487
65	65	65 0.156 −54.9150 −5.1450 −5.5548 −1.7211
129	129	129 0.078 −54.8024 −5.1134 −5.5180 −1.7038
225	225	225 0.045 −54.7236 −5.0915 −5.4925 −1.6912
Analytic ¯ −54.6355 −5.0675 −5.4645 −1.6783
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�t �C

�sj,�
� = �t
 �T�11�

�sj,�
+ 4�

�DB
t

�sj,�
�As

−1 − Av
−1�DB

+ 4�DB
t �As

−1

�sj,�
DB + 4�DB

t �As
−1 − Av

−1�
�DB

�sj,�
�� .

�89�

The first term on the RHS occurs in vacuum and is described
elsewhere,4 while the final three terms are specific to LPBE
calculations. Using the simplifications described in Eqs.
�18�–�22� results in

�t �C

�sj,�
� = �t�T�11�

�sj,�
� − �t �DB

t

�sj,�
�
 −

1

4�
��s

��t �As

�sj,�
�s




− ����t �DB

�sj,�
� . �90�

Substitution of Eqs. �87�, �88�, and �90� into Eq. �82�
gives the total mutual polarization energy gradient for an
AMOEBA solute interacting self-consistently with the
PMPB continuum

�U


�sj,�
= −

1

2

� �Ep
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The first two terms �where each set of square brackets
will be considered a single term� are evaluated even in the
absence of continuum solvent, although in this case � and �
have been converged in a self-consistent field that includes
continuum contributions. The remaining terms are analogous
to those found in Poisson-Boltzmann calculations involving
only permanent electrostatics. The number of LPBE calcula-
tions required for evaluation of the energy gradient includes
two for the permanent multipoles and two each for � and �
at each SOR convergence step. Further details on the numeri-
cal implementation of Eq. �91� can be found in Appendix C.

IV. VALIDATION AND APPLICATION

This section presents useful benchmarks for demonstrat-
ing the expected numerical precision of the present work.
Our first goal is to compare against analytical results for a
source charge distribution described by a single charge, di-
pole, polarizable dipole, or quadrupole located at the center
of a low-dielectric sphere in high dielectric solvent. The tran-
sition between solute and solvent is initially specified using a
step function, and then subsequently using a smooth transi-
tion described by a heptic polynomial. We then compare ana-
lytic gradients to those determined using finite differences of
the energy for a variety of two sphere systems to isolate the
reaction field, dielectric boundary and ionic boundary gradi-
ents for the permanent multipole solvation energy, the direct
polarization model, and the mutual polarization model. Fi-
nally, the method is applied to a series of proteins and com-
parisons are made to corresponding simulations in explicit
water.

A. Energy

The numerical accuracy of the multipole discretization
procedure was studied by comparison to analytical solutions
of the Poisson equation for a monopole, dipole, polarizable

dipole, and quadrupole located within a spherical cavity of
radius 3.0 Å. The monopole case, or Born ion,36 has a well-
known analytical solution

Uq =
1

2
�1

�
− 1	q2

a
, �92�

where q is the charge magnitude, a the cavity radius, and � is
the solvent dielectric. For a permanent dipole, the analogous
solution was used by Onsager,1

Ud = −
1

2

2�� − 1�

1 + 2�
�d · d

a3 , �93�

where d is the dipole vector. For a polarizable dipole, the
energy is the sum of two contributions, the cost of polariza-
tion and the energy of the total dipole in the total reaction
field37

U�,d = −
1

2

fd · d

1 − f�
, �94�

where � is the polarizability, d is the permanent dipole, and
f is the reaction field factor

TABLE V. The tests from Table IV are repeated using 129 grid points
�0.078 Å spacing�; however, the transition between solute and solvent is
defined by a seventh order polynomial, which acts over a total window
width of 0.6 Å. Increasing the radius of the low-dielectric sphere by ap-
proximately 0.2 Å raises the energies to mimic the step-function transition
results �kcal/mole�.

Radius
increase Charge Dipole

Polarizable
dipole Quadrupole

0.0 −58.4926 −6.2126 −6.8202 −2.3555
0.1 −56.4762 −5.5922 −6.0798 −1.9767
0.2 −54.5941 −5.0518 −5.4463 −1.6687
Step function −54.8024 −5.1134 −5.5180 −1.7038
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1

a3
2�� − 1�
1 + 2�

� . �95�

The analytic solution for the self-energy of a traceless
Cartesian quadrupole can be derived beginning from the en-
ergy of a quadrupole in an electric field gradient

U� =
��


3
�
��� , �96�

where we are summing over the subscripts � and 
, and the
factor of 1 /3 is due to use of traceless quadrupoles.29 To
determine the needed reaction field gradient, which for the
moment will be assumed to come from any quadrupole com-
ponent and not necessarily be a self-interaction, we begin
from the reaction potential inside the cavity

�� = −
���

3

3�� − 1�

2 + 3�
�3r�r�

a5 �97�

and take the first derivative
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followed by a second differentiation to achieve the reaction
field gradient
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�
 + 
��
�
�

a5 . �99�

Substituting Eq. �99� into Eq. �96� and taking into account
that half the energy is lost due to polarizing the continuum
gives the self-energy of a traceless quadrupole in its own
reaction field gradient

U� = −
1

2
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2 + 3�
�����
��
�
 + 
��
�
���


3a5 . �100�

From Eq. �100�, it is seen that all non-self-interactions, for
example, �xx with �yy, are zero, and the quadrupole self-
energy is simply the sum of nine terms,

U� = −
1

2

3�� − 1�

2 + 3�
�2���

2

3a5 . �101�

The first series of numerical tests used a step function at
the dielectric boundary rather than the smooth transition that
is required for continuous energy gradients described previ-
ously. This simplification is necessary in order to compare
the known analytic results directly with the numerical solver.
In each case, the solution domain was a 10.0 Å cube with the
low-dielectric sphere located at the center. In Table IV it is
shown that each test case converges toward the analytic re-
sult as grid spacing is decreased.

Our next goal was to determine the energy change due to
introduction of a smooth dielectric boundary with a window
width of 0.6 Å. Using a grid spacing slightly less than 0.1 Å,
it can be seen in Table V that the smooth dielectric boundary
increases the solvation energy over the analogous step-
function boundary. By increasing the radius of the low di-
electric cavity by approximately 0.2 Å, the energy of the
charge, dipole, polarizable dipole, and quadrupole can be
adjusted to simultaneously mimic the known analytic results.

B. Energy gradient

Our first goal is to show that the energy gradient is con-
tinuous for higher order moments as a result of using fifth
order B-splines. This is seen in Figs. 5–7 for a charge, di-
pole, and quadrupole interacting with a neutral cavity, re-
spectively. It is also clear that the sum of the forces between
the neutral and charged site �and a third reference site that
defines the local multipole frame in the cases of the dipole
and quadrupole� is zero, indicating conservation of energy.
Similarly, the reaction field and dielectric boundary gradients
of the polarization energy for both the direct and mutual
models are smooth and demonstrate conservation of energy,

FIG. 5. Analytic and finite-difference gradients for a neutral cavity fixed at
the origin and a sphere with unit positive charge vs separation. Both spheres
have a radius of 3.0 Å and the solvent dielectric is 78.3. The gradient of the
neutral cavity is due entirely to the dielectric boundary force and cancels
exactly the force on the charged sphere.

FIG. 6. Analytic and finite-difference gradients for a neutral cavity fixed at
the origin and a sphere with dipole moment components of
�2.54,2.54,2.54� D vs separation. Both spheres have a radius of 3.0 Å and
movement of the dipole is along the x axis. The gradient of the neutral
cavity is due entirely to the dielectric boundary force and cancels exactly the
sum of the forces on the dipole and a third site �that has no charge density or
dielectric properties� that defines the local coordinate system of the dipole.
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as shown in Figs. 8 and 9, respectively. It is clear that polar-
ization catastrophes are avoided even when a charged site is
moved toward superimposition with a polarizable site, due to
use of a modified Thole model that damps mutual polariza-
tion at short range.21 Finally, we isolated the ionic boundary
gradient due to a 150 mM electrolyte by setting the dielectric
to 1 everywhere in space. Figure 10 shows that our formu-
lation of the gradient for the self-consistent interaction of the
solute polarization response with the electrolyte is robust.

C. The electrostatic response of solvated proteins

As described in the Introduction, a motivation for the
current work is study of polar macromolecules by an im-
proved electrostatic model within an empirical molecular
mechanics framework. From explicit water simulations it is
possible to measure the total dipole moment of a solvated
protein in a fixed folded conformation by sampling over the
water degrees of freedom. The resulting ensemble average
electrostatic response can then be directly compared to the
PMPB model.

Simulations of five proteins taken from the Protein
Databank38 �1CRN,39 1ENH,40 1FSV,41 1PGB,42 and 1VII43

were equilibrated under NPT conditions �1 atm, 298 K� us-
ing a standard protocol. Formal charge and system size are
given in Table VI. A single snapshot for each protein system
was taken from equilibrated molecular dynamics simulations
using the AMOEBA force field. The protein coordinates
were frozen, and sampling of the solvent degrees of freedom
continued for 150 ps under the same NPT conditions, with
the first 50 ps discarded prior to analysis. For all simulations
the Berendsen weak coupling thermostat and barostat were
employed with time constants of 0.1 and 2.0 ps,
respectively.44 Long range electrostatics were treated using

TABLE VI. Synopsis of the protein systems studied in explicit and con-
tinuum solvent.

Protein Formal charge

Number of atoms

Protein Protein+Water

CRN 0 642 4980
ENH +7 947 5039
FSV +5 504 6435
PGB −4 855 6143
VII +2 596 4271

FIG. 7. Analytic and finite-difference gradients for a neutral cavity fixed at
the origin and a sphere with quadrupole moment components of �5.38, 2.69,
2.69, 2.69, −2.69, 2.69, 2.69, 2.69, −2.69� Buckinghams vs separation. Both
spheres have a radius of 3.0 Å and movement of the quadrupole is along the
x axis. The gradient of the neutral cavity cancels exactly the sum of the
forces on the quadrupole and a third site �that has no charge density or
dielectric properties� that defines the local coordinate system of the
quadrupole.

FIG. 8. Analytic and finite-difference gradients for a neutral, polarizable
cavity fixed at the origin and a sphere with unit positive charge vs separation
using the direct polarization model. Both spheres have a radius of 3.0 Å.
The gradient can be seen to approach zero at a number of points, notably
when the spheres are separated by approximately 1.5 Å leading to a maxi-
mum in the reaction field produced by the charge at the polarizable site, and
again when the spheres are superimposed and the reaction field is zero at the
polarizable site.

FIG. 9. Analytic and finite-difference gradients for a neutral, polarizable
cavity fixed at the origin and a polarizable sphere with unit positive charge
vs separation using the mutual polarization model. Both spheres have a
radius of 3.0 Å and a polarizability of 1.0 Å−3. Note that the mutual polar-
ization gradients are smaller than those of Fig. 8 for the otherwise equivalent
direct polarization model.
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particle mesh Ewald �PME� summation with a cutoff for real
space interactions of 7.0 Å and an Ewald coefficient of
0.54 Å−1.45 The PME methodology used tinfoil boundary
conditions, a 54	54	54 charge grid, and sixth order
B-spline interpolation. van der Waals interactions were
smoothly truncated to zero at 12.0 Å using a switching win-
dow of width 1.2 Å. Simulations were run using TINKER ver-
sion 4.2.46

The same conformation of each protein studied in ex-
plicit water was examined using the LPBE methodology de-
veloped in this work at a range of grid spacings using the
direct and mutual polarization models. In addition, 150 mM
electrolyte was used in conjunction with the mutual polariza-
tion model to determine the relative effect of salt on the
electrostatic response. The results are summarized in Table
VII. Similar to the analytic test cases, as grid spacing is
reduced the total electrostatic energy rises monotonically to-
ward the converged solution. The total dipole moments are
less sensitive to grid spacing than are the energies, with little

change observed in moving from 0.3 to 0.2 Å. Adding
150 mM salt lowers the electrostatic energy by
1.7–12.5 kcal/mole at the smallest grid spacing studied,
with CRN �neutral� and ENH �+7� showing the smallest and
largest response, respectively. The magnitude of the ener-
getic change indicates that salt concentration plays an impor-
tant role in protein energetics, especially for highly charged
species. For these calculations we have chosen an ionic ra-
dius of 2.0 Å; however, smaller or larger values increase or
decrease the energetic response, respectively.

Finally, we compare the increase in dipole moment be-
tween the explicit water simulations and the continuum
LPBE environment for each protein. As shown in Table VIII,
both the direct and mutual models lead to total moments that
are in good agreement with those found by molecular dy-
namics sampling of explicit water degrees of freedom. On
average, the dipole moment increased by a factor of 1.27 in
explicit water and 1.26 using the mutual polarization model.
This result, which was achieved without detailed parametri-

TABLE VII. The energy �kcal/mole� and dipole moment �D� of each protein system was studied using a range
of grid spacings under the direct polarization model, mutual polarization model, and mutual polarization model
with 150 mM salt. The cavity was defined using AMOEBA Rmin values for each atom and smooth dielectric and
ionic boundaries via a total window width of 0.6 Å.

Protein
Grid

spacing

Direct
polarization

Mutual
polarization 150 mM salt

Energy � Energy � Energy �

CRN 0.61 −597.4 83.9 −679.1 81.0 −680.9 81.6
0.31 −563.3 83.4 −641.3 80.6 −643.0 81.1
0.18 −554.7 83.4 −632.1 80.6 −633.8 81.1

ENH 0.63 −1892.6 265.2 −2055.1 265.1 −2067.5 266.8
0.32 −1851.1 265.8 −2008.8 265.8 −2021.2 267.4
0.18 −1834.9 265.7 −1991.1 265.7 −2003.6 267.3

FSV 0.66 −1207.0 208.1 −1293.8 215.7 −1301.0 216.3
0.33 −1184.3 208.4 −1269.3 216.0 −1276.5 216.6
0.19 −1173.1 208.4 −1257.1 215.9 −1264.3 216.5

PGB 0.71 −1327.7 128.4 −1453.5 132.7 −1458.9 133.4
0.36 −1275.7 127.8 −1400.5 132.0 −1405.9 132.6
0.20 −1259.3 127.7 −1380.3 131.9 −1385.7 132.5

VII 0.62 −902.4 194.2 −1009.8 197.1 −1014.3 198.1
0.31 −866.0 194.4 −970.6 197.3 −975.0 198.3
0.18 −858.3 194.3 −962.0 197.2 −966.5 198.2

TABLE VIII. The dipole moment �D� of each protein in vacuum �v, under the direct and mutual polarization
models interacting with a continuum of permittivity of 78.3, and in explicit water. Ensemble averages were
taken over 100 ps trajectories and each has a standard error of less than ±0.3. The ratio of the solvated to
vacuum dipole moment is given in each case. The cavity was defined using AMOEBA Rmin values for each
atom and smooth dielectric and ionic boundaries via a total window width of 0.6 Å.

Protein
Vacuum

�v

Direct
polarization

Mutual
polarization Explicit water

� � /�v � � /�v ��� ��� /�v

CRN 62.1 83.4 1.34 80.6 1.30 81.8 1.32
ENH 208.3 265.7 1.28 265.7 1.28 267.0 1.28
FSV 184.7 208.4 1.13 215.9 1.17 213.5 1.16
PGB 101.4 127.7 1.26 131.9 1.30 134.3 1.32
VII 158.3 194.4 1.23 197.3 1.25 197.7 1.25

Average 143.0 175.9 1.25 178.3 1.26 178.9 1.27
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zation of atomic radii �AMOEBA buffered-14-7 Rmin values
were used�, indicates that at the length scale of whole pro-
teins the continuum assumption is justified. Timings and
memory requirements for the LPBE calculations as a func-
tion of grid size are shown in Table IX.

V. CONCLUSION

We have presented methodology required to determine
the energy and gradient for the AMOEBA force field in con-
junction with numerical solutions to the LPBE, which cap-
tures the electrostatic response of solvent by treating it as a
dielectric continuum. The PMPB model was then applied to
a series of proteins that were also studied using explicit water
simulations. The resulting increases in dipole moment found
using each approach were in excellent agreement. This indi-

cates that the continuum assumption is a reasonable approxi-
mation at the length scale of the systems studied here.

Future work will include detailed parametrization of the
solute cavity to reproduce small molecule electrostatic solva-
tion energies. All of the methodology described in this paper
is implemented in the TINKER molecular modeling package.
This will facilitate use of the PMPB model using a variety of
algorithms including molecular dynamics, Monte Carlo, and
a range of optimization methods. Additionally, parallelization
of the LPBE calculations using existing approaches in APBS,
which have been applied to fixed partial charge models,
would be an important improvement in terms of speed and
increasing the size of systems that can be routinely studied.

The methodology presented here is also expected to be
useful for the development of continuum electrostatics mod-
els for coarse grain potentials. For example, Golubkov and
Ren have recently described a generalized coarse grain
model based on point multipoles and Gay-Berne potentials,
which saves several orders of magnitude over all atom
models.47 We have also begun to use the PMPB model as a
standard of accuracy in the testing of a polarizable analytic
approximation similar in spirit to the generalized Born
model, which was recently reviewed by Feig and Brooks.48

ACKNOWLEDGMENTS

The authors thank Sergio Urahata for making available
to them snapshots from explicit water simulations of the pro-
teins systems examined here; and Todd Dolinsky and Dave
Gohara for helping them to port portions of the PMPB model
into APBS. One of the authors �M.J.S.� was partially sup-
ported by a Computational Biology Training Grant from the
NIH. One of the authors �N.A.B.� was supported by NIH
Grant No. GM069702. One of the authors �J.W.P.� was sup-
ported by NSF Grant Nos. MCB-0344670 and CHE-
0535675 and NIH Grant No. GM069553.

TABLE IX. Memory requirements and wall clock timings for each protein system are shown. All calculations
were run on a 2.4 GHz Opteron.

Protein Cubic box size Grid points Memory �MByte� Direct �s� Mutual �s�

CRN 39.31 65 84 6.9 50.2
129 487 34.5 276.8
225 2027 189.3 1414.7

ENH 40.50 65 81 9.2 80.3
129 491 45.5 414.7
225 1983 253.0 2457.3

FSV 42.35 65 73 5.7 42.7
129 487 31.9 234.6
225 2040 188.1 1463.8

PGB 45.48 65 80 8.2 60.7
129 375 30.6 230.9
225 1880 156.9 1176.5

VII 39.47 65 73 6.4 65.2
129 487 37.2 360.6
225 2040 194.8 2062.8

FIG. 10. The dielectric of the solvent and test spheres are both set to 1 in
this case, while a salt concentration of 150 mM is used to isolate the ionic
boundary gradients. Analytic and finite-difference gradients for a neutral,
polarizable cavity fixed at the origin �3.0 Å radius� and a polarizable sphere
with a unit positive charge �1.0 Å radius� vs separation using the mutual
polarization model. Both spheres have a polarizability of 1.0 Å−3, and the
ionic radius is set to 0 Å.
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APPENDIX A: FINITE-DIFFERENCE REPRESENTATION OF THE LPBE

The finite-difference representation of the LPBE for uniform grid spacing is20,25,26

�x�i, j,k����i + 1, j,k� − ��i, j,k�� + �x�i − 1, j,k����i − 1, j,k� − ��i, j,k��

+ �y�i, j,k����i, j + 1,k� − ��i, j,k�� + �y�i, j − 1,k����i, j − 1,k� − ��i, j,k��

+ �z�i, j,k����i, j,k + 1� − ��i, j,k�� + �z�i, j,k − 1����i, j,k − 1� − ��i, j,k��

+ �̄2�i, j,k���i, j,k�h2 = − 4�
q�i, j,k�

h
, �A1�

where h is the grid spacing, ��i , j ,k� is the electrostatic po-
tential, �̄2�i , j ,k� is the modified Debye–Hückel screening
factor and q�i , j ,k� is the fractional charge. The permittivity
is specified by three separate arrays, �x, �y and �z, where
each is shifted along its respective grid branch such that
�x�i , j ,k� represents the location �xi+h /2 ,yi ,zi� for the grid
point �xi ,yi ,zi�. Equation �A1� is the basis for formulating
the LPBE as a linear system of equations, which are repre-
sented compactly by Eq. �14�.

APPENDIX B: DEFINITION OF THE DELTA
FUNCTIONAL USING B-SPLINES

The delta functional 
 is defined by

�
−�

�


�x − a�dx = 1 �B1�

and 
�x−a�=0 for x�a. An approximate discrete one-
dimensional realization of this definition �approximate be-
cause the width is not infinitesimally small� is

�
i=1

5

W�xi,a� = 1, �B2�

where the function W has been defined in Eq. �28� via fifth
order B-splines and �x1 , . . . ,x5� are the five closest grid
points to a. In the limit of infinitesimal grid spacing, the
properties of the delta functional are met exactly by express-
ing Eq. �B2� above as a continuous integral

�
−�

�

W�x,a�dx = 1, �B3�

where ��0. The value at a of any function known to be
defined over the grid can then be determined as

�
−�

�

W�x,a�f�x�dx = f�a� , �B4�

and the negative of its gradient as

�
−�

�

��W�x,a��f�x�dx = �W�x,a�f�x��−�
� − �

−�

�

W�x,a� � f�x�dx

= − �f�a� . �B5�

Further differentiations can be found in an analogous fash-
ion, limited only by the continuity of the B-spline.

APPENDIX C: IMPLEMENTATION OF THE
PERMANENT, DIRECT POLARIZATION AND MUTUAL
POLARIZATION FORCES

After solving the linear system, the permanent electro-
static solvation forces are determined via Eq. �60�, which in
the limit of infinitesimal grid spacing becomes20

Fi,� = −
��GM

�si,�
= − �

V

�M ��M

�si,�

+
1

8�
�s

M � � ��s

�si,�
� �s

M	 −
1

8�
��s

M�2 ��̄2

�si,�
�d3r ,

�C1�

where � represents differentiation with respect to either the
x-, y-, or z-coordinate of atom i. The three terms on the RHS
of Eq. �C1� are usually referred to as the reaction field force,
dielectric boundary force and ionic boundary force, respec-
tively. We briefly review the implementation of these forces,
in order to develop the foundation necessary to discuss ad-
ditional details of realizing the polarization forces.

1. Permanent reaction field force and torque

The �-component of the “Permanent Reaction Field
Force” Fi

Perm RF for atom i is

Fi,�
Perm RF = −

�

�si,�

qiBi − di,���Bi +

�i,��

3
����Bi��M ,

�C2�

where Bi is a single column of the B-spline matrix in Eq.
�33�, di,� is the �-component of the permanent dipole, �i,��

is the �� component of the quadrupole and the convention
for summation over the � and � subscripts is implied. There
is also an associated “Permanent Reaction Field Torque”
�i

Perm RF, whose x-component is

�i,x
Perm q-Phi = di,yERF,i,z

M − di,zERF,i,y
M − 2

3 ��i,y���ERF,i,z
M

− �i,z���ERF,i,y
M � , �C3�

where ERF,i,�
M is the �-component of the permanent multipole

reaction field. The y- and z-components are analogous, and
we note that all torques are equivalent to forces on neighbor-
ing atoms that define the local frame of the multipole.
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2. Direct polarization reaction field force and torque

Similarly, the third term of the polarization gradient
given in Eq. �91� results in a “Direct Polarization Reaction
Field Force”

Fi,�
Direct RF =

1

2

�

�si,�

�− 
i,���Bi��M + �qiBi − di,���Bi

+
�i,��

3
����Bi	�
� , �C4�

while the fifth term we label the “Non-Local Direct Polariza-
tion Reaction Field Force”

Fi,�
NL-Direct RF =

1

2

�

�si,�

�− �i,���Bi��M + �qiBi

− di,���Bi +
�i,��

3
����Bi	��� , �C5�

respectively. The label “non-local” is used to denote that the
term � results from omitting or scaling the contribution to
the intermolecular field of permanent multipoles that are 1-5
connected or closer, as opposed to the induced dipoles � that
result from the AMOEBA group based polarization scheme.

Additionally, the x-component of the torques, �i
Direct RF and

�i
NL-Direct RF, on the permanent moments due to the con-

tinuum reaction field of � and � are, respectively,

�i,x
Direct RF = 1

2�di,yERF,i,z

 − d�,zERF,i,y


 − 2
3 ��i,y���ERF,i,z




− �i,z���ERF,i,y

 �� , �C6�

and

�i,x
NL-Direct RF = 1

2�di,yERF,i,z
� − d�,zERF,i,y

� − 2
3 ��i,y���ERF,i,z

�

− �i,z���ERF,i,y
� �� . �C7�

3. Mutual polarization reaction field force

The last reaction field force results from the seventh
term of Eq. �91� and is due to mutual polarization

Fi,�
Mutual RF = −

1

2

�

�si,�
�
i,���Bi�

� + �i,���Bi�

� . �C8�

4. Permanent dielectric boundary force

The second term in Eq. �C1�, the “Permanent Dielectric
Boundary Force,” is determined from Eq. �A1� as

Fi,�
Perm DB = −

h

8 �
i,j,k

�s
M�i, j,k�� ��x�i, j,k�

�ri,�
��s
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�ri,�

��s
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M�i, j,k��

+
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�ri,�
��s

M�i, j + 1,k� − �s
M�i, j,k�� +

��y�i, j − 1,k�
�ri,�

��s
M�i, j − 1,k� − �s

M�i, j,k�� +
��z�i, j,k�

�ri,�
��s

M�i, j,k + 1�

− �s
M�i, j,k�� +

��z�i, j,k − 1�
�ri,�

��s
M�i, j,k − 1� − �s

M�i, j,k��� , �C9�

where the partial derivatives of the permittivity depend on
Eqs. �37�, �39� and the heptic characteristic function pre-
sented in Eqs. �40�–�43�.

��x�i, j,k�
�ri,�

= �1 − �s�
Hx�i, j,k�
Hxi�i, j,k�

�Hx�i, j,k�
�ri,�

= ��x�i, j,k�

− 1�
Hxi� �i, j,k�
Hxi�i, j,k�

− ri,�

ri
, �C10�

where Hx and Hxi are the characteristic function of the solute

and atom i for the x-branch of the cubic grid at �xi

+h /2 ,yj ,zk�, respectively, and the vector ri is the distance
from the atomic center to the grid point.

5. Direct and mutual polarization dielectric boundary
forces

The fourth, sixth and eighth terms in Eq. �91� result in
dielectric boundary force components. For example, the “Di-
rect Polarization Dielectric Boundary Force” is

Fi,�
Direct DB = −

h

8 �
i,j,k

�s

�i, j,k�� ��x�i, j,k�

�ri,�
��s

M�i + 1, j,k� − �s
M�i, j,k�� +

��x�i − 1, j,k�
�ri,�

��s
M�i − 1, j,k� − �s

M�i, j,k��

+
��y�i, j,k�

�ri,�
��s

M�i, j + 1,k� − �s
M�i, j,k�� +

��y�i, j − 1,k�
�ri,�

��s
M�i, j − 1,k� − �s

M�i, j,k�� +
��z�i, j,k�

�ri,�
��s

M�i, j,k + 1�

− �s
M�i, j,k�� +

��z�i, j,k − 1�
�ri,�

��s
M�i, j,k − 1� − �s

M�i, j,k��� �C11�

or
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Fi,�
Direct DB = −

h

8 �
i,j,k

�s
M�i, j,k�� ��x�i, j,k�

�ri,�
��s


�i + 1, j,k� − �s

�i, j,k�� +

��x�i − 1, j,k�
�ri,�

��s

�i − 1, j,k� − �s


�i, j,k��

+
��y�i, j,k�

�ri,�
��s


�i, j + 1,k� − �s

�i, j,k�� +

��y�i, j − 1,k�
�ri,�

��s

�i, j − 1,k� − �s


�i, j,k�� +
��z�i, j,k�

�ri,�
��s


�i, j,k + 1�

− �s

�i, j,k�� +

��z�i, j,k − 1�
�ri,�

��s

�i, j,k − 1� − �s


�i, j,k��� , �C12�

where the superscript on the solvated potentials have been
exchanged between Eq. �C11� and Eq. �C12�. In other words,
both Eqs. �C11� and �C12� are equivalent to numerical pre-
cision and either may be implemented. Analogous expres-
sions for the sixth and eighth terms in Eq. �91� are referred to
as the “Non-Local Direct Polarization Dielectric Boundary
Force” and the “Mutual Polarization Dielectric Boundary
Force,” respectively.

6. Permanent ionic boundary force

The last term in Eq. �C1�, the “Permanent Ionic Bound-
ary Force,” is determined from Eq. �A1� as

Fi,�
Perm IB =

h3

8�
�
i,j,k

�s
M�i, j,k�2��̄2�i, j,k�

�ri,�
�C13�

using

��̄2�i, j,k�
�ri,�

= �̄b
2 H�i, j,k�
Hi�i, j,k�

�Hi�i, j,k�
�ri,�

= �̄2�i, j,k�
Hi��i, j,k�
Hi�i, j,k�

− ri,�

ri
, �C14�

where H and Hi are the characteristic function of the solute
and atom i, respectively, and the vector ri is the distance
from the atomic center to the grid point.

7. Direct and mutual polarization ionic boundary
force

The fourth, sixth and eighth terms in Eq. �91� result in
ionic boundary force components. For example, the “Direct
Polarization Ionic Boundary Force” is

Fi,�
Direct IB =

h3

8�
�
i,j,k

�s
M�i, j,k��s


�i, j,k�
��̄2�i, j,k�

�ri,�
. �C15�

Analogous expressions for the sixth and eighth terms in Eq.
�91� are termed the “Non-Local Direct Polarization Ionic
Boundary Force” and the “Mutual Polarization Ionic Bound-
ary Force,” respectively. Note the difference between Eqs.
�C13� and �C15�; specifically the potential is squared in Eq.
�C13�, but is asymmetric in Eq. �C15�.
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