Adaline (Adaptive Linear)

Let \mathbf{x} be the inputs and \mathbf{w} be the weights. For mathematical convenience, let $x_{n+1} = 1$, so that w_{n+1} becomes the bias weight. The weighted sum u is a dot product:

$$u = \mathbf{w} \cdot \mathbf{x} = \sum_{i} w_i x_i$$

Let the identity function o = u be the activation function. Let squared error $E = (d-o)^2$ be the error function.

The decision boundary is the hyperplane o = 0.

Adaline Learning Rule

Let η be the learning rate, and d the desired (real number) output. The learning rule is:

$$\mathbf{w} \leftarrow \mathbf{w} + \eta (d - o) \mathbf{x}$$

Thie learning rule is also called the LMS (least mean square) algorithm and the Widrow-Hoff learning rule.

Approximately, the adaline converges to least squares (L_2) error.

Justifying the Learning Rule

The adaline learning rule is justified by gradient descent:

$$\begin{aligned} \frac{\partial E}{\partial \mathbf{w}} &= \frac{\partial (o-d)^2}{\partial \mathbf{w}} = 2(o-d)\frac{\partial o}{\partial \mathbf{w}} \\ &= 2(o-d)\frac{\partial u}{\partial \mathbf{w}} = 2(o-d)\frac{\partial \mathbf{w} \cdot \mathbf{x}}{\partial \mathbf{w}} \\ &= 2(o-d)\mathbf{x} \end{aligned}$$

Moving in direction $(o - d)\mathbf{x}$ increases error, so the opposite direction $(d - o)\mathbf{x}$ decreases error.

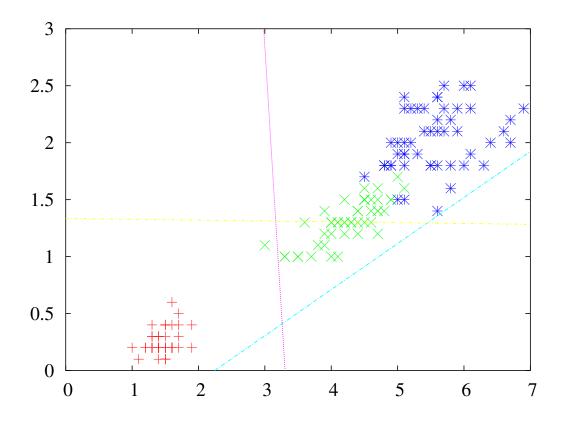
Adaline Example ($\eta = 0.1$)												
x_1	x_2	x_3	$\mid d$	u	w_1	w_2	w_3	$w_4 = b$				
					0.00	0.00	0.00	0.00				
1	1	1	1	0.00	0.10	0.10	0.10	0.10				
1	1	-1	-1	0.20	-0.02	-0.02	0.22	-0.02				
1	-1	1	1	0.20	0.06	-0.10	0.30	0.06				
1	-1	-1	-1	-0.08	-0.03	-0.01	0.39	-0.03				
-1	1	1	1	0.38	-0.09	0.05	0.45	0.03				
-1	1	-1	-1	-0.28	-0.02	-0.02	0.53	-0.04				
-1	-1	1	1	0.52	-0.07	-0.07	0.57	0.00				
-1	-1	-1	1	-0.43	-0.21	-0.21	0.43	0.15				
			1	I	1							

In 4 more epochs, the adaline converges, but not to optimal.

Epoch	w_1	w_2	w_3	$w_4 = b$	error	0-1
1	-0.21	-0.21	0.43	0.15	2.92	0
2	-0.28	-0.29	0.58	0.21	2.27	0
3	-0.31	-0.33	0.63	0.24	2.19	0
4	-0.31	-0.34	0.64	0.24	2.19	0
∞	-0.32	-0.35	0.65	0.25	2.19	0
Optimal	-0.25	-0.25	0.75	0.25	2.00	0

To be closer to optimal, use a lower learning rate and more epochs.

1000 epochs of adaline on iris data ($\eta = 0.001$)



Algorithms for Learning Adalines Method 1 (p. 226): Method of least squares. Method 2 (p. 229): Generalization of method 1. Method 3 (p. 230): Batch version of adaline, i.e., $\mathbf{w} \leftarrow \mathbf{w} + \eta \sum_i (d_i - o_i) \mathbf{x}_i$

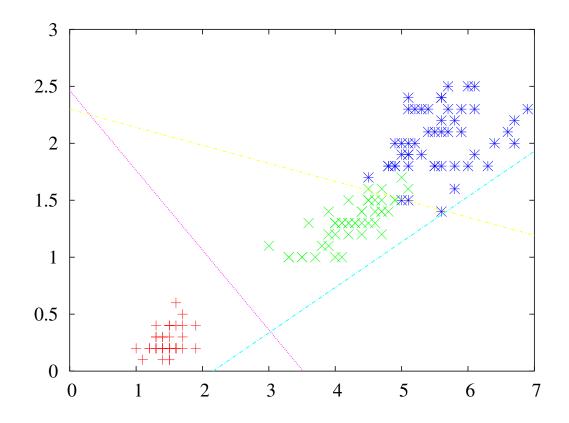
Method 4 (p. 234): Adaline learning rule.

Method 5 (p. 237): Recursive least squares updates an exact solution for p patterns given the p + 1st pattern.

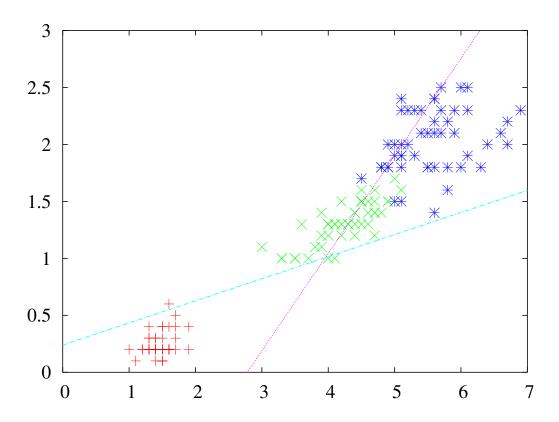
Using Adaline for Classification Given a fixed set of patterns with a single real output, use method of least squares.

For classification, use ramp activation and E(d, u) = 0 if $\operatorname{ramp}(u) = d$ else $(u - d)^2$.

For multiclass datasets, use a linear machine. Predicted class is the neuron with highest u. Let $u_d = u$ of the neuron for the desired class. Let u' = highest u of other neurons. Subtract $(u_d + u')/2$ from u of all neurons. Apply learning rule to all neurons. adaline with ramp activation on iris data



adaline with linear machine on iris data



adaline with ramp and linear machine on iris

