# The Soddy Circles 

Nikolaos Dergiades


#### Abstract

Given three circles externally tangent to each other, we investigate the construction of the two so called Soddy circles, that are tangent to the given three circles. From this construction we get easily the formulas of the radii and the barycentric coordinates of Soddy centers relative to the triangle $A B C$ that has vertices the centers of the three given circles.


## 1. Construction of Soddy circles

In the general Apollonius problem it is known that, given three arbitrary circles with noncollinear centers, there are at most 8 circles tangent to each of them. In the special case when three given circles are tangent externally to each other, there are only two such circles. These are called the inner and outer Soddy circles respectively of the given circles. Let the mutually externally tangent circles be $\mathscr{C}_{a}\left(A, r_{1}\right)$, $\mathscr{C}_{b}\left(B, r_{2}\right), \mathscr{C}_{c}\left(C, r_{3}\right)$, and $A_{1}, B_{1}, C_{1}$ be their tangency points (see Figure 1).


Figure 1.
Consider the inversion $\tau$ with pole $A_{1}$ that maps $\mathscr{C}_{a}$ to $\mathscr{C}_{a}$. This also maps the circles $\mathscr{C}_{b}, \mathscr{C}_{c}$ to the two lines perpendicular to $B C$ and tangent to $\mathscr{C}_{a}$ at the points $P_{2}, P_{3}$ where $P_{2} P_{3}$ is parallel from $A$ to $B C$. The only circles tangent to $\mathscr{C}_{a}$ and to the above lines are the circles $K\left(T_{1}\right), K^{\prime}\left(T_{1}^{\prime}\right)$ where $T_{1}, T_{1}^{\prime}$ are lying on $\mathscr{C}_{a}$ and
the $A$-altitude of $A B C$. These circles are the images, in the above inversion, of the Soddy circles we are trying to construct. Since the circle $K\left(T_{1}\right)$ must be the inverse of the inner Soddy circle, the lines $A_{1} T_{1}, A_{1} T_{2}, A_{1} T_{3},\left(P_{2} T_{2}=P_{3} T_{3}=P_{2} P_{3}\right)$ meet $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ at the points $T_{a}, T_{b}, T_{c}$ respectively, that are the tangency points of the inner Soddy circle. Hence the lines $B T_{b}$ and $C T_{c}$ give the center S of the inner Soddy circle. Similarly the lines $A_{1} T_{1}^{\prime}, A_{1} T_{2}^{\prime}, A_{1} T_{3}^{\prime},\left(P_{2} T_{2}^{\prime}=P_{3} T_{3}^{\prime}=P_{2} P_{3}\right)$, meet $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ at the points $T_{a}^{\prime}, T_{b}^{\prime}, T_{c}^{\prime}$ respectively, that are the tangency points of the outer Soddy circle. Triangles $T_{a} T_{b} T_{c}, T_{a}^{\prime} T_{b}^{\prime} T_{c}^{\prime}$ are the inner and outer Soddy triangles. A construction by the so called Soddy hyperbolas can be found in [5, §12.4.2].

## 2. The radii of Soddy circles

If the sidelengths of $A B C$ are $a, b, c$, and $s=\frac{1}{2}(a+b+c)$, then

$$
\begin{array}{lll}
a=r_{2}+r_{3}, & b=r_{3}+r_{1}, & c=r_{1}+r_{2} \\
r_{1}=s-a, & r_{2}=s-b, & r_{3}=s-c
\end{array}
$$

If $\triangle$ is the area of $A B C$, then $\triangle=\sqrt{r_{1} r_{2} r_{3}\left(r_{1}+r_{2}+r_{3}\right)}$. The $A$-altitude of $A B C$ is $A D=h_{a}=\frac{2 \triangle}{a}$, and the inradius is $r=\frac{\triangle}{r_{1}+r_{2}+r_{3}}$.


Figure 2.
The points $A_{1}, B_{1}, C_{1}$ are the points of tangency of the incircle $I(r)$ of $A B C$ with the sidelines. If $A_{1} P$ is perpendicular to $P_{2} P_{3}$ and $I B$ meets $A_{1} C_{1}$ at $Q$, then
the inversion $\tau$ maps $C_{1}$ to $P_{2}$, and the quadrilateral $I Q P_{2} P$ is cyclic (see Figure 2 ). The power of the inversion is

$$
\begin{equation*}
d^{2}=A_{1} C_{1} \cdot A_{1} P_{2}=2 A_{1} Q \cdot A_{1} P_{2}=2 A_{1} I \cdot A_{1} P=2 r h_{a}=\frac{4 r_{1} r_{2} r_{3}}{r_{2}+r_{3}} . \tag{1}
\end{equation*}
$$

2.1. Inner Soddy circle. Since the inner Soddy circle is the inverse of the circle $K\left(r_{1}\right)$, its radius is given by

$$
\begin{equation*}
x=\frac{d^{2}}{A_{1} K^{2}-r_{1}^{2}} \cdot r_{1} . \tag{2}
\end{equation*}
$$

In triangle $A_{1} A K, A_{1} K^{2}-A_{1} A^{2}=2 A K \cdot T_{1} D=4 r_{1}\left(r_{1}+h_{a}\right)$. Hence,

$$
A_{1} K^{2}-r_{1}^{2}=A_{1} A^{2}-r_{1}^{2}+4 r_{1}\left(r_{1}+h_{a}\right)=d^{2}+4 r_{1}\left(r_{1}+h_{a}\right)
$$

and from (1), (2),

$$
\begin{equation*}
x=\frac{r_{1} r_{2} r_{3}}{r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}+2 \triangle} . \tag{3}
\end{equation*}
$$

Here is an alternative expression for $x$. If $r_{a}, r_{b}, r_{c}$ are the exradii of triangle $A B C$, and $R$ its circumradius, it is well known that

$$
r_{a}+r_{b}+r_{c}=4 R+r
$$

See, for example, $[4, \S 2.4 .1]$. Now also that $r_{1} r_{a}=r_{2} r_{b}=r_{3} r_{c}=\triangle$. Therefore,

$$
\begin{align*}
x & =\frac{r_{1} r_{2} r_{3}}{r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}+2 \triangle} \\
& =\frac{\triangle}{\triangle} \begin{array}{|l}
r_{1}+\frac{\Delta}{r_{2}}+\frac{\Delta}{r_{3}}+2 \cdot \frac{\Delta^{2}}{r_{1} r_{2} r_{3}} \\
\\
\end{array} \frac{\triangle}{r_{a}+r_{b}+r_{c}+2\left(r_{1}+r_{2}+r_{3}\right)} \\
& =\frac{\triangle}{4 R+r+2 s} .
\end{align*}
$$

As a special case, if $r_{1} \rightarrow \infty$, then the circle $\mathscr{C}_{a}$ tends to a common tangent of $\mathscr{C}_{b}, \mathscr{C}_{c}$, and

$$
\begin{equation*}
\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{r_{2}}}+\frac{1}{\sqrt{r_{3}}} \tag{5}
\end{equation*}
$$

In this case the outer Soddy circle degenerates into the common tangent of $\mathscr{C}_{\curvearrowleft}$ and $\mathscr{C}_{c}$.
2.2. Outer Soddy circle. If $\mathscr{C}_{a}$ is the smallest of the three circles $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ and is greater than the circle of (5), i.e., $\frac{1}{\sqrt{r_{1}}}<\frac{1}{\sqrt{r_{2}}}+\frac{1}{\sqrt{r_{3}}}$, then the outer Soddy circle is internally tangent to $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$. Otherwise, the outer Soddy circle is externally tangent to $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$.

Since the outer Soddy circle is the inverse of the circle $K^{\prime}\left(r_{1}\right)$, its radius is given by

$$
\begin{equation*}
x^{\prime}=\frac{d^{2}}{A_{1} K^{\prime 2}-r_{1}^{2}} \cdot r_{1} . \tag{6}
\end{equation*}
$$

This is a signed radius and is negative when $A_{1}$ is inside the circle $K^{\prime}\left(r_{1}\right)$ or when the outer Soddy circle is tangent internally to $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$. In triangle $A_{1} A K^{\prime}$, $A_{1} A^{2}-A_{1} K^{\prime 2}=2 A K^{\prime} \cdot T_{1}^{\prime} D=4 r_{1}\left(h_{a}-r_{1}\right)$, and from (6),

$$
\begin{equation*}
x^{\prime}=\frac{r_{1} r_{2} r_{3}}{r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}-2 \triangle} . \tag{7}
\end{equation*}
$$

Analogous to (4) we also have

$$
\begin{equation*}
x^{\prime}=\frac{\triangle}{4 R+r-2 s} . \tag{8}
\end{equation*}
$$

Hence this radius is negative, equivalently, the outer Soddy circle is tangent internally to $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$, when $4 R+r<2 s$. From (4) and (8), we have

$$
\frac{1}{x}-\frac{1}{x^{\prime}}=\frac{2 s}{\triangle}=\frac{4}{r} .
$$

If $4 R+r=2 s$, then $x=\frac{r}{4}$.

## 3. The barycentric coordinates of Soddy centers

3.1. The Inner Soddy center. If $d_{1}$ is the distance of the inner Soddy circle center $S$ from $B C$, then since $A_{1}$ is the center of similitute of the inner Soddy circle and the circle $K\left(r_{1}\right)$ we have $\frac{d_{1}}{K D}=\frac{x}{r_{1}}$, or

$$
d_{1}=\frac{x\left(2 r_{1}+h_{a}\right)}{r_{1}}=2 x\left(1+\frac{h_{a}}{2 r_{1}}\right)=2 x\left(1+\frac{\triangle}{a(s-a)}\right) .
$$

Similarly we obtain the distances $d_{2}, d_{3}$ from $S$ to the sides $C A$ and $A B$ respectively. Hence the homogeneous barycentric coordinates of $S$ are

$$
\left(a d_{1}: b d_{2}: c d_{3}\right)=\left(a+\frac{\triangle}{s-a}: b+\frac{\triangle}{s-b}: c+\frac{\triangle}{s-c}\right) .
$$

The inner Soddy center $S$ appears in [3] as the triangle center $X_{176}$, also called the equal detour point. It is obvious that for the Inner Soddy center $S$, the "detour" of triangle $S B C$ is

$$
S B+S C-B C=\left(x+r_{2}\right)+\left(x+r_{3}\right)-\left(r_{2}+r_{3}\right)=2 x .
$$

Similarly the triangles $S C A$ and $S A B$ also have detours $2 x$. Hence the three incircles of triangles $S B C, S C A, S A B$ are tangent to each other and their three tangency point $A_{2}, B_{2}, C_{2}$ are the points $T_{a}, T_{b}, T_{c}$ on the inner Soddy circle [1] since $S A_{2}=S B_{2}=S C_{2}=x$. See Figure 3 .

Working with absolute barycentric coordinates, we have

$$
\begin{align*}
S & =\frac{\left(a+\frac{\Delta}{s-a}\right) A+\left(b+\frac{\Delta}{s-b}\right) B+\left(c+\frac{\Delta}{s-c}\right) C}{a+\frac{\Delta}{s-a}+b+\frac{\Delta}{s-b}+c+\frac{\Delta}{s-c}} \\
& =\frac{(a+b+c) I+\triangle\left(\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}\right) G_{\mathrm{e}}}{\triangle}, \tag{9}
\end{align*}
$$



Figure 3.
where $G_{\mathrm{e}}=\left(\frac{1}{s-a}: \frac{1}{s-b}: \frac{1}{s-c}\right)$ is the Gergonne point. Hence, the inner Soddy center $S$ lies on the line connecting the incenter $I$ and $G_{e}$. This explains whey $I G_{\mathrm{e}}$ is called the Soddy line. Indeed, $S$ divides $I G_{\mathrm{e}}$ in the ratio

$$
I S: S G_{\mathrm{e}}=r_{a}+r_{b}+r_{c}: a+b+c=4 R+r: 2 s
$$

3.2. The outer Soddy center. If $d_{1}^{\prime \prime}$ is the distance of the outer Soddy circle center $S^{\prime}$ from $B C$, then since $A_{1}$ is the center of similitute of the outer Soddy circle and the circle $K^{\prime}\left(r_{1}\right)$, a similar calculation referring to Figure 1 shows that

$$
d_{1}^{\prime}=-2 x\left(1-\frac{\triangle}{a(s-a)}\right) .
$$

Similarly, we have the distances $d_{2}^{\prime}$ and $d_{3}^{\prime}$ from $S^{\prime}$ to $C A$ and $A B$ respectively. The homogeneous barycentric coordinates of $S$ are

$$
\left(a d_{1}^{\prime}: b d_{2}^{\prime}: c d_{3}^{\prime}\right)=\left(a-\frac{\triangle}{s-a}: b-\frac{\triangle}{s-b}: c-\frac{\triangle}{s-c}\right) .
$$

This is the triangle center $X_{175}$ of [3], called the isoperimetric point. It is obvious that if the outer Soddy circle is tangent internally to $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ or $4 R+r<2 s$, then the perimeter of triangle $S^{\prime} B C$ is

$$
S^{\prime} B+S^{\prime} C+B C=\left(x^{\prime}-r_{2}\right)+\left(x^{\prime}-r_{3}\right)+\left(r_{2}+r_{3}\right)=2 x^{\prime}
$$

Similarly the perimeters of triangles $S^{\prime} C A$ and $S^{\prime} A B$ are also $2 x^{\prime}$. Therefore the $S^{\prime}$-excircles of triangles $S^{\prime} B C, S^{\prime} C A, S^{\prime} A B$ are tangent to each other at the tangency points $T_{a}^{\prime}, T_{b}^{\prime}, T_{c}^{\prime}$ of the outer Soddy circle with $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$.

If the outer Soddy circle is tangent externally to $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$, equivalently, $4 R+$ $r>2 s$, then the triangles $S^{\prime} B C, S^{\prime} C A, S^{\prime} A B$ have equal detours $2 x^{\prime}$ because for triangle $S^{\prime} B C$,

$$
S^{\prime} B+S^{\prime} C-B C=\left(x^{\prime}+r_{2}\right)+\left(x^{\prime}+r_{3}\right)-\left(r_{2}+r_{3}\right)=2 x^{\prime},
$$

and similarly for the other two triangles. In this case, $S$ is second equal detour point. Analogous to (9), we have

$$
\begin{equation*}
S^{\prime}=\frac{(a+b+c) I-\triangle\left(\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}\right) G_{\mathrm{e}}}{\frac{\triangle}{x^{\prime}}} \tag{10}
\end{equation*}
$$

A comparison of (9) and (10) shows that $S$ and $S$ are harmonic conjugates with respect to $I G_{\mathrm{e}}$.

## 4. The barycentric equations of Soddy circles

We find the barycentric equation of the inner Soddy circle in the form

$$
a^{2} y z+b^{2} z x+c^{2} x y-(x+y+z)\left(p_{1} x+p_{2} y+p_{3} z\right)=0,
$$

where $p_{1}, p_{2}, p_{3}$ are the powers of $A, B, C$ with respect to the circle. See [5, Proposition 7.2.3]. It is easy to see that

$$
\begin{aligned}
& p_{1}=r_{1}\left(r_{1}+2 x\right)=(s-a)(s-a+2 x), \\
& p_{2}=r_{2}\left(r_{2}+2 x\right)=(s-b)(s-b+2 x), \\
& p_{3}=r_{3}\left(r_{3}+2 x\right)=(s-c)(s-c+2 x) .
\end{aligned}
$$

Similarly, the barycentric equation of the outer Soddy circle is

$$
a^{2} y z+b^{2} z x+c^{2} x y-(x+y+z)\left(q_{1} x+q_{2} y+q_{3} z\right)=0,
$$

where

$$
\begin{aligned}
& q_{1}=(s-a)\left(s-a+2 x^{\prime}\right), \\
& q_{2}=(s-b)\left(s-b+2 x^{\prime}\right), \\
& q_{3}=(s-c)\left(s-c+2 x^{\prime}\right),
\end{aligned}
$$

where $x^{\prime}$ is the signed radius of the circle given by (8), treated as negative when $2 s>4 R+r$.

## 5. The Soddy triangles and the Eppstein points

The incenter $I$ of $A B C$ is the radical center of the circles $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$. The inversion with respect to the incircle leaves each of $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ invariant and swaps the inner and outer Soddy circles. In particular, it interchanges the points of tangency $T_{a}$ and $T_{a}^{\prime}$; similarly, $T_{b}$ and $T_{b}^{\prime}, T_{c}$ and $T_{c}^{\prime}$. The Soddy triangles $T_{a} T_{b} T_{c}$ and $T_{a}^{\prime} T_{b}^{\prime} T_{c}^{\prime}$ are clearly perspective at the incenter $I$. They are also perspective with $A B C$, at $S$ and $S^{\prime}$ respectively. Since $A T_{a}: T_{a} S=r_{1}: x$, we have, $T_{a}=\frac{x A+r_{1} S}{x+r_{1}}$. In homogeneous barycentric coordinates,

$$
T_{a}=\left(a+\frac{2 \triangle}{r_{1}}: b+\frac{\triangle}{r_{2}}: c+\frac{\triangle}{r_{3}}\right) .
$$

Since the intouch point $A_{1}$ has coordinates $\left(0: \frac{1}{r_{2}}: \frac{1}{r_{3}}\right)$, the line $T_{a} A_{1}$ clearly contains the point

$$
E=\left(a+\frac{2 \triangle}{r_{1}}: b+\frac{2 \triangle}{r_{2}}: c+\frac{2 \triangle}{r_{3}}\right) .
$$

Similarly, the lines $T_{b} B_{1}$ and $T_{c} C_{1}$ also contain the same point $E$, which is therefore the perspector of the triangles $T_{a} T_{b} T_{c}$ and the intouch triangle. This is the Eppstein pont $X_{481}$ in [3]. See also [2]. It is clear that $E$ also lies on the Soddy line. See Figure 4.


Figure 4.
The triangle $T_{a}^{\prime} T_{b}^{\prime} T_{c}^{\prime}$ is also perspective with the intouch triangle, at a point

$$
E^{\prime}=\left(a-\frac{2 \triangle}{r_{1}}: b-\frac{2 \triangle}{r_{2}}: c-\frac{2 \triangle}{r_{3}}\right),
$$

on the Soddy line, dividing with $E$ the segment $I G_{\mathrm{e}}$ harmonically. This is the second Eppstein point $X_{482}$ of [3].

## References

[1] J.-P. Ehrmann, Some geometric constructions, Forum Geom. 6 (2006) 327-334.
[2] D. Eppstein, Tangent spheres and triangle centers, Amer. Math. Monthly, 108 (2001) 63-66.
[3] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[4] P. Yiu, Euclidean Geometry, Florida Atlantic University Lecture Notes, 1998.
[5] P. Yiu, Introduction to the Geometry of the Triangle, Florida Atlantic University Lecture Notes, 2001.

Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greece
E-mail address: ndergiades@yahoo.gr

