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1 Introduction

Many economic environments can be modelled as common agency games� that is, games where

multiple principals contract simultaneously and noncooperatively with the same agent.1 Despite

their relevance for applications, the analysis of these games has been made di¢ cult by the fact that

one cannot safely assume that the agent selects a contract with each principal by simply reporting

his �type� (i.e., his exogenous payo¤-relevant information). In other words, the central tool of

mechanism design theory� the Revelation Principle� is invalid in these games.2 The reason is that

the agent�s preferences over the contracts o¤ered by one principal depend not only on his type but

also on the contracts he has been o¤ered by the other principals.3

Two solutions have been proposed in the literature. Epstein and Peters (1999) have suggested

that the agent should communicate not only his type but also the mechanisms o¤ered by the

other principals.4 However, describing a mechanism requires an appropriate language. The main

contribution of Epstein and Peters is in proving existence of a universal language that is rich enough

to describe all possible mechanisms. This language also permits one to identify a class of universal

mechanisms with the property that any indirect mechanism can be embedded into this class. Since

universal mechanisms have the agent truthfully report all his private information, they can be

considered direct revelation mechanisms and therefore a universal Revelation Principle holds.

Although this result is a remarkable contribution, the use of universal mechanisms in applica-

tions has been impeded by the complexity of the universal language. In fact, when asking the agent

to describe principal j�s mechanism, principal i has to take into account the fact that principal j�s

mechanism may also ask the agent to describe principal i�s mechanism, as well as how this mech-

anism depends on principal j�s mechanism, and so on, leading to the problem of in�nite regress.

The universal language is in fact obtained as the limit of a sequence of enlargements of the message

space, where at each enlargement the corresponding direct mechanism becomes more complex, and

thus more di¢ cult both to describe and to use when searching for equilibrium outcomes.

The second solution, proposed by Peters (2001) and Martimort and Stole (2002), is to restrict

the principals to o¤ering menus of contracts. These authors have shown that, for any equilibrium

1We refer to the players who o¤er the contracts either as the principals or as the mechanism designers. The two

expressions are intended as synonyms. Furthermore, we adopt the convention of using feminine pronouns for the

principals and masculine pronouns for the agent.
2For the Revelation Principle, see, among others, Gibbard (1973), Green and La¤ont (1977), and Myerson (1979).

Problems with the Revelation Principle in games with competing principals have been documented in Katz (1991),

McAfee (1993), Peck (1997), Epstein and Peters (1999), Peters (2001), and Martimort and Stole (1997, 2002), among

others. Recent work by Peters (2003, 2007), Attar, Piaser, and Porteiro (2007,a,b), and Attar et al. (2008) has

identi�ed special cases in which these problems do not emerge.
3Depending on the application of interest, a contract can be a price-quantity pair, as in the case of competion in

nonlinear tari¤s; a multidimensional bid, as in menu auctions; or an incentive scheme, as in moral hazard settings.
4A mechanism is simply a procedure for selecting a contract.
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relative to any game with arbitrary sets of mechanisms for the principals, there exists an equilibrium

in the game in which the principals are restricted to o¤ering menus of contracts that sustains the

same outcomes. In this equilibrium, the principals simply o¤er the menus they would have o¤ered

through the equilibrium mechanisms of the original game, and then delegate to the agent the choice

of the contracts. This result is referred to in the literature as the Menu Theorem and is the analog

of the Taxation Principle for games with a single mechanism designer.5

The Menu Theorem has proved quite useful in certain applications. However, contrary to the

Revelation Principle, it provides no indication as to which contracts the agent selects from the

menus, nor does it permit one to restrict attention to a particular set of menus.6

The purpose of this paper is to show that, in most cases of interest for applications, one

can still conveniently describe the agent�s choice from a menu (equivalently, the outcome of his

interaction with each principal) through a revelation mechanism. The structure of these mechanisms

is, however, more general than the standard one for games with a single mechanism designer.

Nevertheless, contrary to universal mechanisms, it does not lead to any in�nite regress problem.

In the revelation mechanisms we propose, the agent is asked to report his exogenous type along

with the endogenous payo¤-relevant contracts chosen with the other principals. As is standard, a

revelation mechanism is then said to be incentive-compatible if the agent �nds it optimal to report

such information truthfully.

Describing the agent�s choice from a menu by means of an incentive-compatible revelation

mechanism is convenient because it permits one to specify which contracts the agent selects from

the menu in response to possible deviations by the other principals, without, however, having to

describing such deviations (which would require the use of the universal language to describe the

mechanisms o¤ered by the deviating principals); what the agent is asked to report is only the

contracts selected as a result of such deviations. This in turn can facilitate the characterization of

the equilibrium outcomes.

The mechanisms described above are appealing because they capture the essence of common

agency, i.e., the fact that the agent�s preferences over the contracts o¤ered by one principal depend

not only on the agent�s type but also on the contracts selected with the other principals.7 However,

this property alone does not guarantee that one can always safely restrict the agent�s behavior to

depending only on such payo¤-relevant information. In fact, when indi¤erent, the agent may also

condition his choice on payo¤-irrelevant information, such as the contracts included by the other

5The result is also referred to as the "Delegation Principle" (e.g., in Martimort and Stole, 2002). For the Taxation

Principle, see Rochet (1986) and Guesnerie (1995).
6The only restriction discussed in the literature is that the menus should not contain dominated contracts (see

Martimort and Stole, 2002).
7A special case is when preferences are separable, as in Attar et al. (2008), in which case they depend only on the

agent�s exogenous type.
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principals in their menus but which the agent decided not to select. Furthermore, when indi¤erent,

the agent may randomize over the principals�contracts, inducing a correlation that cannot always

be replicated by having the agent simply report to each principal his type along with the contracts

selected with the other principals. As a consequence, not all equilibrium outcomes can be sustained

through the revelation mechanisms described above. While we �nd these considerations intriguing

from a theoretical viewpoint, we seriously doubt their relevance in applications.

Our concerns with mixed-strategy equilibria come from the fact that outcomes sustained by

the agent mixing over the contracts o¤ered by the principals, or by the principals mixing over the

menus they o¤er to the agent, are typically not robust. Furthermore, when principals can o¤er

all possible menus (including those containing lotteries over contracts), it is very hard to construct

nondegenerate examples in which (i) the agent is made indi¤erent over some of the contracts o¤ered

by the principals, and (ii) no principal has an incentive to change the composition of her menu so

as to break the agent�s indi¤erence and induce him to choose the contracts that are most favorable

to her (see the example discussed in Section 5.2).

We also have concerns about equilibrium outcomes sustained by a strategy for the agent that

is not Markovian, i.e., that also depends on payo¤-irrelevant information. These concerns are

motivated by the observation that this type of behavior does not seem plausible in most real-world

situations. Think of a buyer purchasing products or services from multiple sellers. On the one hand,

it is plausible that the quality/quantity purchased from seller i depends on the quality/quantity

purchased from seller j. This is the intrinsic nature of the common agency problem which leads

to the failure of the standard Revelation Principle. On the other hand, it does not seem plausible

that, for a given contract with seller j; the purchase from seller i would depend on payo¤-irrelevant

information, such as which other contracts o¤ered by seller j did the buyer decide not to choose.8

For most of the analysis here, we thus focus on outcomes sustained by pure-strategy pro�les in

which the agent�s behavior in each relationship is Markovian.9 We �rst show that any such outcome

can be sustained by a truthful equilibrium of the revelation game. We also show that, despite the

fact that only certain menus can be o¤ered in the revelation game, any truthful equilibrium is

robust in the sense that its outcome can also be sustained by an equilibrium in the game where

principals can o¤er any menus. This guarantees that equilibrium outcomes in the revelation game

are not arti�cially sustained by the fact that the principals are forced to choose from a restricted

8That the agent�s behavior is Markovian of course does not imply that the principals can be restricted to o¤ering

menus that contain only the contracts (e.g., the price-quantity pairs) that are selected in equilibrium. As is well

known, the inclusion in the menu of "latent" contracts that are never selected in equilibrium may be essential to

prevent deviations by other principals. See Chiesa and Denicolo�(2009) for an illustration.
9While the de�nition of Markov strategy given here is di¤erent from the one considered in the literature on dynamic

games (see, e.g., Pavan and Calzolari, 2009), it shares with that de�nition the idea that the agent�s behavior should

depend only on payo¤-relevant information.
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set of mechanisms.

We then proceed by addressing the question of whether there exist environments in which

making the assumption that the agent follows a Markov strategy is not only appealing but actually

unrestrictive. Clearly, this is always the case when the agent�s preferences are �strict,� for it is

only when the agent is indi¤erent that his behavior may depend on payo¤-irrelevant information.

Furthermore, even when the agent can be made indi¤erent, restricting attention to Markov strate-

gies never precludes the possibility of sustaining all equilibrium outcomes when (i) information is

complete, and (ii) the principals� preferences are su¢ ciently aligned. By su¢ ciently aligned we

mean that, given the contracts signed with all principals other than i, the speci�c contract that

the agent signs with principal i to punish a deviation by one of the other principals does not need

to depend on the identity of the deviating principal; see the de�nition of "Uniform Punishment" in

Section 3. This property is always satis�ed when there are only two principals. It is also satis�ed

when the principals are, for example, retailers competing �à la Cournot�in a downstream market.

Each retailer�s payo¤ then decreases with the quantity that the agent�here in the role of a common

manufacturer�sells to any of the other principals.

As for the restriction to complete information, the only role that this restriction plays is the

following. It rules out the possibility that the equilibrium outcomes are sustained by the agent

punishing a deviation, say, by principal j; by choosing the equilibrium contracts with all principals

other than i, and then choosing with principal i a contract di¤erent from the equilibrium one. In

games with incomplete information, allowing the agent to change his behavior with a nondeviating

principal, despite the fact that he is selecting the equilibrium contracts with all the other principals,

may be essential for punishing certain deviations. This in turn implies that Markov strategies need

not support all equilibrium outcomes in such games. However, because this is the only complication

that arises with incomplete information, we show that one can safely restrict attention to Markov

strategies if one imposes a mild re�nement on the solution concept which we call �Conformity to

Equilibrium.�This re�nement simply requires that each type of the agent selects the equilibrium

contract with each principal when the latter o¤ers the equilibrium menu and when the contracts

selected with the other principals are the equilibrium ones.10 Again, in many real world situations,

such behavior seems plausible.

While we �nd the restriction to pure-strategy-Markov equilibria both reasonable and appealing

for most applications, at the end of the paper we also show how one can enrich our revelation

mechanisms (albeit at the cost of an increase in complexity) to characterize equilibrium outcomes

sustained by non-Markov strategies and/or mixed strategy pro�les. For the former, it su¢ ces to

consider revelation mechanisms where, in addition to his type and the contracts he has selected

with the other principals, the agent is asked to report the identity of a deviating principal (if any).

10Note that this re�nement is milder than the �conservative behavior�re�nement of Attar et al. (2008).
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For the latter, it su¢ ces to consider set-valued revelation mechanisms that respond to each report

about the agent�s type and the contracts selected with the other principals with a set of contracts

that are equally optimal for the agent among those available in the mechanism; giving the same

type of the agent the possibility of choosing di¤erent contracts in response to the same contracts

selected with the other principals is essential to sustain certain mixed-strategy outcomes.

The remainder of the article is organized as follows. We conclude this section with a simple

example that (gently) introduces the reader to the key ideas in the paper with as little formalism

as possible. Section 2 then describes the general contracting environment. Section 3 contains the

main characterization results. Section 4 shows how our revelation mechanisms can be put to work

in applications such as competition in non-linear tari¤s, menu auctions, and moral hazard settings.

Section 5 shows how the revelation mechanisms can be enriched to characterize equilibrium out-

comes sustained by non-Markov strategies and/or mixed-strategy equilibria. Section 6 concludes.

All proofs are in the Appendix.

Quali�cation. While the approach here is similar in spirit to the one in Pavan and Calzolari

(2009) for sequential common agency, there are important di¤erences due to the simultaneity of

contracting. First, the notion of Markov strategies considered here takes into account the fact that

the agent, when choosing the messages to send to each principal, has not yet committed himself to

any decision with any of the other principals. Second, in contrast to sequential games, the agent can

condition his behavior on the entire pro�le of mechanisms o¤ered by all principals. These di¤erences

explain why, despite certain similarities, the results here do not follow from the arguments in that

paper.

1.1 A simple menu-auction example

There are three players: a policy maker (the agent, A) and two lobbying domestic �rms (principals

P1 and P2). The policy maker must choose between a "protectionist" policy, e = p, and a "free-

trade" policy, e = f (e.g., opening the domestic market to foreign competition). To in�uence

the policy maker�s decision, the two �rms can make explicit commitments about their business

strategy in the near future. We denote by ai 2 Ai = [0; 1] the "aggressiveness" of �rm i�s business

strategy, with ai = 1 denoting the most aggressive strategy and ai = 0 the least aggressive one.

The aggressiveness of a �rm�s strategy should be interpreted as a proxy for a combination of its

pricing policy, its investment strategy, the number of jobs the �rm promises to secure, and similar

factors.

The policy maker�s payo¤ is a weighted average of domestic consumer surplus and domestic

�rms�pro�ts. We assume that under a protectionist policy, welfare is maximal when the two do-

mestic �rms engage in �erce competition (i.e., when they both choose the most aggressive strategy).
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We also assume that the opposite is true under a free-trade policy; this could re�ect the fact that,

under a free-trade policy, large consumer surplus is already guaranteed by foreign supply, in which

case the policy maker may value cooperation between the two �rms.

We further assume that, absent any explicit contract with the government, the two �rms cannot

refrain from behaving aggressively: to make it simple, we assume that under a protectionist policy,

P1 has a dominant strategy in choosing a1 = 1, in which case P2 has an iteratively dominant

strategy in also choosing a2 = 1. Likewise, under a free-trade policy, P2 has a dominant strategy

in choosing a2 = 1, in which case P1 has an iteratively dominant strategy in also choosing a1 = 1.

By behaving aggressively, the two �rms reduce their joint pro�ts with respect to what they could

obtain by "colluding," i.e., by setting a1 = a2 = 0.

Formally, the aforementioned properties can be captured by the following payo¤ structure:

u1 (e; a) =

(
a1(1� a2=2)� a2 if e = p

a1(a2 � 1=2)� a2 � 1 if e = f

u2 (e; a) =

(
a2(a1 � 1=2)� a1 if e = p

a2(1� a1=2)� a1 � 1 if e = f

v (e; a) =

(
1 + a2(2a1 � 1) if e = p

10=3 + a1(a2 � 2)� a2=2 if e = f

where ui denotes Pi�s payo¤, i = 1; 2; v denotes the policy maker�s payo¤; and a = (a1; a2).

What distinguishes this setting from most lobbying games considered in the literature is that

payo¤s are not restricted to being quasi-linear. As a consequence, the two lobbying �rms respond

to the choice of a policy e with an entire business plan as opposed to simply paying the policy maker

a transfer ti (e.g., a campaign contribution). Apart from this distinction, this is a canonical "menu-

auction" setting à la Bernheim and Whinston (1985, 1986a): the agent�s action e is veri�able,

preferences are common knowledge, and each principal can credibly commit to a contract �i : E !
Ai that speci�es a reaction (i.e., a business plan) for each possible policy e 2 E = fp; fg:

In virtually all menu auction papers, it is customary to assume that the principals simply make

take-it-or-leave-it o¤ers to the agent; that is, they o¤er a single contract �i. Note that in games

with complete information, a take-it-or-leave-it o¤er coincides with a standard direct revelation

mechanism. It is easy to verify that, in the lobbying game in which the two �rms are restricted to

making take-it-or-leave-it o¤ers, the only two pure-strategy equilibrium outcomes are: (i) e� = p

and a�i = 1; i = 1; 2, which yields each �rm a payo¤ of �1=2 and the policy maker a payo¤ of 2;
and (ii) e� = f and a�i = 1; i = 1; 2, which yields each �rm a payo¤ of �3=2 and the policy maker
a payo¤ of 11=6. The proof is in the Appendix.

In an in�uential paper, Peters (2003) has shown that when a certain no-externalities condition

holds, restricting the principals to making take-it-or-leave-it o¤ers is inconsequential: any outcome
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that can be sustained by allowing the principals to o¤er more complex mechanisms can also be

sustained by restricting them to making take-it-or-leave-it o¤ers. The no-externalities condition

is often satis�ed in quasi-linear environments (e.g., in Bernheim and Whinston�s seminal 1986a

menu-auction paper). However, it typically fails when a principal�s action is the selection of an

entire plan of action, such as a business strategy, as in the current example, or the selection of an

incentive scheme, as in a moral hazard setting. In this case, restricting the principals to competing

in take-it-or-leave-it o¤ers (or equivalently, in standard direct revelation mechanisms) may preclude

the possibility of characterizing interesting outcomes, as shown below.

A fully general approach would then require letting the principals compete by o¤ering arbitrar-

ily complex mechanisms. However, because ultimately a mechanism is just a procedure to select

a contract, one can safely assume that each principal directly o¤ers the agent a menu of contracts

and delegates to the agent the choice of the contract. In essence, this is what the Menu Theorem

establishes. However, as anticipated above, this approach leaves open the question of which menus

are o¤ered in equilibrium and how the di¤erent contracts in the menu are selected by the agent in

response to the contracts selected with the other principals.

The solution o¤ered by our approach consists in describing the agent�s choice from a menu

by means of a revelation mechanism: contrary to the standard revelation mechanisms considered

in the literature (where the agent simply reports his exogenous type), the revelation mechanisms

we propose ask the agent to report also the (payo¤-relevant) contracts selected with the other

principals. Theorem 2 below will show that any outcome of the menu game sustained by a pure-

strategy equilibrium in which the agent�s strategy is Markovian can also be sustained as a pure-

strategy equilibrium outcome of the game in which the principals o¤er the revelation mechanisms

described above.

In the lobbying game of this example, the policy maker�s strategy is Markovian if, given any

menu of contracts �Mi o¤ered by �rm i; and any contract �j : E ! Aj by �rm j; there exists

a unique contract �i(�j ;�Mi ) : E ! Ai such that the policy maker always selects the contract
�i(�j ;�

M
i ) from the menu �Mi when the contract he selects with �rm j is �j ; j 6= i: In other words,

the choice from the menu �Mi depends only on the contract selected with the other �rm, but not

on payo¤-irrelevant information such as the other contracts included by �rm j in her menu that

the policy maker decided not to choose.

As anticipated in the introduction, while Markov strategies are appealing, they may fail to

sustain certain outcomes. However, as Theorem 3 below shows, this is never the case when the

principals�preferences are su¢ ciently aligned (which is always the case when there are only two

principals) and preferences are common knowledge, as in the example considered here. Moreover, as

Proposition 4 will show, when e¤ort is observable, as in menu-auctions, the revelation mechanisms

can be further simpli�ed by having the agent directly report to each principal the actions he is
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inducing the other principals to take in response to his choice of e¤ort, as opposed to the contracts

selected with the other principals. The idea is simple. For any given policy e 2 E; the agent�s
preferences over the actions by principal i depend on the action by principal j. By implication, the

agent�s choice from any menu of contracts o¤ered by Pi can be conveniently described through a

mapping �ri : E�Aj ! Ai that speci�es, for each observable policy e 2 E, and for each unobservable
action aj 2 Aj by principal j, an action ai 2 Ai that is as good for the agent as any other action
a0i that the agent can induce by reporting an action a

0
j 6= aj .11 Furthermore, the agent�s strategy

can be restricted to being truthful in the sense that, in equilibrium, the agent correctly reports to

each principal i = 1; 2, the action aj that will be taken by the other principal.

We conclude this example by showing how our revelation mechanisms can be used to sustain

outcomes that can not be sustained with simple take-it-or-leave-it o¤ers. To this aim, consider the

following pair of revelation mechanisms12

�r1(e; a2) =

(
1=2 if e = p 8a2
1 if e = f 8a2

; �r2(e; a1) =

8>><>>:
1 if e = p and a1 > 1=2

0 if e = p and a1 � 1=2
1 if e = f 8a1:

Given these mechanisms, the policy maker optimally chooses a protectionist policy e = p. At

the same time, the two �rms sustain higher cooperation than under simple take-it-or-leave-it o¤ers,

thus obtaining higher total pro�ts. Indeed, the equilibrium outcome is e� = p; a�1 = 1=2; a�2 = 0

which yields P1 a payo¤ of 1=2; P2 a payo¤ of �1=2, and the policy maker a payo¤ of 1. The key
to sustaining this outcome is to have P2 respond to the policy e = p with a business strategy that

depends on what P1 does. Because P2 cannot observe a1 directly at the time she commits to her

business plan, such a contingency must be achieved with the compliance of the policy maker.

Clearly, the same outcome can also be sustained in the menu game by having P2 o¤er a menu

that contains two contracts, one that responds to e = p with a2 = 1 and the other that responds

to e = p with a2 = 0. The advantage of our mechanisms comes only from the fact that they o¤er a

convenient way of describing a principal�s response to the other principals�actions that is compatible

with the agent�s incentives. This simpli�cation, however, often facilitates the characterization of

the equilibrium outcomes, as will be shown also in the other examples in Section 4.

11When applied to games with no e¤ort (i.e., to games where there is no action e that the agent has to take

after communicating with the principals), these mechanisms reduce to mappings �ri : Aj �! Ai that specify a

response by Pi (e.g., a price-quantity pair) to each possible action by Pj . Note that in these games, a contract for Pi

simply coincides with an element of Ai. In settings where the agent�s preferences are not common knowledge, these

mechanisms become mappings �ri : ��Aj ! Ai according to which the agent is also asked to report his �type,�i.e.,

his exogenous private information �:
12Note that, because e is observable, these mechanisms only need to be incentive compatible with respect to aj :
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2 The environment

The following model encompasses essentially all variants of simultaneous common agency examined

in the literature.

Players, actions, and contracts. There are n 2 N principals who contract simultaneously
and noncooperatively with the same agent, A. Each principal Pi, i 2 N � f1; :::; ng; must select a
contract �i from a set of feasible contracts Di. A contract �i : E ! Ai speci�es the action ai 2 Ai
that Pi will take in response to the agent�s action/e¤ort e 2 E: Both ai and e may have di¤erent
interpretations depending on the application of interest. When A is a policy maker lobbied by

di¤erent interest groups, e typically represents a policy and ai may represent either a campaign

contribution (as in Bernheim and Whinston, 1986a) or a plan of action (as in the non-quasi-linear

example of the previous section). When A is a buyer purchasing from multiple sellers, ai may

represent the price of seller i and e a vector of quantities/qualities purchased from the multiple

sellers. Alternatively, as is typically assumed in models of competition in nonlinear tari¤s, one can

directly assume that ai = (ti; qi) is a price-quantity pair and then suppress e by letting E be a

singleton (see, for example, the analysis in Section 4.1).

Depending on the environment, the set of feasible contracts Di may also be more or less
restricted. For example, in certain trading environments, it can be appealing to assume that the

price ai of seller i cannot depend on the quantities/qualities of other sellers.13 In a moral hazard

setting, because e is not observable by the principals, each contract �i 2 Di must respond with the
same action ai 2 Ai to each e; in this case, ai represents a state-contingent payment that rewards
the agent as a function of some exogenous (and here unmodelled) performance measure that is

correlated with the agent�s e¤ort. What is important to us is that the set of feasible contracts Di
is a primitive of the environment and not a choice of principal i:

Payo¤s. Principal i�s payo¤, i = 1; :::; n, is described by the function ui (e; a; �) ; whereas the

agent�s payo¤ is described by the function v (e; a; �) : The vector a � (a1; :::; an) 2 A � �ni=1Ai
denotes a pro�le of actions for the principals, while the variable � denotes the agent�s exogenous

private information. The principals share a common prior that � is drawn from the distribution F

with support �. All players are expected-utility maximizers.

Mechanisms. Principals compete in mechanisms. A mechanism for Pi consists of a (mea-

surable) message space Mi along with a (measurable) mapping �i : Mi ! Di. The interpre-
tation is that when A sends the message mi 2 Mi, Pi then responds by selecting the contract

�i = �i(mi) 2 Di. Note that when there is no action that the agent must take after communicating
with the principals (that is, when E is a singleton, as in the literature on competition in nonlinear

schedules), �i reduces to a payo¤-relevant action ai 2 Ai, such as a price-quantity pair.
13An exception is Martimort and Stole (2005).
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To save on notation, in the sequel we will denote a mechanism simply by �i, thus dropping

the speci�cation of its message space Mi whenever this does not create any confusion. For any

mechanism �i, we will then denote by Im(�i) � f�i 2 Di : 9 mi 2 Mi s.t. �i(mi) = �ig the range
of �i; i.e., the set of contracts that the agent can select by sending di¤erent messages.

For any common agency game �, we will then denote by �i the set of feasible mechanisms

for Pi, by � � (�1; :::; �n) 2 � � �nj=1�j a pro�le of mechanisms for the n principals, and by
��i � (�1; :::; �i�1; �i+1; :::; �n) 2 ��i � �j 6=i�j a pro�le of mechanisms for all Pj , j 6= i:14 As is
standard, we assume that principals can fully commit to their mechanisms and that each principal

can neither communicate with the other principals,15 nor make her contract contingent on the

contracts by other principals.16

Timing. The sequence of events is the following.

� At t = 0; A learns �:

� At t = 1; each Pi simultaneously and independently o¤ers the agent a mechanism �i 2 �i:

� At t = 2; A privately sends a message mi 2Mi to each Pi after observing the whole array of

mechanisms �: The messages m = (m1; :::;mn) are sent simultaneously.17

� At t = 3; A chooses an action e 2 E:

� At t = 4, the principals�actions a = �(e) � (�1(e); :::; �n(e)) are determined by the contracts
� = (�1(m1); :::; �n(mn)), and payo¤s are realized.

Strategies and equilibria. A (mixed) strategy for Pi is a distribution �i 2 �(�i) over the set
of feasible mechanisms. As for the agent, a (behavioral) strategy �A = (�; �) consists of a mapping

� : � � � ! �(M) that speci�es a distribution over M for any (�; �); along with a mapping

� : �� ��M! �(E) that speci�es a distribution over e¤ort for any (�; �;m):

Following Peters (2001), we will say that the strategy �A = (�; �) constitutes a continuation

equilibrium for � if for every (�; �;m), any e 2 Supp[�(�; �;m)] maximizes v (e; �(e); �), where � =
14We also de�ne � � (�1; :::; �n) 2 D � �nj=1Dj ; m � (m1; :::;mn) 2M � �nj=1Mj , ��i 2 D�i; m�i 2M�i in the

same way.
15A notable exception is Peters and Troncoso-Valverde (2009).
16As in Bernheim and Whinston (1986a), this does not mean that Pi cannot reward the agent as a function of the

actions he takes with the other principals: It simply means that Pi cannot make her contract �i : E ! Ai contingent

on the other principals�contracts ��i, nor her mechanism �i contingent on the other principals�mechanisms ��i: A

recent paper that allows for these types of contingencies is Peters and Szentes (2008).
17As in Peters (2001) and Martimort and Stole (2002), we do not model here the agent�s participation decisions:

these can be easily accommodated by adding to each mechanism a null contract that leads to the default decisions

that are implemented in case of no participation such as no trade at a null price.
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�(m); and, for every (�; �), any m 2 Supp[�(�; �)] maximizes V (� (m) ; �) � maxe2E v (e; �(e); �)

with � = � (m) :

Let ��A(�; �) 2 �(A � E) denote the distribution over outcomes induced by �A given � and
the pro�le of mechanisms �: Principal i�s expected payo¤ when she chooses the strategy �i and

when the other principals and the agent follow (��i; �A) is then given by

Ui(�i;��i; �A) �
Z
�1

� � �
Z
�n

�Ui(�;�A)d�1 � � � � � d�n

where

�Ui(�;�A) �
Z
�

Z
E

Z
A
ui (e; a; �) d��A(�; �)dF (�):

A perfect Bayesian equilibrium for � is then a strategy pro�le � � (f�i; gni=1; �A) such that �A
is a continuation equilibrium and for every i 2 N ,

�i 2 arg max
~�i2�(�i)

Ui(~�i;��i; �A):

Throughout, we will denote the set of perfect Bayesian equilibria of � by E(�). For any

equilibrium �� 2 E(�); we will then denote by ��� : � ! �(A � E) the associated social choice
function (SCF).18

Menus. A menu is a mechanism �Mi : MM
i ! Di whose message space MM

i � Di is a
subset of all possible contracts and whose mapping is the identity function, i.e., for any �i 2MM

i ;

�Mi (�i) = �i. In what follows, we denote by �
M
i the set of all possible menus of feasible contracts

for Pi, and by �M the �menu game�in which the set of feasible mechanisms for each Pi is �Mi :We

will then say that the game � is an enlargement of �M (� < �M ) if for all i 2 N , (i) there exists an
embedding �i : �Mi ! �i;

19 and (ii) for any �i 2 �i; Im(�i) is compact. A simple example of an
enlargement of �M is a game in which each �i is a superset of �Mi : More generally, an enlargement

is a game in which each �i is "larger" than �Mi in the sense that each menu �Mi is also present in

�i, although possibly with a di¤erent representation. The game in which the principals compete

in menus is �focal� in the sense of the following theorem (Peters, 2001, and Martimort and Stole,

2002).

Theorem 1 (Menus) Let � be any enlargement of �M : A social choice function � can be sustained

by an equilibrium of � if and only if it can be sustained by an equilibrium of �M :

18 In the jargon of the mechanism design/implementation literature, a social choice function � : � ! �(A � E)
is simply an outcome function, which speci�es, for each state of nature �, a joint distribution over payo¤-relevant

decisions (a; e):
19For our purposes, an embedding �i : �Mi ! �i can here be thought of as an injective mapping such that, for any

pair of mechanisms �Mi ; �i with �i = �i(�
M
i ); Im(�i) = Im(�

M
i ):
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When � is not an enlargement of �M (for example, because only certain menus can be o¤ered

in �) there may exist outcomes in � that cannot be sustained as equilibrium outcomes in �M and

vice-versa. In this case, one can still characterize all equilibrium outcomes of � using menus, but

it is necessary to restricting the principals to o¤er only those menus that could have been o¤ered

in � : that is, the set of feasible menus for Pi must be restricted to ~�Mi � f�Mi : Im(�Mi ) = Im(�i)

for some �i 2 �ig:
In the sequel we will restrict our attention to environments in which all menus are feasi-

ble. As anticipated above, the value of our results is in showing that, in many applications of

interest, one can restrict the principals to o¤ering menus that can be conveniently described as

incentive-compatible revelation mechanisms. This in turn may facilitate the characterization of the

equilibrium outcomes.

Remark. To ease the exposition, throughout the entire main text we restrict our attention to

settings where principals o¤er simple menus that contain only deterministic contracts, i.e., mapping

�i : E �! Ai. All our results apply verbatim to more general settings where the principals can

o¤er the agent menus of lotteries over stochastic contracts; it su¢ ces to reinterpret each �i as a

lottery over a set of stochastic contracts Yi = fyi : E �! �(Ai)g, where each yi responds to each
e¤ort choice by the agent with a distribution over Ai: Note that, in general, even if one restricts
one�s attention to pure-strategy pro�les (i.e., to strategy pro�les in which the principals do not mix

over the menus they o¤er to the agent and where the agent does not mix over the messages he

sends to the principals), allowing the principals to o¤er lotteries over stochastic contracts may be

essential to sustain certain outcomes. The reason is that such lotteries create uncertainty about

the principals�responses to the agent�s e¤ort, which in turn permits one to sustain a wider range

of equilibrium e¤ort choices (see Peters, 2001, for a few examples). All proofs in the Appendix

consider these more general settings.

3 Simple revelation mechanisms

Motivated by the arguments discussed in the introduction, we focus in this section on outcomes

that can be sustained by pure-strategy pro�les in which the agent�s strategy is Markovian.

De�nition 1 (i) Given the common agency game �; an equilibrium strategy pro�le � 2 E(�) is a
pure-strategy equilibrium if (a) no principal randomizes over her mechanisms; and (b) given

any pro�le of mechanisms � 2 � and any � 2 �; the agent does not randomize over the messages
he sends to the principals.

(ii) The agent�s strategy �A is Markovian in � if and only if, for any i 2 N , �i 2 �i; � 2 �,
and ��i 2 D�i, there exists a unique �i(�; ��i;�i) 2 Im(�i) such that A always selects �i(�; ��i;�i)
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with Pi when the latter o¤ers the mechanism �i; the agent�s type is �, and the contracts A selects

with the other principals are ��i:

An equilibrium strategy pro�le is thus a pure-strategy equilibrium if no principal randomizes

over her mechanisms and no type of the agent randomizes over the messages he sends to the

principals. Note, however, that the agent may randomize over his choice of e¤ort.

The agent�s strategy �A in � is Markovian if and only if the contracts the agent selects in each

mechanism depend only on his type and the contracts which he selects with the other principals, but

not on the particular pro�le of mechanisms (or menus) o¤ered by those principals. As anticipated in

the introduction, this de�nition is di¤erent from the one typically considered in dynamic games, but

it shares with the latter the idea that the agent�s behavior should depend only on payo¤-relevant

information.

De�nition 2 (i) An ( incentive-compatible) revelation mechanism is a mapping �ri :Mr
i !

Di, with message spaceMr
i � ��D�i, such that Im(�ri ) is compact and, for any (�; ��i) 2 ��D�i;

�ri (�; ��i) 2 arg max
�i2Im(�ri )

V (�i; ��i; �):

(ii) A revelation game �r is a game in which each principal�s strategy space is �(�ri ), where

�ri is the set of all (incentive-compatible) revelation mechanisms for principal i:

(iii) Given a pro�le of mechanisms �r 2 �r, the agent�s strategy is truthful in �ri if, for any
� 2 �, and any (mr

i ;m
r
�i) 2 Supp[�(�; �ri ; �r�i)];

mr
i = (�; (�

r
j(m

r
j))j 6=i):

(iv) An equilibrium strategy pro�le �r� 2 E(�r) is a truthful equilibrium if, given any pro�le

of mechanisms �r 2 �r such that jfj 2 N : �rj =2 Supp[�r�j ]gj � 1; �ri 2 Supp[�r�i ] implies that the
agent�s strategy is truthful in �ri :

In a revelation mechanism, the agent is thus asked to report his type � along with the contracts

��i he is selecting with the other principals. Given a pro�le of mechanisms �r, the agent�s strategy

is then said to be truthful in �ri if the message m
r
i = (�; ��i) which the agent sends to Pi coincides

with his true type � together with the true contracts ��i =
�
�j(mj)

�
j 6=i that the agent selects with

all principals other than i by sending the messages m�i � (mj)j 6=i. Finally, an equilibrium strategy

pro�le is said to be a truthful equilibrium if, whenever no more than a single principal deviates

from equilibrium play, the agent reports truthfully to any of the nondeviating principals.

The following is our �rst characterization result.

Theorem 2 (i) Suppose that the social choice function � can be sustained by a pure-strategy equi-

librium of �M in which the agent�s strategy is Markovian. Then � can also be sustained by a truthful
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pure-strategy equilibrium of �r: (ii) Furthermore, any social choice function � that can be sustained

by an equilibrium of �r can also be sustained by an equilibrium of �M :

Consider �rst part (i). When the agent�s choice from each menu depends only on his type

� and the contracts ��i that he is selecting with the other principals, one can easily see that, in

equilibrium, each principal can be restricted to o¤ering a menu �M�
i such that

Im(�M�
i ) = f�i 2 Di : �i = �i(�; ��i;�M�

i ); (�; ��i) 2 ��D�ig:

It is then also easy to see that, starting from such an equilibrium, one can construct a truthful

equilibrium for the revelation game that sustains the same outcomes.

Next, consider part (ii). Despite the fact that �r is not an enlargement of �M ; the result

follows essentially from the same arguments that establish the Menu Theorem. The equilibrium

that sustains the SCF � in �M is constructed from �r� by having each principal o¤ering the

menu �M�
i that corresponds to the range of the equilibrium mechanism �r�i of �r: When in �M

all principals o¤er the equilibrium menus, the agent then implements the same outcomes he would

have implemented in �r. When, instead, one principal (let us say Pi) deviates and o¤ers a menu

�Mi =2 Supp[�M�
i ], the agent implements the same outcomes he would have implemented in �r had

Pi o¤ered a direct mechanism �ri such that

�ri (�; ��i) 2 arg max
�i2Im(�Mi )

V (�i; ��i; �) 8 (�; ��i) 2 ��D�i:

The behavior prescribed by the strategy �M�
A constructed this way is clearly rational for the agent

in �M . Furthermore, given �M�
A ; no principal has an incentive to deviate.

Although in most applications it seems reasonable to assume that the agent�s strategy is

Markovian, it is also important to understand whether there exist environments in which such

an assumption is not a restriction. To address this question, we �rst need to introduce some

notation. For any k 2 N and any (�; �) ; let

E�(�; �) � argmax
e2E

v(e; �(e); �)

denote the set of e¤ort choices that are optimal for type � given the contracts �. Then let

Uk (�; �) � min
e2E�(�;�)

uk(e; �(e); �)

denote the lowest payo¤ that the agent can in�ict to principal k by following a strategy that is

consistent with the agent�s own-payo¤-maximizing behavior.

Condition 1 (Uniform Punishment) We say that the "Uniform Punishment" condition holds

if, for any i 2 N ; compact set of contracts B � Di; ��i 2 D�i, and � 2 �, there exists a

�0i 2 argmax�i2B V (�i; ��i; �) such that for all j 6= i, all �̂i 2 argmax�i2B V (�i; ��i; �);

U j(�
0
i; ��i; �) � U j(�̂i; ��i; �):
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This condition says that the principals� preferences are su¢ ciently aligned in the following

sense. Given any menu of contracts B o¤ered by Pi and any (�; ��i); there exists a contract �0i 2 B
that is optimal for type � given ��i and which uniformly minimizes the payo¤ of any principal other

than i. By this we mean the following: The payo¤ of any principal Pj ; j 6= i, under �0i is (weakly)
lower than under any other contract �i 2 B that is optimal for the agent given (�; ��i):

We then have the following result:

Theorem 3 Suppose that at least one of the following conditions holds:

(a) for any i 2 N , compact set of contracts B � Di; and (�; ��i) 2 ��D�i, jargmax�i2B V (�i; ��i; �)j =
1;

(b) j�j = 1 and the "Uniform Punishment" condition holds.

Then any social choice function � that can be sustained by a pure-strategy equilibrium of �M

can also be sustained by a pure-strategy equilibrium in which the agent�s strategy is Markovian.

Condition (a) says that the agent�s preferences are "single-peaked" in the sense that, for any

(�; ��i) 2 ��D�i and any menu of contracts B � Di, there is a single contract in B that maximizes
the agent�s payo¤. Clearly, in this case the agent�s strategy is necessarily Markovian.

Condition (b) says that information is complete and that the principals�payo¤s are su¢ ciently

aligned in the sense of the Uniform Punishment condition. The role of this condition is to guarantee

that, given ��i; the agent can punish any principal Pj , j 6= i, by taking the same contract with

principal i: Note that this condition would be satis�ed, for example, when the agent is a manu-

facturer and the principals are retailers competing à la Cournot in a downstream market. In this

case,

ui = f(qi +
P
k 6=i
qk)qi � ti

where qi denotes the quantity sold to Pi, ti denotes the total payment made by Pi to the manu-

facturer, and f : R+ ! R denotes the inverse demand function in the downstream market. In this

environment, j�j = jEj = 1. A contract �i is thus a simple price-quantity pair (ti; qi) 2 R � R+:
One can then immediately see that, given any menu B � R�R+ (i.e., any array of price-quantity
pairs or, equivalently, any tari¤) o¤ered by Pi; and any pro�le of contracts (t�i; q�i) 2 Rn�1�Rn�1+

selected by the agent with the other principals, the contract (ti; qi) 2 B that minimizes Pj�s payo¤
a(for any j 6= i) among those that are optimal for the agent given (t�i; q�i) is the one that entails
the highest quantity qi: The Uniform Punishment condition thus clearly holds in this environment.

The reason why the result in Theorem 3 requires information to be complete in addition to

having enough alignment in the principals�payo¤s, can be illustrated through the following example

where n = 2, in which case the Uniform Punishment condition trivially holds. The sets of actions

are A1 = ft; bg and A2 = fl; rg. There is no e¤ort in this example and hence a contract simply
coincides with the choice of an element of Ai. There are two types of the agent, � and ��. The

15



principals�common prior is that Pr(� = ��) = p > 1=5: Payo¤s (u1; u2; v) are as in the following

table:
� = �

a1na2 l r

t 2 1 1 2 0 0

b 1 0 1 1 2 2

� = ��

a1na2 l r

t 2 2 2 �2 0 2

b 1 0 1 �2 1 1

Table 1

Consider the following (deterministic) SCF: if � = �; then a1 = b and a2 = r; if � = ��; then

a1 = t and a2 = l: This SCF can be sustained by a (pure-strategy) equilibrium of the menu game

in which the agent�s strategy is non-Markovian. The equilibrium features P1 o¤ering the menu

�M�
1 = ft; bg and P2 o¤ering the menu �M�

2 = fl; rg. Clearly P2 does not have pro�table deviations
because in each state she is getting her maximal feasible payo¤. If P1 deviates and o¤ers ftg; then
A selects (t; l) if � = � and (t; r) if � = ��. Note that, given (�; t); A has strict preferences for

l, whereas given (��; t); he is indi¤erent between l and r. A deviation to ftg thus yields a payo¤
U1 = 2(1 � p) � 2p = 2 � 4p to P1 that is lower than her equilibrium payo¤ U�1 = 1 + p when

p > 1=5: A deviation to fbg is clearly never pro�table for P1, irrespective of the agent�s behavior.
Thus, the SCF �� described above can be sustained in equilibrium.

Now, to see that this SCF cannot be sustained by restricting the agent�s strategy to being

Markovian, �rst note that it is essential that �M�
2 contains both l and r because in equilibrium A

must choose di¤erent a2 for di¤erent �: Restricting the agent�s strategy to being Markovian then

means that when P2 o¤ers the equilibrium menu, A necessarily chooses r if (�; a1) = (�; b), and l

if (�; a1) = (��; t): Furthermore, because given (�; t); A strictly prefers l to r; A necessarily chooses

l when (�; a1) = (�; t): Given this behavior, if P1 deviates and o¤ers the menu �M1 = ftg, she then
induces A to select a2 = l with P2 irrespective of �, which gives P1 a payo¤ U1 = 2 > U�1 :

The reason why, when information is incomplete, restricting the agent�s strategy to be Markov-

ian may preclude the possibility of sustaining certain social choice functions is the following. Markov

strategies do not permit the same type of the agent (let us say �0) to punish a deviation by a prin-

cipal (let us say Pj , j 6= i) by choosing with all principals other than i the equilibrium contracts

���i(�
0), and then choosing with Pi a contract �i 6= ��i (�0). As the example above illustrates, it may

be essential in order to punish certain deviations to allow a type to change his behavior with a

principal, even if the contracts he selects with all other principals coincide with the equilibrium

ones. However, because this is the only reason that one needs information to be complete for the

result in Theorem 3, it turns out that the assumption of complete information can be dispensed

with if one imposes the following re�nement on the agent�s behavior:

Condition 2 (Conformity to Equilibrium) Let � be any simultaneous common agency game.
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Given any pure-strategy equilibrium �� 2 E(�), let �� denote the equilibrium mechanisms and

��(�) the equilibrium contracts selected when the agent�s type is �: We say that the agent�s strat-

egy in �� satis�es the "Conformity to Equilibrium" condition if, for any i, �; ��i, and m 2
Supp[�(�; ��i ; ��i)];

(�j(mj))j 6=i = �
�
�i(�) implies �

�
i (mi) = �

�
i (�):

That is, the agent�s strategy satis�es the Conformity to Equilibrium condition if each type of

the agent � selects the equilibrium contract ��i (�) with each principal Pi when the latter o¤ers the

equilibrium mechanism ��i ; and the agent selects the equilibrium contracts ���i(�) with the other

principals. Consider the same example described above and assume that the principals compete in

menus, i.e., � = �M . Take the equilibrium in which P1 o¤ers the degenerate menu ftg and P2 the
menu fl; rg: Given the equilibrium menus, both types select a2 = l with P2: One can immediately

see that this outcome can be sustained by a strategy for the agent that satis�es the "Conformity to

Equilibrium" condition: it su¢ ces that, whenever P2 o¤ers the equilibrium menu fl; rg; then each
type � selects the contract a2 = l with P2, when selecting the equilibrium contract a1 = t with

P1: Note that this re�nement does not require that the agent does not change his behavior with

a nondeviating principal; in particular, should P1 deviate and o¤er the menu ft; bg; then type �
would of course select a1 = b with P1, and then also change the contract with P2 to a2 = r: What

this re�nement requires is simply that each type of the agent continue to select the equilibrium

contract with a non-deviating principal conditional on choosing the equilibrium contracts with the

remaining principals. In many applications, this property seems to us a mild requirement. We then

have the following result:

Theorem 4 Suppose the principals� payo¤s are su¢ ciently aligned in the sense of the Uniform

Punishment condition. Suppose in addition that the social choice function � can be sustained by a

pure-strategy equilibrium �M� 2 E(�M ) in which the agent�s strategy �M�
A satis�es the "Conformity

to Equilibrium" condition. Then, irrespective of whether information is complete or incomplete, �

can also be sustained by a pure-strategy equilibrium ~�M� 2 E(�M ) in which the agent�s strategy ~�M�
A

is Markovian.

At this point, it is useful to contrast our results with those in Peters (2003, 2007) and Attar et al.

(2008). Peters (2003, 2007) considers environments in which a certain �no-externality condition�

holds and shows that in these environments all pure-strategy equilibria can be characterized by

restricting the principals to o¤ering standard direct revelation mechanisms �i : � �! Di.20 The no-
externality condition requires that (i) each principal�s payo¤ be independent of the other principals�

20A standard direct revelation mechanism reduces to a take-it-or-leave-it-o¤er, i.e., to a degenerate menu consisting

of a single contract �i : E ! Ai, when the agent does not possess any exogenous private information, i.e., when

j�j = 1:
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actions a�i, and (ii) conditional on choosing e¤ort in a certain equivalence class Ê,21 the agent�s

preferences over any set of actions B � Ai by principal i be independent of the particular e¤ort
the agent chooses in Ê, of his type �, and of the other principals�actions a�i. Attar et al. (2008)

show that in environments in which only deterministic contracts are feasible, all action spaces are

�nite, and the agent�s preferences are �separable� and �generic,� condition (i) in Peters can be

dispensed with: any equilibrium outcome of the menu game (including those sustained by mixed

strategies) can also be sustained as an equilibrium outcome in the game in which the principals�

strategy space consists of all standard direct revelation mechanisms. Separability requires that the

agent�s preferences over the actions of any of the principals be independent of the e¤ort choice

and of the actions of the other principals. Genericity requires that the agent never be indi¤erent

between any pair of e¤ort choices and/or any pair of contracts by any of the principals.22 Taken

together, these restrictions guarantee that the messages that each type of the agent sends to any of

the principals do not depend on the messages he sends to the other principals; it is then clear that,

in these settings, restricting attention to standard direct revelation mechanisms never precludes the

possibility of sustaining all outcomes.

Compared to these results, the result in Theorem 2 does not require any restriction on the

players�preferences. On the other hand, it requires restricting attention to equilibria in which the

agent�s strategy is Markovian. This restriction is, however, inconsequential either when the agent�s

preferences are single-peaked or when information is complete and the principals�preferences are

su¢ ciently aligned in the sense of the Uniform Punishment condition. Our results thus complement

those in Peters (2003, 2007) and Attar et al. (2008) in the sense that they are particularly useful

precisely in environments in which one cannot restrict attention either to simple take-it-or-leave-it

o¤ers or to standard direct revelation mechanisms.

For example, consider a pure adverse selection setting as in the baseline model of Attar et

al. (2008).23 Then condition (a) in Theorem 3 is equivalent to the �genericity�condition in their

21 In the language of Peters (2003, 2007), an equivalence class Ê � E is a subset of E such that any feasible contract
of Pi must respond to each e; e0 2 Ê, with the same action, i.e., �i(e) = �i(e0) for any e; e0 2 Ê:
22Formally, separability requires that any type � of the agent who strictly prefers ai to a0i when the decisions by

all principals other than i are a�i and his choice of e¤ort is e also strictly prefers ai to a0i when the decisions taken

by all principals other than i are a0�i and his choice of e¤ort is e
0; for any (a�i; e); (a0�i; e

0) 2 A�i � E. Genericity
requires that, given any (�; ai) 2 � � Ai, v(�; ai; a�i; e) 6= v(�; ai; a

0
�i; e

0) for any (e; a�i); (e0; a0�i) 2 E � A�i with

(e; a�i) 6= (e0; a0�i): Note that in general separability is neither weaker nor stronger than condition (ii) in Peters

(2003, 2007). In fact, separability requires the agent�s preferences over Pi�s actions to be independent of e; whereas

condition (ii) in Peters only requires them to be independent of the particular e¤ort the agent chooses in a given

equivalence class. On the other hand, condition (ii) in Peters requires that the agent�s preferences over Pi�s actions

be independent of the agent�s type, whereas such a dependence is allowed by separability. The two conditions are,

however, equivalent in standard moral hazard settings (i.e., when e¤ort is completely unobservable so that Ê = E

and information is complete so that j�j = 1).
23A pure adverse selection setting is one with no e¤ort, i.e., where jEj = 1:
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paper. If, in addition, preferences are separable (in the sense described above), then Theorem 1

in Attar et al. (2008) guarantees that all equilibrium outcomes can be sustained by restricting

the principals to o¤ering standard direct revelation mechanisms. Assuming that preferences are

separable, however, can be too restrictive. For example, it rules out the possibility that a buyer�s

preferences for the quality/quantity of a seller�s product might depend on the quality/quantity of

the product purchased from another seller. In cases like these, all equilibrium outcomes can still be

characterized by restricting the principals to o¤ering direct revelation mechanisms; however, the

latter must be enriched to allow the agent to report the contracts (i.e., the terms of trade) that he

has selected with the other principals, in addition to his exogenous private information.

Also note that when action spaces are continuous, as is typically assumed in most applications,

Attar et al. (2008) need to impose a restriction on the agent�s behavior. This restriction, which

they call �conservative behavior,� consists in requiring that, after a deviation by Pk; each type �

of the agent continues to choose the equilibrium contracts ���k(�) with the non-deviating principals

whenever this is compatible with the agent�s rationality. This restriction is stronger than the

�Conformity to Equilibrium�condition introduced above. Hence, even with separable preferences,

the more general revelation mechanisms introduced here may prove useful in applications in which

imposing the �conservative behavior�property seems too restrictive.

4 Using revelation mechanisms in applications

Equipped with the results established in the preceding section, we now consider three canonical

applications of the common agency model: competition in nonlinear tari¤s with asymmetric infor-

mation, menu auctions, and a moral hazard setting. The purpose of this section is to show how

the revelation mechanisms introduced in this paper can facilitate the analysis of these games by

helping one identify the necessary and su¢ cient conditions for the equilibrium outcomes.

4.1 Competition in non-linear tari¤s

Consider an environment in which P1 and P2 are two sellers providing two di¤erentiated products

to a common buyer, A. In this environment, there is no e¤ort; a contract �i for principal i thus

consists of a price-quantity pair (ti; qi) 2 Ai � R�Q, where Q = [0; �Q] denotes the set of feasible
quantities.24

24An alternative way of modelling this environment is the following: The set of primitive actions for each principal

i consists of the set R of all possible prices. A contract for Pi then consists of a tari¤ �i : Q �! R that speci�es

a price for each possible quantity q 2 Q. Given a pair of tari¤s � = (�1; �2); the agent�s e¤ort then consists of the

choice of a pair of quantities e = (q1; q2) 2 E = Q2: While the two approaches ultimately lead to the same results,

we �nd the one proposed in the text more parsimonious.
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The buyer�s payo¤ is given by v(a; �) = �(q1 + q2) + �q1q2 � t1 � t2, where � parametrizes
the degree of complementarity/substitutability between the two products, and where � denotes the

buyer�s type. The two sellers share a common prior that � is drawn from an absolutely continuous

c.d.f. F with support � = [�; ��], � > 0; and log-concave density f strictly positive for any � 2 �:
The sellers�payo¤s are given by ui(a; �) = ti � C(qi); with C(q) = q2=2; i = 1; 2:

We assume that the buyer�s choice to participate in seller i�s mechanism has no e¤ect on his

possibility to participate in seller j�s mechanism. In other words, the buyer can choose to participate

in both mechanisms, only in one of the two, or in none (In the literature, this situation is referred

to as �non-intrinsic�common agency.) In the case where A decides not to participate in seller i�s

mechanism, the default contract (0; 0) with no trade and zero transfer is implemented.

Following the pertinent literature, we assume that only deterministic mechanisms �i :Mi �!
Ai are feasible. Because the agent�s payo¤ is strictly decreasing in ti, any such mechanism is

strategically equivalent to a (possibly non linear) tari¤ Ti such that, for any qi, T (qi) = minfti :
(ti; qi) 2 Im(�i)g if fti : (ti; qi) 2 Im(�i)g 6= ?, and T (qi) =1 otherwise.25

The question of interest is which tari¤s will be o¤ered in equilibrium and, even more impor-

tantly, what are the corresponding quantity schedules q�i : � �! Q that they support. Following

the discussion in the previous sections, we focus on pure-strategy equilibria in which the buyer�s

behavior is Markovian.

The purpose of this section is to show how our results can help address these questions. To

do this, we �rst show how our revelation mechanisms can help identify necessary and su¢ cient

conditions for the sustainability of schedules q�i : � �! Q, i = 1; 2; as equilibrium outcomes. Next,

we show how these conditions can be used to prove that there is no equilibrium that sustains the

schedules qc : � �! Q that maximize the sellers�joint payo¤s. These schedules are referred to in

the literature as "collusive schedules." Last, we identify su¢ cient conditions for the sustainability

of di¤erentiable schedules.

4.1.1 Necessary and su¢ cient conditions for equilibrium schedules

By Theorem 2, the quantity schedules q�i (�); i = 1; 2; can be sustained by a pure-strategy equilibrium
of �M in which the agent�s strategy is Markovian if and only if they can be sustained by a pure-

strategy truthful equilibrium of �r: Now let

mi(�) � � + �q�j (�)

denote type ��s marginal valuation for quantity qi when he purchases the equilibrium quantity q�j (�)

from seller j, j 6= i: In what follows we restrict our attention to equilibrium schedules (q�i (�))i=1;2
25Clearly, any such tari¤ is also equivalent to a menu of price-quantity pairs (see also Peters, 2001, 2003).
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for which the corresponding marginal valuation functions mi(�) are strictly increasing, i = 1; 2.26

These schedules can be characterized by restricting attention to revelation mechanisms with the

property that �ri (�; qj ; tj) = �
r
i (�

0; q0j ; t
0
j) whenever �+�qj = �

0+�q0j :
27 With an abuse of notation,

hereafter we then denote such mechanisms by �ri = (~qi(�i); ~ti(�i))�i2�i ; where

�i � f�i 2 R : �i = � + �qj ; � 2 �; qj 2 Qg

denotes the set of marginal valuations that the agent may possibly have for Pi�s quantity. Note that

these mechanisms specify price-quantity pairs also for marginal valuations �i that may have zero

measure on the equilibrium path. This is because sellers may need to include in their menus also

price-quantity pairs that are selected only o¤ equilibrium to punish deviations by other sellers.28 In

the literature, these price-quantity pairs are typically obtained by extending the principals�tari¤s

outside the equilibrium range (see, e.g., Martimort, 1992). However, identifying the appropriate

extensions can be quite complicated. One of the advantages of the approach suggested here is that

it permits one to use incentive compatibility to describe such extensions.

Now, because (i) the set of marginal valuations �i is a compact interval, and (ii) the function

~v(�i; q) � �iq is equi-Lipschitz continuous and di¤erentiable in �i and satis�es the increasing-

di¤erence property, the mechanism �ri = (~qi(�); ~ti(�)) is incentive-compatible if and only if the
function ~qi(�) is nondecreasing and the function ~ti(�) satis�es

~ti(�i) = �i~qi(�i)�
Z �i

min�i

~qi(s)ds�Ki 8�i 2 �i; (1)

where Ki is a constant.29 Next note that for any pair of mechanisms (�ri )i=1;2 for which there

exists an i 2 N and a �i 2 �i such that an agent with marginal valuation �i strictly prefers the
null contract (0; 0) to the contract (~qi(�i); ~ti(�i)), there exists another pair of mechanisms (�r0i )i=1;2

such that: (i) for any �i 2 �i, the agent weakly prefers the contract (~q0i(�i); ~t
0
i(�i)) to the null

contract (0; 0), i = 1; 2; and (ii) (�r0i )i=1;2 sustains the same outcomes as (�
r
i )i=1;2:

30 From (1), we

can therefore restrict Ki to be positive.

Now, given any pair of incentive-compatible mechanisms (�ri )i=1;2; let �Ui denote the maximal

payo¤ that each Pi can obtain given the opponent�s mechanism �rj , j 6= i, while satisfying the

26Note that this is necessarily the case when (q�i (�))i=1;2 are the collusive schedule (described below). More generally,
the restriction to schedules for which the corresponding marginal valuation functions mi(�) are strictly increasing
simpli�es the analysis by guaranteeing that these functions are invertible.
27Clearly, restricting attention to such mechanisms would not be appropriate if either (i) mi(�) were not invertible;

or (ii) the principals�payo¤s depended also on � and (qj ; tj). In the former case, to sustain the equilibrium schedules

a mechanism may need to respond to the same mi with a contract that depends also on �. In the latter case, a

mechanism may need to punish a deviation by the other principal with a contract that depends not only on mi but

also on (�; qi; ti):
28These allocations are sometimes referred to as �latent contracts;�see, e.g., Piasier, 2007.
29This result is standard in mechanism design; see, e.g., Milgrom and Segal, (2002).
30The result follows from replication arguments similar to those that establish Theorem 2.
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agent�s rationality. This can be computed by solving the following program:

~P :

8>>>>><>>>>>:

max
qi(�);ti(�)

R ��
� [ti(�)�

qi(�)
2

2 ]dF (�)

s.t.

�qi(�) + v
�
i (�; qi(�))� ti(�) � �qi(�̂) + v�i (�; qi(�̂))� ti(�̂) 8(�; �̂) (IC)

�qi(�) + v
�
i (�; qi(�))� ti(�) � v�i (�; 0) 8� (IR)

where, for any (�; q) 2 ��Q,

v�i (�; q) � (� + �q) ~qj(� + �q)� ~tj(� + �q) =
Z �+�q

min�j

~qj(s)ds+Kj ; j 6= i (2)

denotes the maximal payo¤ that type � obtains with principal Pj , j 6= i; when he purchases a

quantity q from principal Pi. The payo¤ �Ui is thus computed using the standard revelation principle,

but taking into account the fact that, given the incentive-compatible mechanism �rj o¤ered by Pj ,

the total value that each type � assigns to the quantity q purchased from Pi is �q + v�i (�; q). Note

that, in general, one should not presume that Pi can guarantee herself the payo¤ �Ui, even if �Ui

can be obtained without violating the agent�s rationality. In fact, when the agent is indi¤erent,

he could refuse to follow Pi�s recommendations, thus giving Pi a payo¤ smaller than �Ui. The

reason that, in this particular environment, Pi can guarantee herself the maximal payo¤ �Ui is

twofold: (i) she is not personally interested in the contracts the agent signs with Pj ; and (ii) the

agent�s payo¤ for any contract (qi; ti) is quasi-linear and has the increasing-di¤erence property with

respect to (�; qi): As we show in the Appendix, taken together these properties imply that, given the

mechanism �rj = (~qj(�); ~tj(�)) o¤ered by Pj ; there always exists an incentive-compatible mechanism
�ri = (~qi(�); ~ti(�)) such that, given (�rj ; �ri ); any sequentially rational strategy �rA for the agent yields
Pi a payo¤ arbitrarily close to �Ui:

Next, let

V �(�) � � [q�1(�) + q�2(�)] + �q�1(�)q�2(�)� ~t1(m1(�1))� ~t2(m2(�2)) (3)

denote the equilibrium payo¤ that each type � obtains by truthfully reporting to each principal the

equilibrium marginal valuation mi(�) = �+ �q
�
j (�): The necessary and su¢ cient conditions for the

sustainability of the pair of schedules (q�i (�))2i=1 by an equilibrium can then be stated as follows:

Proposition 1 The quantity schedules q�i (�); i = 1; 2; can be sustained by a pure-strategy equi-

librium of �M in which the agent�s strategy is Markovian if and only if there exist nondecreasing

functions ~qi : �i ! Q and scalars ~Ki � 0; i = 1; 2; such that the following conditions hold:
(a) for any marginal valuation �i 2 [mi(�);mi(��)]; ~qi(�i) = q

�
i (m

�1
i (�i)); i = 1; 2;

31

31This condition also implies that q�i (�) are nondecreasing, i = 1; 2:
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(b) for any � 2 � and any pair (�1; �2) 2 �1 ��2;

V �(�) = sup
(�1;�2)2�1��2

�
� [~q1(�1) + ~q2(�2)] + �~q1(�1)~q2(�2)� ~t1(�1)� ~t2(�2)

	
where the functions ~ti(�) are the ones de�ned in (1) with Ki = ~Ki; i = 1; 2; and where the function

V �(�) is the one de�ned in (3); and
(c) each principal�s equilibrium payo¤ satis�es

U�i �
Z ��

�

h
~ti(mi(�))� q�i (�)

2

2

i
dF (�) = �Ui (4)

where �Ui is the value of the program ~P de�ned above.

Condition (a) guarantees that, on the equilibrium path, the mechanism �r�i assigns to each

� the equilibrium quantity q�i (�): Condition (b) guarantees that each type � �nds it optimal to

truthfully report to each principal his equilibrium marginal valuation mi(�). The fact that each

type � also �nds it optimal to participate follows from the fact that ~Ki � 0: Finally, Condition (c)
guarantees that no principal has a pro�table deviation. Instead of specifying a reaction by the agent

to any possible pair of mechanisms and then checking that, given this reaction and the mechanism

o¤ered by the other principal, no Pi has a pro�table deviation, Condition (c) directly guarantees

that the equilibrium payo¤ for each principal coincides with the maximal payo¤ that the principal

can obtain, given the opponent�s mechanism, and without violating the agent�s rationality. As

explained above, because Pi can always guarantee herself the payo¤ �Ui, Condition (c) is not only

su¢ cient but also necessary.

When � > 0 and the function v�i (�; q) in (2) is di¤erentiable in � (which is the case, for

example, when the schedule ~qj(�) is continuous), the program ~P has a simple solution. The fact

that the mechanism ��rj = (~qj(�); ~tj(�)) is incentive-compatible implies that the function gi(�; q) �
�q + v�i (�; q) � v�i (�; 0) is (i) equi-Lipschitz continuous and di¤erentiable in �, (ii) it satis�es the
increasing-di¤erence property, and (iii) it is increasing in �. It follows that a pair of functions

qi : � ! Q; ti : � ! R satis�es the constraints (IC) and (IR) in program ~P if and only if qi(�) is
nondecreasing and, for any � 2 �;

ti(�) = �qi(�) + [v
�
i (�; qi(�))� v�i (�; 0)]�

Z �

�
[qi(s) + ~qj(s+ �qi(s))� ~qj(s)]ds�Ki; (5)

with Ki � 0. The value of program ~P then coincides with the value of the following program

~Pnew :

8<: max
qi(�);Ki

R ��
� hi(qi(�); �)dF (�)�Ki

s.t. Ki � 0 and qi(�) is nondecreasing

where

hi(q; �) � �q + [v�i (�; q)� v�i (�; 0)]� q2

2 �
1�F (�)
f(�) [q + ~qj(� + �q)� ~qj(�)] (6)
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with

v�i (�; q)� v�i (�; 0) =
Z �+�q

�
~qj(s)ds:

We now proceed by showing how the characterization of the necessary and su¢ cient conditions

given above can in turn be used to establish a few interesting results.

4.1.2 Non-implementability of the collusive schedules

It has long been noted that when the sellers�products are complements (� > 0), it may be impossible

to sustain the collusive schedules with a noncooperative equilibrium. However, this result has

been established by restricting the principals to o¤ering twice continuously di¤erentiable tari¤s

T : � ! R, thus leaving open the possibility that it is merely a consequence of a technical
assumption.32 The approach suggested here permits one to verify that this result is true more

generally.

Proposition 2 Let qc : �! R be the function de�ned by

qc(�) � 1
1��

�
� � 1�F (�)

f(�)

�
8�.

Assume that that (i) the sellers�products are complements (� > 0), and (ii) qc(�) 2 int(Q) for all
� 2 �:33 The schedules (qi(�))2i=1 that maximize the sellers�joint pro�ts are given by qi(�) = qc(�)
for all �; i = 1; 2; and cannot be sustained by any equilibrium of in which the agent�s strategy is

Markovian.

The proof in the Appendix uses the characterization of Proposition 1. By relying only on

incentive compatibility, Proposition 2 guarantees that the aforementioned impossibility result is by

no means a consequence of the assumptions one makes about the di¤erentiability of the tari¤s, or

about the way one extends the tari¤s outside the equilibrium range.

4.1.3 Su¢ cient conditions for di¤erentiable schedules

We conclude this application by showing how the conditions in Proposition 1 can be used to

construct equilibria supporting di¤erentiable quantity schedules.

Proposition 3 Fix � 2 (0; 1) and let q� : �! R be the solution to the di¤erential equation

�
h
q(�)(1� �)� � + 2

�
1�F (�)
f(�)

�i dq(�)
d�

= � � 1�F (�)
f(�) � q(�)(1� �) (7)

32 In the approach followed in the literature (e.g., Martimort 1992), twice di¤erentiability is assumed to guarantee

that a seller�s best response can be obtained as a solution to a well-behaved optimization problem.
33Note that this also requires � < 1:
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with boundary condition q(��) = ��=(1� �). Suppose that q� : �! R is nondecreasing and such that
q�(�) 2 Q for all � 2 �; with q�(�) � [��� �]=�: Then let ~q : [0; ��+� �Q]! Q be the function de�ned

by

~q(s) �

8>><>>:
0 if s < m(�)

q�(m�1(s)) if s 2 [m(�);m(��)]
q�(��) if s > m(��);

(8)

with m(�) � �+ �q�(�): Furthermore, suppose that, for any � 2 (�; ��); the function h(�; �) : Q ! R
de�ned by

h(q; �) � �q +
Z �+�q

�
~q(s)ds� q2=2� 1�F (�)

f(�) [q + ~q(� + �q)� ~q(�)] (9)

is quasi-concave in q: The schedules qi(�) = q�(�); i = 1; 2; can then be sustained by a symmetric

pure-strategy equilibrium of �M in which the agent�s strategy is Markovian.

The result in Proposition 3 o¤ers a two-step procedure to construct an equilibrium with dif-

ferentiable quantity schedules. The �rst step consists in solving the di¤erential equation given

in (7). The second step consists in checking whether the solution is nondecreasing, satis�es the

boundary condition q�(�) � [�� � �]=�, and is such that the function h(�; �) de�ned in (9) is quasi-
concave. If these properties are satis�ed, the pair of schedules qi(�) = q�(�); i = 1; 2; can be

sustained by an equilibrium in which the agent�s strategy is Markovian. The equilibrium fea-

tures each principal i o¤ering the menu of price quantity pairs �M�
i whose image is given by

Im(�M�
i ) = f(qi; ti) : (qi; ti) = (qi(�); ti(�)), � 2 �g with qi(�) = q�(�) and ti(�) = t�(�); where, for

any � 2 �;

t�(�) = �q�(�)�
Z �

�
q�(s)

�
1� �@q

�(s)

@s

�
ds: (10)

4.2 Menu auctions

Consider now a menu auction environment à la Bernheim and Whinston (1985, 1986a): the agent�s

e¤ort is veri�able and preferences are common knowledge (i.e., j�j = 1).34 As illustrated in the

example of Section 1.1, assuming that the principals o¤er a single contract to the agent may

preclude the possibility of sustaining interesting outcomes when preferences are not quasi-linear

(more generally, when Peters (2003) no-externalities condition is violated). The question of interest

is then how to identify the menus that sustain the equilibrium outcomes.

One approach is o¤ered by Theorem 2. A pro�le of decisions (e�; a�) can be sustained by a

pure-strategy equilibrium in which the agent�s strategy is Markovian if and only if there exists a

pro�le of incentive-compatible revelation mechanisms �r� and a pro�le of contracts �� that together

satisfy the following conditions. (i) Each mechanism �r�i responds to the equilibrium contracts ���i
34See also Dixit, Grossman, and Helpman (1997), Biais, Martimort, and Rochet (1997), Parlour and Rajan (2001),

and Segal and Whinston (2003).

25



by the other principals with the equilibrium contract ��i ; i.e., �
r�
i (�

�
�i) = ��i . (ii) Each contract

��i responds to the equilibrium choice of e¤ort e� with the equilibrium action a�i ; i.e., �
�
i (e

�) = a�i .

(iii) Given the contracts ��, the agent�s e¤ort is optimal, i.e., e� 2 argmaxe2E v(e; ��(e)). (iv) For
any contract �i 6= ��i by principal i; there exists a pro�le of contracts ��i by the other principals

and a choice of e¤ort e for the agent such that: (a) each contract �j ; j 6= i, can be obtained by

truthfully reporting (�i; ��i�j) to Pj ; i.e., �j = �r�j (��j�i; �i);
35 (b) given (�i; ��i); the agent�s e¤ort

e is optimal, i.e., e 2 argmaxê2E v(ê; (�i(ê); ��i(ê))) and there exists no other pro�le of contracts
�0�i 2 �j 6=i Im(�r�j ) and e¤ort choice e0 that together give the agent a payo¤ higher than (e; �i; ��i),
i.e., v(e; (�i(e); ��i(e))) � v(e0; (�i(e0); �0�i(e0))) for any e0 2 E and any �0�i 2 �j 6=i Im(�r�j ); (c) the
payo¤ that principal i obtains by inducing the agent to select the contract �i is smaller that her

equilibrium payo¤, i.e., ui (e; (�i(e); ��i(e))) � ui (e�; a�) :
The approach described above uses incentive compatibility over contracts, i.e., it is based on

revelation mechanisms that ask the agent to report the contracts selected with other principals.

As anticipated in the example in Section 1.1, a more parsimonious approach consists in having the

principals o¤er revelation mechanisms that simply ask the agent to report the actions a�i that will

be taken by the other principals.

De�nition 3 Let ��ri denote the set of mechanisms ��
r

i : E � A�i ! Ai such that, for any e 2 E,
any a�i; â�i 2 A�i

v(e;��
r

i (e; a�i); a�i) � v(e;��
r

i (e; â�i); a�i):

The idea is simple. In settings in which Peters (2003) no-externalities condition fails, for

given choice of e¤ort e 2 E; the agent�s preferences over the actions ai by principal Pi depend
on the actions a�i by the other principals. A revelation mechanism ��

r

i is then a convenient tool

for describing principal i�s response to each observable e¤ort choice e by the agent and to each

unobservable pro�le of actions a�i by the other principals, which is compatible with the agent�s

incentives. This last property is guaranteed by requiring that, for any (e; a�i); the action ai =
��
r

i (e; a�i) speci�ed by the mechanism ��
r

i is as good for the agent as any other action a
0
i that the

agent can induce by reporting a pro�le of actions â�i 6= a�i:
Note, however, that while it is appealing to assume that the action ai that the agent induces

Pi to take depends only on (e; a�i); restricting the agent�s behavior to satisfying such a property

may preclude the possibility of sustaining certain social choice functions. The reason is similar

to the one indicated above when discussing the limits of Markov strategies. Such a restriction is,

nonetheless, inconsequential when the principals�preferences are su¢ ciently aligned in the sense of

the following de�nition.

35Here ��j�i � (�l)l6=i;j :
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De�nition 4 (Punishment with same action) We say that the "Punishment with the same

action" condition holds if, for any i 2 N ; compact set of decisions B � Ai; a�i 2 A�i, and
e 2 E, there exists an action a0i 2 argmaxai2B v(e; ai; a�i) such that for all j 6= i, all âi 2
argmaxai2B v(e; ai; a�i);

vj(e; a
0
i; a�i) � vj(e; âi; a�i):

This condition is similar to the "Uniform Punishment" condition introduced above. The only

di¤erence is that it is stated in terms of actions as opposed to contracts. This di¤erence permits

one to restrict the agent�s choice from each menu to depending only on his choice of e¤ort and the

actions taken by the other principals. The two de�nitions clearly coincide when there is no action

the agent must undertake after communicating with the principals, i.e., when jEj = 1, for in that
case a contract by Pi coincides with the choice of an action ai. Lastly, note that the "Punishment

with the same action" condition always holds in settings with only two principals, such as in the

lobbying example considered in the introduction. We then have the following result.

Proposition 4 Assume that the principals�preferences are su¢ ciently aligned in the sense of the

"Punishment with the same action" condition. Let ��r be the game in which Pi�s strategy space is

�(��ri ), i = 1; :::; n: A social choice function � can be sustained by a pure-strategy equilibrium of

�M if and only if it can be sustained by a pure-strategy truthful equilibrium of ��r.

The simpli�ed structure of the mechanisms ��
r
proposed above permits one to restate the

necessary and su¢ cient conditions for the equilibrium outcomes as follows. The action pro�le

(e�; a�) can be sustained by a pure-strategy equilibrium of �M if and only if there exists a pro�le

of mechanisms ��
r�
that satis�es the following properties: (i) a�i = ��

r�
i (e

�; a��i) all i = 1; :::; n; (ii)

v(e�; a�) � v(e0; a0) for any (e0; a0) 2 E �A such that a0j =��
r�
j (e

0; â�j), â�j 2 A�j , all j = 1; :::; n;
(ii) for any i and any contract �i : E ! Ai, there exists a pro�le of actions (e; a) such that (a)
ai = �i(e), (b) aj = ��

r�
j (e; a�j) all j 6= i, (c) v(e; a) � v(e0; a0) for any (e0; a0) 2 E � A such that

a0i = �i(e
0) and a0j =��

r�
i (e

0; â�j) for some â�j 2 A�j ; and (d) ui(e; a) � ui(e�; a�):
As illustrated in Section 1.1, this more parsimonious approach often simpli�es the characteri-

zation of the equilibrium outcomes.

4.3 Moral hazard

We now turn to environments in which the agent�s e¤ort is not observable. In these environments,

a principal�s action consists of an incentive scheme that speci�es a reward to the agent as a function

of some (veri�able) performance measure that is correlated with the agent�s e¤ort. Depending on

the application of interest, the reward can be a monetary payment, the transfer of an asset, the

choice of a policy, or a combination of any of these.
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At �rst glance, using revelation mechanisms may appear prohibitively complicated in this

setting due to the fact that the agent must report an entire array of incentive schemes to each

principal. However, things simplify signi�cantly �as long as for any array of incentive schemes,

the choice of optimal e¤ort for the agent is unique. It su¢ ces to attach a label, say, an integer, to

each incentive scheme ai; and then have the agent report to each principal an array of integers, one

for each other principal, along with the payo¤ type �. In fact, because for each array of incentive

schemes, the choice of e¤ort is unique, all players�preferences can be expressed in reduced form

directly over the set of incentive schemes A: The analysis of incentive compatibility then proceeds
in the familiar way.

To illustrate, consider the following simpli�ed version of a standard moral-hazard setting. There

are two principals and two e¤ort levels, e and �e. As in Bernheim and Whinston (1986b), the agent�s

preferences are common knowledge, so that j�j = 1. Each principal i must choose an incentive

scheme ai from the set of feasible schemes Ai = fal; am; ahg, i = 1; 2: Here al stands for a low-power
incentive scheme, am for a medium-power one, and ah for a high-power one.36

The typical moral hazard model speci�es a Bernoulli utility function for each player de�ned

over (w; e); where w � (wi)
n
i=1 stands for an array of rewards (e.g., monetary transfers) from

the principals to the agent, together with the description of how the agent�s e¤ort determines a

probability distribution over a set of veri�able outcomes used to determine the agent�s reward.

Instead of following this approach, in the following table we describe directly the players�expected

payo¤s (u1; u2; v) as a function of the agent�s e¤ort and the principals�incentive schemes.

e = e

a1na2 ah am al

ah 1 2 2 1 3 1 1 6 0

am 2 2 2 2 3 4 2 6 1

al 3 2 0 3 3 1 3 6 4

e = �e

a1na2 ah am al

ah 4 5 4 4 5 5 4 4 3

am 5 5 5 5 5 1 5 4 0

al 6 5 2 6 5 0 6 4 0

Table 2

Note that there are no direct externalities between the principals: given e; ui(e; ai; aj) is independent

of aj ; j 6= i; meaning that Pi is interested in the incentive scheme o¤ered by Pj only insofar

as the latter in�uences the agent�s choice of e¤ort. Nevertheless, Peters (2003) no-externalities

condition fails here because the agent�s preferences over the incentive schemes o¤ered by Pi depend

on the incentive scheme o¤ered by Pj . By implication, restricting the principals to o¤ering a single

incentive scheme may preclude the possibility of sustaining certain outcomes, as we verify below.37

36That the set of feasible incentive schemes is �nite in this example is clearly only to shorten the exposition. The

same logic applies to settings in which each Ai has the cardinality of the continuum; in this case, an incentive scheme

can be indexed, for example, by a real number.
37See Attar, Piaser and Porteiro (2007a) and Peters (2007) for the appropriate version of the no-externalities
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Also note that payo¤s are such that the agent prefers a high e¤ort to a low e¤ort if and only if

at least one of the two principals has o¤ered a high-power incentive scheme: The players�payo¤s

(U1; U2; V ) can thus be written in reduced form as a function of (a1; a2) as follows:

a1na2 ah am al

ah 4 5 4 4 5 5 4 4 3

am 5 5 5 2 3 4 2 6 1

al 6 5 2 3 3 1 3 6 4

Table 3

Now suppose the principals were restricted to o¤ering a single incentive scheme to the agent (i.e.,

to competing in take-it-or-leave-it o¤ers). The unique pure-strategy equilibrium outcome would be

(ah; am; �e) with associated expected payo¤s (4; 5; 5):

When the principals are instead allowed to o¤er menus of incentive schemes, the outcome

(am; ah; �e) can also be sustained by a pure-strategy equilibrium.38 The advantage of o¤ering menus

stems from the fact that they give the agent the possibility of punishing a deviation by the other

principal by selecting a di¤erent incentive scheme with the nondeviating principal. Because the

agent�s preferences over a principal�s incentive schemes in turn depend on the incentive scheme

selected by the other principal, these menus can be conveniently described as revelation mechanisms

�ri : Aj �! Ai with the property that, for any aj ; �ri (aj) 2 argmaxai2Im(�ri ) V (ai; aj). Now consider
the mechanisms

�r�1 (a2) =

(
ah if a2 = al; am

am if a2 = ah
�r�2 (a1) =

(
ah if a1 = ah; am

al if a1 = al

Given these mechanisms, it is strictly optimal for the agent to choose (am; ah) and then to select

e = �e. Furthermore, given �r��i; it is easy to see that principal i has no pro�table deviation, i = 1; 2;

which establishes that (am; ah; �e) can be sustained in equilibrium.

5 Enriched mechanisms

Suppose now that one is interested in SCFs that cannot be sustained by restricting the agent�s

strategy to being Markovian, or in SCFs that cannot be sustained by restricting the players�strate-

gies to being pure. The question we address in this section is whether there exist intuitive ways

of enriching the simple revelation mechanisms introduced above that permit one to characterize

condition in models with noncontractable e¤ort, and Attar, Piaser, and Porteiro (2007b) for an alternative set of

conditions.
38Note that the possibility of sustaining (am; ah; �e) is appealing because (am; ah; �e) yields a Pareto improvement

with respect to (ah; am; �e).

29



such SCFs, while at the same time avoiding the problem of in�nite regress of universal revelation

mechanisms.

First, we consider pure-strategy equilibrium outcomes sustained by a strategy for the agent

that is not Markovian. Next, we turn to mixed-strategy equilibrium outcomes.

Although the revelation mechanisms presented below are more complex than the ones consid-

ered in the previous sections, they still permit one to conceptualize the role that the agent plays

in each bilateral relationship, thus possibly facilitating the characterization of the equilibrium out-

comes.

5.1 Non-Markov strategies

Here we introduce a new class of revelation mechanisms that permit us to accommodate non-

Markov strategies. We then adjust the notion of truthful equilibria accordingly, and �nally prove

that any outcome that can be sustained by a pure-strategy equilibrium of the menu game can also

be sustained by a truthful equilibrium of the new revelation game.

De�nition 5 (i) Let �̂r denote the revelation game in which each principal�s strategy space is

�(�̂ri ), where �̂
r
i is the set of revelation mechanisms �̂

r

i : M̂r
i ! Di with message space M̂r

i �
� � D�i � N�i with N�i � Nnfig [ f0g, such that Im(�̂ri ) is compact and, for any (�; ��i; k) 2
��D�i �N�i;

�̂
r

i (�; ��i; k) 2 arg max
�i2Im(�̂

r
i )
V (�i; ��i; �):

(ii) Given a pro�le of mechanisms �̂
r 2 �̂r, the agent�s strategy is truthful in �̂ri if and only if,

for any � 2 �, any (m̂r
i ; m̂

r
�i) 2 Supp[�(�; �̂

r
)];

m̂r
i = (�; (�̂

r

j(m̂
r
j))j 6=i; k), for some k 2 N�i:

(iii) An equilibrium strategy pro�le �r� 2 E(�̂r) is a truthful equilibrium if and only if, for

any pro�le of mechanisms �̂
r
such that jfj 2 N : �̂

r

j =2 Supp[�r�j ]gj � 1; �̂
r

i 2 Supp[�r�i ] implies
the agent�s strategy is truthful in �̂

r

i , with k = 0 if �̂
r

j 2 Supp[�r�j ] for all j 2 N , and k = l if

�̂
r

j 2 Supp[�r�j ] for all j 6= l while for some l 2 N ; �̂
r

l =2 Supp[�r�l ]:

The interpretation is that, in addition to (�; ��i), the agent is now asked to report to each Pi

the identity k 2 N�i of a deviating principal, with k = 0 in the absence of any deviation. Because
the identity of a deviating principal is not payo¤-relevant, a revelation mechanism �̂

r

i is incentive-

compatible only if, for any (�; ��i) 2 � � D�i and any k; k0 2 N�i; V (�ri (�; ��i; k); �; ��i) =
V (�ri (�; ��i; k

0); �; ��i): As shown below, allowing a principal to response to (�; ��i) with a contract

that depends on the identity of a deviating principal may be essential to sustain certain outcomes

when the agent�s strategy is not Markovian.
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An equilibrium strategy pro�le is then said to be a truthful equilibrium of the new revelation

game �̂r if, whenever no more than one principal deviates from equilibrium play, the agent truthfully

reports to any of the nondeviating principals his true type �; the contracts he is selecting with the

other principals, and the identity k of the deviating principal. We then have the following result:

Theorem 5 (i) Any social choice function � that can be sustained by a pure-strategy equilibrium

of �M can also be sustained by a pure-strategy truthful equilibrium of �̂r. (ii) Furthermore, any �

that can be sustained by an equilibrium of �̂r can also be sustained by an equilibrium of �M .

Part (ii) follows from essentially the same arguments that establish part (ii) in Theorem 2).39

Thus consider part (i). The key step in the proof consists in showing that if the SCF � can be

sustained by a pure-strategy equilibrium of �M ; it can also be sustained by an equilibrium where

the agent�s strategy �M�
A has the following property. For any principal Pk; k 2 N ; any contract

�k 2 Dk, and any type � 2 �, there exists a unique pro�le of contracts ��k(�; �k) 2 D�k such
that A always selects ��k(�; �k) with all principals other than k when (a) his type is �, (b) the

contract A selects with Pk is �k, and (c) Pk is the only deviating principal. In other words, the

contracts that the agent selects with the nondeviating principals depend on the contract �k of the

deviating principal but not on the menus o¤ered by the latter. The contracts ��k(�; �k) minimize

the payo¤ of the deviating principal Pk from among those contracts in the equilibrium menus of

the nondeviating principals that are optimal for type � given �k.

The rest of the proof follows quite naturally. When the agent reports to Pi that no deviation

occurred� i.e., when he reports that his type is �; that the contracts he is selecting with the other

principals are the equilibrium ones ���i(�) and that k = 0� then the revelation mechanism �̂
r�
i

responds with the equilibrium contract ��i (�): In contrast, when the agent reports that principal k

deviated and that, as a result of such deviation, the agent selected the contract �k with Pk and the

contracts (�j(�; �k))j 6=i;k with the other nondeviating principals, then the mechanism �r�i responds

with the contract �i(�; �k) that, together with the contracts (�j(�; �k))j 6=i;k, minimizes the payo¤ of

the deviating principal Pk.40 Given the equilibrium mechanisms �̂
r�
�k; following a truthful strategy

in these mechanisms is clearly optimal for the agent. Furthermore, given �̂r�A , a principal Pk who

expects all other principals to o¤er the equilibrium mechanisms �̂
r�
�k cannot do better than o¤ering

the equilibrium mechanism �̂
r�
k herself. We conclude that if the SCF � can be sustained by a

pure-strategy equilibrium of �M ; it can also be sustained by a pure-strategy truthful equilibrium

of �̂r.

39Note that in general �̂r is not an enlargement of �M since certain menus in �M may not be available in �r, nor

is �M an enlargement of �̂r since �̂r may contains multiple mechanisms that o¤er the same menu.
40This is only a partial description of the equilibrium mechanisms �̂

r�
and of the agent�s strategy �r�A : The complete

description is in the Appendix.
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To see why it may be essential with non-Markov strategies to condition a principal�s response

to (�; ��i) on the identity of a deviating principal, consider the following example where n = 3,

j�j = jEj = 1; A1 = ft;m; bg; A2 = fl; rg, A3 = fs; dg, and where payo¤s (u1; u2; u3; v) are as in
the following table:

a3 = s

a1na2 l r

t 1 4 4 5 1 5 0 4

m 1 1 1 0 1 5 1 0

b 1 1 1 0 1 0 1 0

a3 = d

a1na2 l r

t 1 0 5 4 1 1 1 3

m 1 1 1 0 1 0 5 5

b 1 1 5 0 1 5 0 5

Table 4

Because there is no e¤ort in this example, a contract �i here simply coincides with the choice of an

element of Ai: It is then easy to see that the outcome (t; l; s) can be sustained by a pure-strategy
equilibrium of the menu game �M . The equilibrium features each Pi o¤ering the menu that contains

all contracts in Ai: Given the equilibrium menus, the agent chooses (t; l; s): Any deviation by P2

to the (degenerate) menu frg is punished by the agent choosing m with P1 and d with P3: Any

deviation by P3 to the degenerate menu fdg is punished by the agent choosing b with P1 and r with
P2: This strategy for the agent is clearly non-Markovian: given the contracts (a2; a3) = (r; d) with

P2 and P3; the contract that the agent chooses with P1 depends on the particular menus o¤ered by

P2 and P3. This type of behavior is essential to sustain the equilibrium outcome. By implication,

(t; l; s) cannot be sustained by an equilibrium of the revelation game in which the principals o¤er

the simple mechanisms �ri : A�i ! Ai considered in the previous sections.41 The outcome (t; l; s)
can, however, be sustained by a truthful equilibrium of the more general revelation game �̂r where

the agent reports the identity of the deviating principal in addition to the payo¤-relevant contracts

a�i.42

41 In fact, any incentive-compatible mechanism �r1 that permits the agent to select the equilibrium contract t with

P1 must satisfy �ri (a2; a3) = t for any (a2; a3) 6= (r; d); this is because the agent strictly prefers t to both m and b for

any (a2; a3) 6= (r; d): It follows that any such mechanism fails to provide the agent with either the contract m that is

necessary to punish a deviation by P2, or the contract b that is necessary to punish a deviation by P3:
42Consistently with the result in Theorem 3, note that the problems with simple revelation mechansims �ri : A�i !

Ai emerge in this example only because (i) the agent is indi¤erent about P1�s response to (a2; a3) = (r; d) so that he

can choose di¤erent contracts with P1 as a function of whether it is P2 or P3 who deviated from equilibrium play;

(ii) the principals�payo¤s are not su¢ ciently aligned so that the contract the agent must select with P1 to punish a

deviation by P2 cannot be the same as the one he selects to punish a deviation by P3:
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5.2 Mixed strategies

We now turn to equilibria in which the principals randomize over the menus they o¤er to the agent

and/or the agent randomizes over the contracts he selects from the menus.43

The reason why the simple mechanisms considered in Section 3 may fail to sustain certain

mixed-strategy outcomes is that they do not permit the agent to select di¤erent contracts with the

same principal in response to the same contracts ��i he is selecting with the other principals. To

illustrate, consider the following example in which j�j = jEj = 1; n = 2; A1 = ft; bg, A2 = fl; rg,
and where payo¤s (u1; u2; v) are as in the following table:

a1na2 l r

t 2 1 1 1 0 1

b 1 0 1 1 2 0

Table 5

Again, because there is no e¤ort in this example, a contract for each Pi simply coincides with an

element of Ai. The following is then an equilibrium in the menu game. Each principal o¤ers the

menu �M�
i that contains all contracts in Ai: Given the equilibrium menus, the agent selects with

equal probabilities the contracts (t; l); (b; l); and (t; r): Note that, to sustain this outcome, it is

essential that principals cannot o¤er lotteries over contracts. Indeed, if P1 could o¤er a lottery over

A1, she could do better by deviating from the strategy described above and o¤ering the lottery

that gives t and b with equal probabilities. In this case, A would strictly prefer to choose l with

P2, thus giving P1 a higher payo¤.

As anticipated in the introduction, we see this as a serious limitation on what can be imple-

mented with mixed-strategy equilibria. When neither the agent�s, nor the principals�preferences

are constant over E�A, and when principals can o¤er lotteries over contracts, it is very di¢ cult to
construct examples where (i) the agent is indi¤erent over some of the lotteries o¤ered by the princi-

pals so that he can randomize, and (ii) no principal can bene�t by breaking the agent�s indi¤erence

so as to induce him to choose only those lotteries that are most favorable to her.

Nevertheless, it is important to note that, while certain stochastic SCFs may not be sustainable

with the simple revelation mechanisms �ri : D�i �! Di of the previous sections, any SCF that can
be sustained by an equilibrium of the menu game can also be sustained by a truthful equilibrium

of the following revelation game. The principals o¤er set-valued mechanisms ~�
r
i : � � D�i ! 2Di

43Recall that the notion of pure-strategy equilibrium of De�nition 1 allows the agent to mix over e¤ort.
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with the property that, for any (�; ��i) 2 ��D�i;44

~�
r
i (�; ��i) = arg max

�i2Im(~�
r
i )
V (�i; ��i; �):

The interpretation is that the agent �rst reports his type � along with the contracts ��i that he

is selecting with the other principals (possibly by mixing, or in response to a mixed strategy by

the other principals); the mechanism then responds by o¤ering the agent the entire set ~�
r
i (�; ��i)

of contracts that are optimal for type � given ��i; out of those contracts that are available in ~�
r
i ;

�nally, the agent selects a contract from the set ~�
r
i (�; ��i) and this contract is implemented.

In the example above, the equilibrium SCF can be sustained by having P1 o¤er the mechanism
~�
r�
1 (l) = ft; bg and ~�r�1 (r) = ftg; and by having P2 o¤er the mechanism ~�

r�
2 (t) = fl; rg and

~�
r�
2 (b) = flg. Given the equilibrium mechanisms, with probability 1=3 the agent then selects the

contracts (t; l), with probability 1=3 he selects the contracts (t; r); and with probability 1=3 he

selects the contracts (b; l): Note that a property of the mechanisms introduced above is that they

permit the agent to select the equilibrium contracts by truthfully reporting to each principal the

contracts selected with the other principals. For example, the contracts (t; l) can be selected by

truthfully reporting l to P1 and then choosing t from ~�
r�
1 (l), and by truthfully reporting t to P2 and

then choosing l from ~�
r�
2 (t). The equilibrium is thus truthful in the sense that the agent may well

randomize over the contracts he selects with the principals, but once he has chosen which contracts

he wants (i.e., for any realization of his mixed strategy), he always reports these contracts truthfully

to each principal.

Next note that, while the revelation mechanisms introduced above are conveniently described

by the correspondence ~�
r
i : ��D�i ! 2Di ; formally any such mechanism is a standard single-valued

mapping ��ri :Mr
i ! Di with message space ~Mr

i � ��D�i �Di such that45

��
r
i (�; ��i; �i) =

(
�i if �i 2 ~�

r
i (�; ��i);

�0i 2 ~�
r
i (�; ��i) otherwise.

These mechanisms are clearly incentive-compatible in the sense that, given (�; ��i), the agent

strictly prefers any contract in ~�
r
i (�; ��i) to any contract that can be obtained by reporting (�

0; �0�i).

Furthermore, as anticipated above, given any pro�le of mechanisms ~�
r
; the contracts that are

optimal for each type � always belong to those that can be obtained by reporting truthfully to each

principal.

44With an abuse of notation, we will hereafter denote by 2Di the power set of Di, with the exclusion of the empty
set. For any set-valued mapping f :Mi ! 2Di , we then let Im(f) � f�i 2 Di : 9 mi 2 Mi s.t. �i 2 f(mi)g denote
the range of f:
45The particular contract �0i associated to the message m

r
i = (�; ��i; �i), with �i =2 ~�

r

i (��i; �); is not important: the

agent never �nds it optimal to choose any such message.
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De�nition 6 Let ~�r denote the revelation game in which each principal�s strategy space is �(~�ri ),

where ~�ri is the class of set-valued incentive-compatible revelation mechanisms de�ned above. Given

a mechanism ~�
r
i 2 ~�ri ; the agent�s strategy is truthful in ~�

r
i if and only if, for any ~�

r
�i 2 ~�r�i, � 2 �

and ~mr 2 Supp[�(�; ~�ri ; ~�
r
�i)];

~mr
i = (

��
r
1( ~m

r
1); :::;

��
r
i ( ~m

r
i ); :::;

��
r
n( ~m

r
n); �).

An equilibrium strategy pro�le ~�r 2 E(~�r) is a truthful equilibrium if ~�rA is truthful in every ~�
r
i 2 ~�ri

for any i 2 N .

The agent�s strategy is thus said to be truthful in ~�
r
i if the message ~m

r
i = (�; ��i; �i) which

the agent sends to principal i coincides with his true type � along with (i) the true contracts

��i =
�
��
r
j( ~m

r
j)
�
j 6=i

that the agent selects with the other principals by sending the messages ~mr
�i,

and (ii) the contract �i = ��
r
i ( ~m

r
i ) that A selects with Pi by sending the message ~m

r
i . We then have

the following result:

Theorem 6 A social choice function � : �! �(E�A) can be sustained by an equilibrium of �M

if and only if it can be sustained by a truthful equilibrium of ~�r.

The proof is similar to the one that establishes the Menu Theorems (e.g., Peters, 2001). The

reason that the result does not follow directly from the Menu Theorems is that ~�r is not an

enlargement of �M : In fact, the menus that can be o¤ered through the revelation mechanisms

of ~�r are only those that satisfy the following property: for each contract �i in the menu, there

exists a (�; ��i) such that, given (�; ��i), �i is as good for the agent as any other contract in

the menu.46 That the principals can be restricted to o¤ering menus that satisfy this property

should not surprising; the proof, however, requires some work to show how the agent�s and the

principals�mixed strategies must be adjusted to preserve the same distribution over outcomes as in

the unrestricted menu game �M : The value of Theorem 6 is, however, not in re�ning the existing

Menu Theorems but in providing a convenient way of describing which contracts the agent �nds it

optimal to choose as a function of the contracts he selects with the other principals; this in turn can

facilitate the characterization of the equilibrium outcomes in applications in which mixed strategies

are appealing.

46These menus are also di¤erent from the menus of undominated contracts considered in Martimort and Stole

(2002). A menu for principal i is said to contain a dominated contract, say, �i, if there exists another contract �0i in

the menu such that, irrespective of the contracts ��i of the other principals, the agent�s payo¤ under �0i is strictly

higher than under �i.
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6 Conclusions

We have shown how the equilibrium outcomes that are typically of interest in common agency

games (i.e., those sustained by pure-strategy pro�les in which the agent�s behavior is Markovian)

can be conveniently characterized by having the principals o¤er revelation mechanisms in which the

agent truthfully reports his type along with the contracts he is selecting with the other principals.

When compared to universal mechanisms, the mechanisms proposed here have the advantage

that they do not lead to the problem of in�nite regress, for they do not require the agent to describe

the mechanisms o¤ered by the other principals.

When compared to the Menu Theorems, our results o¤er a convenient way of describing how

the agent chooses from a menu as a function of �who he is� (i.e., his exogenous type) and �what

he is doing with the other principals�(i.e., the contracts he is selecting in the other relationships).

The advantage of describing the agent�s choice from a menu by means of a revelation mechanism

is that this often facilitates the characterization of the necessary and su¢ cient conditions for the

equilibrium outcomes. We have illustrated such a possibility in a few cases of interest: competition

in nonlinear tari¤s with adverse selection; menu auctions; and moral hazard settings.

We have also shown how the simple revelation mechanisms described above can be enriched

(albeit at the cost of an increase in complexity) to characterize outcomes sustained by non-Markov

strategies and/or mixed-strategy equilibria.

Throughout the analysis, we maintained the assumption that the multiple principals contract

with a single common agent. Clearly, the results are also useful in games with multiple agents,

provided that the contracts that each principal o¤ers to each of her agents do not depend on the

contracts o¤ered to the other agents (see also Han, 2006, for a similar restriction.) More generally,

it has recently been noted that in games in which multiple principals contract simultaneously

with three or more agents (or those in which principals also communicate among themselves), a

�folk theorem�holds: all outcomes yielding each player a payo¤ above the Max-Min value can be

sustained in equilibrium (Yamashita, 2007; and Peters and Troncoso Valverde, 2009). While these

results are intriguing, they also indicate that, to retain predictive power, it is now time for the

theory of competing mechanisms to accommodate restrictions on the set of feasible mechanisms

and/or on the agents�behavior. These restrictions should of course be motivated by the application

under examination. For many applications, we �nd appealing the restriction imposed by requiring

that the agents�behavior be Markovian. Investigating the implications of such a restriction for

games with multiple agents is an interesting line for future research.
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Appendix 1: Take-it-or-leave-it-o¤er equilibria in the menu-auction
example of Section 1.1.

Assume that the principals are restricted to making take-it-or-leave-it o¤ers to the agent, that

is, to o¤ering a single contract �i : E ! [0; 1]: Denote by e� the equilibrium policy and by (��i )i=1;2

the equilibrium contracts.

� We start by considering (pure-strategy) equilibria sustaining e� = p. First note that, if an

equilibrium exists in which ��2(p) > 0; then necessarily �
�
1(p) = 1: Indeed, if �

�
1(p) < 1, then P1

could deviate and o¤er a contract �1 such that �1(p) = 1 and �1(f) = ��1(f). Such a deviation

would ensure that A strictly prefers e = p and would give P1 a strictly higher payo¤. Thus,

if ��2(p) > 0; then necessarily ��1(p) = 1. This result in turn implies that, if an equilibrium

exists in which ��2(p) > 0; then necessarily �
�
2(p) = 1. Else, P2 could o¤er herself a contract �2

such that �2(p) = 1 and �2(f) = ��2(f), ensuring that A strictly prefers e = p and obtaining

a strictly higher payo¤. Finally, observe that there exists no equilibrium sustaining e� = p

in which ��2(p) = 0: This follows directly from the fact that v (p; ��1(p); 0) < v(f; a1; a2), for

any ��1(p) and any (a1; a2). We conclude that any equilibrium sustaining e� = p must be such

that ��i (p) = 1; i = 1; 2: That such an equilibrium exists follows from the fact that it can be

sustained, for example, by the following contracts: ��i (e) = 1 all e; i = 1; 2: Given �
�
1 and �

�
2,

A strictly prefers e = p: Furthermore, when a�i = 1; each Pi strictly prefers e = p; which

guarantees that no principal has a pro�table deviation.

� Next, consider equilibria sustaining e� = f . In any such equilibrium, necessarily ��1(f) > 1=2:
Indeed, suppose that there existed an equilibrium in which ��1(f) � 1=2: Then necessarily

��2(f) = 1: This follows from (i) the fact that, for any a2; v (f; ��1(f); a2) > 2 whenever

��1(f) � 1=2; and (ii) the fact that, for any a1; v (p; a1; 0) = 1: Taken together these properties
imply that, if ��1(f) � 1=2 and ��2(f) < 1, then P2 could deviate and o¤er a contract such that
�2(f) = 1 and �2(p) = 0. Such a contract would guarantee that A strictly prefers e = f and, at

the same time, would give P2 a strictly higher payo¤ than the proposed equilibrium contract,

which is clearly a contradiction. Hence, if an equilibrium existed in which ��1(f) � 1=2; then
necessarily ��2(f) = 1: But then P1 would have a pro�table deviation that consists in o¤ering

the agent a contract such that �1(f) = 1 and �1(p) = 0: Such a contract would induce A to

select e = f and would give P1 a payo¤ strictly higher than the proposed equilibrium payo¤,

once again a contradiction. We thus conclude that, if an equilibrium sustaining e� = f exists,

it must be such that ��1(f) > 1=2: But then, in any such equilibrium, necessarily �
�
2(f) = 1.

This follows from the fact that, when e = f and a1 > 1=2, both A�s and P2�s payo¤s are

strictly increasing in a2: But if ��2(f) = 1; then necessarily �
�
1(f) = 1: Else, P1 could deviate

and o¤er a contract such that �1(f) = 1 and �1(p) = 0: Such a contract would guarantee that
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A strictly prefers e = f and would give P1 a payo¤ strictly higher than the one she obtains

under any contract that sustains e = f with �1(f) < 1. We conclude that in any equilibrium

in which e� = f; necessarily ��1(f) = �
�
2(f) = 1. The following pair of contracts then supports

the outcome (f; 1; 1) : ��i (f) = 1; and ��i (p) = 0; i = 1; 2: Note that, given ���i, there is no

way Pi can induce A to switch to e = p. Furthermore, when e = f and a�i = 1; each Pi�s

payo¤ is maximized at ai = 1: Thus no principal has a pro�table deviation.

Appendix 2: Omitted Proofs.

As explained in Section 2, to ease the exposition, throughout the main text we restricted

attention to settings where the principals o¤er the agent deterministic contracts. However, all our

results apply to more general settings where the principals can o¤er the agent mechanisms that

map messages into lotteries over stochastic contracts. All proofs here in the Appendix thus refer

to these more general settings.

Below, we �rst show how the model set up of Section 2 must be adjusted to accommodate

these more general mechanisms and then turn to the proofs of the results in the main text.

Let Yi denote the set of feasible stochastic contracts for Pi. A stochastic contract yi : E !
�(Ai) speci�es a distribution over Pi�s actions Ai, one for each possible e¤ort e 2 E: Next, let
Di � �(Yi) denote a (compact) set of feasible lotteries over Yi and denote by �i 2 Di a generic
element of Di: Clearly, depending on the application of interest, the set Di of feasible lotteries may
be more or less restricted. For example, the deterministic environment considered in the main text

corresponds to a setting where each set Di contains only degenerate lotteries (i.e., Dirac measures)
that assign probability one to contracts that responds to each e¤ort e 2 E with a degenerate

distribution over Ai:
Given this new interpretation for Di; we then continue to refer to a mechanism as a mapping

�i : Mi �! Di: However, note that, given a message mi 2 Mi, a mechanism now responds by

selecting a (stochastic) contract yi from Yi using the lottery �i = �i(mi) 2 �(Yi): The timing of
events must then be adjusted as follows.

� At t = 0; A learns �:

� At t = 1; each Pi simultaneously and independently o¤ers the agent a mechanism �i 2 �i:

� At t = 2; A privately sends a message mi 2Mi to each Pi after observing the whole array of

mechanisms � = (�1; :::; �n): The messages m = (m1; :::;mn) are sent simultaneously.

� At t = 3; the contracts y = (y1; :::; yn) are drawn from the (independent) lotteries � =

(�1(m1); :::; �n(mn)):
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� At t = 4; A chooses e 2 E after observing the contracts y = (y1; :::; yn):

� At t = 5, the principals�actions a = (a1; :::; an) are determined by the (independent) lotteries
(y1(e); :::; yn(e)) and payo¤s are realized.

Both the principals� and the agent�s strategies continue to be de�ned as in the main text.

However note that the agent�s e¤ort strategy � : � � � �M� Y ! �(E) is now contingent also

on the realizations y of the lotteries � = �(m): The strategy �A = (�; �) is then said to be a

continuation equilibrium if for every (�; �;m; y), any e 2 Supp[�(�; �;m; y)] maximizes

�V (e; y; �) �
Z
A1
� � �
Z
An
v (e; a; �) dy1(e)� � � � � dyn(e)

and for every (�; �), any m 2 Supp[�(�; �)] maximizesZ
Y1

� � �
Z
Yn

max
e2E

�V (e; y; �)d�1 (m1)� � � � � d�n(mn):

We then denote by

V (�; �) �
Z
Y1

� � �
Z
Yn

max
e2E

�V (e; y; �)d�1 � � � � � d�n

the maximal payo¤ that type � can obtain given the principals�lotteries �: All results in the main

text apply verbatim to this more general setting provided that (i) one reinterprets �i 2 �(Yi) as
a lottery over the set of (feasible) stochastic contracts Yi, as opposed to a deterministic contract

�i : E �! Ai; and (ii) one reinterprets V (�; �) as the agent�s expected payo¤ given the lotteries �,
as opposed to his deterministic payo¤.

Proof of Theorem 2. Part 1. We prove that if there exists a pure-strategy equilibrium

�M
�
of �M in which the agent�s strategy is Markovian and which implements �; then there also

exists a truthful pure-strategy equilibrium �r� of �r which implements the same SCF.

Let �M� and �M�
A denote respectively the equilibrium menus and the continuation equilibrium

that support � in �M . Because �M�
A is Markovian, then for any i and any (�; ��i; �Mi ); there exists

a unique �i(�; ��i;�Mi ) 2 Im(�Mi ) such that A always selects �i(�; ��i;�Mi ) with Pi when the latter
o¤ers the menu �Mi ; the agent�s type is �, and the lotteries A selects with the other principals are

��i: Finally, let ��(�) = (��i (�))
n
i=1 denote the equilibrium lotteries that type � selects in �M when

all principals o¤er the equilibrium menus, i.e., when �M = (�M�
i )ni=1:

Now consider the following strategy pro�le �r� for the revelation game �r. Each principal Pi;

i 2 N , o¤ers the mechanism �r�i such that

�r�i (�; ��i) = �i(�; ��i;�
M�
i ) 8 (�; ��i) 2 ��D�i:

The agent�s strategy �r�A is such that, when �r = (�r�i )
n
i=1; then each type � reports to each

principal Pi the message mr
i = (�; �

�
�i(�)) thus selecting �

�
i (�) with each Pi. Given the contracts y
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selected by the lotteries ��(�); then each type � chooses the same distribution over e¤ort he would

have selected in �M had the contracts pro�le been y, the menus pro�le been �M�, and the lotteries

pro�le been ��(�):

If, instead, �r is such that �rj = �
r�
j for all j 6= i whereas �ri 6= �r�i , then each type � induces

the same outcomes he would have induced in �M had the menu pro�le been �M = ((�M�
j )j 6=i; �

M
i );

where �Mi is the menu whose image is Im(�Mi ) = Im(�
r
i ): That is, let �(�;�

M ) denote the lotteries

that type � would have selected in �M given �M : Then given �r, A selects the lottery �i(�;�M )

with the deviating principal Pi and then reports to each non-deviating principal Pj the message

mr
j = (�; ��j(�;�

M )) thus inducing the same lotteries �(�;�M ) as in �M . In the continuation game

that starts after the contracts y are drawn, A then chooses the same distribution over e¤ort he

would have chosen in �M given the contracts y; the menus �M and the lotteries �(�;�M ):

Finally, given any pro�le of mechanisms �r such that jfj 2 N : �rj 6= �r�j gj > 1; the strategy
�r�A prescribes that A induces the same outcomes he would have induced in �M given �M , where

�M is the pro�le of menus such that Im(�Mi ) = Im(�
r
i ) for all i:

The strategy �r�A described above is clearly a truthful strategy. The optimality of such a

strategy follows from the optimality of the agent�s strategy �M�
A in �M together with the fact that

Im(�r�i ) � Im(�M�
i ) for all i:

Given the continuation equilibrium �r�A , any principal Pi who expects the other principals

to o¤er the mechanisms �r��i cannot do better than o¤ering the equilibrium mechanism �r�i : We

conclude that the pure-strategy pro�le �r� constructed above is a truthful equilibrium of �r and

sustains the same SCF � as the equilibrium �M� of �M :

Part 2. We now prove the converse: if there exists an equilibrium �r� of �r that sustains the

SCF �; then there also exists an equilibrium �M� of �M that sustains the same SCF.

First, consider the principals. For any i 2 N and any �Mi 2 �Mi ; let �ri (�Mi ) � f�ri 2 �ri :
Im(�ri ) = Im(�

M
i )g denote the set of revelation mechanisms with the same image as �Mi (note that

�ri (�
M
i ) may well be empty). The strategy �

M�
i 2 �(�Mi ) for Pi in �M is then such that, for any

set of menus B � �Mi ;

�M�
i (B) = �r�i (

S
�Mi 2B

�ri (�
M
i )):

Next, consider the agent.

Case 1. Given any pro�le of menus �M 2 �M such that, for any i 2 N ; �ri (�Mi ) 6= ?; the
strategy �M�

A induces the same distribution over A � E as the strategy �r�A in �r given the event

that �r 2 �r(�M ) �
Q
i�

r
i (�

M
i ): Precisely, let ��r�A : � � �r ! �(A� E) denote the distribution

over outcomes induced by the strategy �r�A in �r: Then, for any � 2 �; �M�
A (�; �M ) is such that

��M�
A
(�; �M ) =

Z
�r
��r�A (�; �

r)d�r�1 (�
r
1j�r1(�M1 ))� � � � � d�r�n (�rnj�rn(�Mn ))
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where, for any i; �r�i (�j�ri (�Mi )) denotes the regular conditional probability distribution over �ri
generated by the original strategy �r�i , conditioning on the event that �

r
i belongs to �

r
i (�

M
i ):

Case 2. If, instead, �M is such that there exists a j 2 N such that �ri (�
M
i ) 6= ? for all i 6= j

while �rj(�
M
j ) = ?, then let �rj be any arbitrary revelation mechanism such that

�rj(�; ��j) 2 arg max
�j2Im(�Mj )

V (�j ; ��j ; �) 8 (�; ��j) 2 ��D�j :

The strategy �M�
A then induces the same outcomes as the strategy �r�A given �rj and given �

r
�j 2

�r�j(�
M
�j) �

Q
i6=j �

r
i (�

M
i ): That is, for any � 2 �;

��M�
A
(�; �M ) =

Z
�r�j

��r�A (�; �
r
j ; �

r
�j)d�

r�
1 (�

r
1j�r1(�M1 ))� � � � � d�r�n (�rnj�rn(�Mn )) (11)

Case 3. Finally, for any �M such that jfj 2 N : �rj(�
M
j ) = ?j > 1, simply let �M�

A (�; �M ) be

any strategy that is sequentially optimal for A given (�; �M ).

The fact that �r�A is a continuation equilibrium for �r guarantees that the strategy �M�
A con-

structed above is a continuation equilibrium for �M . Furthermore, given �M�
A ; any principal Pi who

expects any other principal Pj , j 6= i, to follow the strategy �M�
j cannot do better than following

the strategy �M�
i . We conclude that the strategy pro�le �M� constructed above is an equilibrium

of �M and sustains the same outcomes as �r� in �r:

Proof of Theorem 3. When condition (a) holds, the result is immediate. In what follows

we prove that when condition (b) holds, then if the SCF � can be sustained by a pure-strategy

equilibrium �M� of �M , it can also be sustained by a pure-strategy equilibrium �̂M in which the

agent�s strategy �̂MA is Markovian.

Let �M� denote the equilibrium menus under the strategy pro�le �M� and �� denote the

equilibrium lotteries that are selected by the agent when all principals o¤er the equilibrium menus

�M�.

Suppose that �M�
A is not Markovian. This means that there exists an i 2 N , a ~�Mi 2 �Mi ; a

�0�i�D�i and a pair �M�i; ��
M
�i 2 �M�i such that A selects (�i; �0�i) when �M = (~�

M
i ; �

M
�i) and (

��i; �
0
�i)

when �M = (~�
M
i ;
��
M
�i); with �i 6= ��i: Below we show that, when this is the case, then, starting from

�M�
A ; one can construct a Markovian continuation equilibrium �̂MA which induces all principals to

continue to o¤er the equilibrium menus �M� and sustains the same outcomes as �M�
A :

Case 1. First consider the case where ~�
M
i = �M�

i and �0�i = �
�
�i. Then, let �̂

M
A be the strategy

that coincides with �M�
A for all �M 6= (~�

M
i ; �

M
�i),(

~�
M
i ;
��
M
�i) and that prescribes that A selects ��

both when �M = (~�
M
i ; �

M
�i) and when �

M = (~�
M
i ;
��
M
�i). In the continuation game that starts after

the lotteries �� select the contracts y; �̂MA then prescribes that A induces the same distribution over

e¤ort he would have induced according to the original strategy �M�
A had the menus o¤ered been

�M�. Clearly, if the strategy �M�
A was sequentially rational, so is �̂MA . Furthermore, it is easy to see
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that, given �̂MA , any principal Pj who expects any other principal Pl, l 6= j, to o¤er the equilibrium
menu �M�

l cannot do better than continuing to o¤er the equilibrium menu �M�
j :

Case 2. Next consider the case where ~�
M
i = �M�

i , but where �0�i 6= ���i (which implies that

both �M�i and
��
M
�i are necessarily di¤erent from �M�

�i :) For any j 2 N , any � 2 D; let U j (�) denote
the lowest payo¤ that the agent can in�ict to principal Pj , without violating his rationality. This

payo¤ is given by

U j (�) �
Z
Y

�Z
A
uj
�
a; �j(y)

�
dy1(�j(y))� � � � � dyn(�j(y))

�
d�1 � � � � � d�n; (12)

where for any y 2 Y;

�j(y) 2 arg min
e2E�(y)

�Z
A
uj (a; e) dy1(e)� � � � � dyn(e)

�
(13)

with

E�(y) � argmax
e2E

�Z
A
v (a; e) dy1(e)� � � � � dyn(e)

�
:

Now let �̂MA be the strategy that coincides with �M�
A for all �M 6= (~�Mi ; �M�i),(~�

M
i ;
��
M
�i) and that

prescribes that A selects (�0i; �
0
�i) both when �

M = (~�
M
i ; �

M
�i) and when �

M = (~�
M
i ;
��
M
�i); where

�0i 2 argmax�i2Im(~�Mi ) V (�i; �
0
�i) is any contract such that, for all j 6= i;

U j(�
0
i; �

0
�i) � U j(�̂i; �0�i) for all �̂i 2 arg max

�i2Im(~�
M
i )

V (�i; �
0
�i);

By the Uniform Punishment condition, such a contract always exists. In the continuation game

that starts after the lotteries � = (�0i; �
0
�i) select the contracts y; A then selects e¤ort �k(y), where

k 2 fj 2 Nnfig : �Mj 6= �M�
j g

is the identity of one of the deviating principals, and where �k(y) is the level of e¤ort de�ned in

(13). Clearly, when
��fj 2 Nnfig : �Mj 6= �M�

j g
�� > 1; the identity k of the deviating principal can

be chosen arbitrarily. Once again, it is easy to see that the strategy �̂MA is sequentially rational for

the agent and that, given �̂MA , any principal Pj who expects any other principal Pl, l 6= j, to o¤er
the equilibrium menu �M�

l cannot do better than continuing to o¤er the equilibrium menu �M�
l :

Case 3. Lastly, consider the case where ~�
M
i 6= �M�

i . Irrespective of whether �0�i = ���i or

�0�i 6= ���i; let �̂MA be the strategy that coincides with �M�
A for all �M 6= (~�Mi ; �M�i),(~�

M
i ;
��
M
�i) and

that prescribes that A selects (�0i; �
0
�i) both when �

M = (~�
M
i ; �

M
�i) and when �

M = (~�
M
i ;
��
M
�i);

where �0i 2 argmax�i2Im(~�Mi ) V (�i; �
0
�i) is any contract such that

U i
�
�0i; �

0
�i
�
� U i

�
�̂i; �

0
�i

�
for all �̂i 2 arg max

�i2Im(~�
M
i )

V (�i; �
0
�i):

42



Again, �̂MA is clearly sequentially rational for the agent. Furthermore, given �̂MA , no principal has

an incentive to deviate.

This completes the description of the strategy �̂MA : Now note that the strategy �̂
M
A constructed

from �M�
A using the procedure described above has the property that, given any �M 2 �M such

that �Mi 6= ~�Mi , the behavior speci�ed by �̂MA is the same as that speci�ed by the original strategy

�M�
A : Furthermore, for any �M 2 �M ; the lottery over contracts that the agent selects with any
principal Pj , j 6= i; is the same as under the original strategy �M�

A :When combined together, these

properties imply that the procedure described above can be iterated for all i 2 N , all ~�Mi 2 �Mi .
This gives a new strategy for the agent that is Markovian, that induces all principals to continue

to o¤er the equilibrium menus �M�, and that implements the same outcomes as �M�
A :

Proof of Theorem 4. The result follows from the same construction as in the proof of

Theorem 3, now applied to each � 2 �, and by noting that, when �M�
A satis�es the "Conformity to

Equilibrium" condition, the following is true. For any i 2 N there exists no �M�i;
��
M
�i 2 �M�i such that

some type � 2 � selects (�i; ���i(�)) when �M = (�M�
i ; �M�i) and (

��i; �
�
�i(�)) when �

M = (�M�
i ; ��

M
�i);

with �i 6= ��i: In other words, Case 1 in the proof of Theorem 3 is never possible when the strategy

�M�
A satis�es the "Conformity to Equilibrium" condition. This in turn guarantees that, when one

replaces the original strategy �M�
A with the strategy �̂MA obtained from �M�

A iterating the steps in

the proof of Theorem 3 for all � 2 �; all i 2 N , and all ~�Mi 2 �Mi , it remains optimal for each Pi
to o¤er the equilibrium menu �M�

i :

Proof of Proposition 1. One can immediately see that conditions (a)-(c) guarantee existence

of a truthful equilibrium in the revelation game �r sustaining the schedules q�i (�); i = 1; 2: Theorem
2 then implies that the same schedules can also be sustained by an equilibrium of the menu game

�M .

The proof below establishes the necessity of these conditions. That conditions (a) and (b) are

necessary follows directly from Theorem 2. If the schedules q�i (�), i = 1; 2; can be sustained by a
pure-strategy equilibrium of �M in which the agent�s strategy is Markovian, then they can also

be sustained by a pure-strategy truthful equilibrium of �r. As discussed in the main text, the

same schedules can then also be sustained by a truthful (pure-strategy) equilibrium in which the

mechanism o¤ered by each principal is such that �ri (�; qj ; tj) = �ri (�
0; q0j ; t

0
j) whenever � + �qj =

�0+�q0j : The de�nition of such an equilibrium then implies that there must exist a pair of mechanisms

�r�i = (~qi(�); ~ti(�)); i = 1; 2; such that ~qi(�) is nondecreasing, ~ti(�) satis�es (1), and conditions (a)
and (b) in the proposition hold.

It remains to show that condition (c) is also necessary. To see this, �rst note that if there exists

a pair of mechanisms (~qi(�); ~ti(�))i=1;2 and a truthful continuation equilibrium �rA that sustain the

schedules q�i (�); i = 1; 2; in �r; then it must be that the schedules q�i (�) and t�i (�) � ~ti(mi(�)), i = 1; 2;
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satisfy the equivalent of the (IC) and (IR) constraints of program ~P in the main text. In turn,

this means that necessarily U�i � �Ui, i = 1; 2: To prove the result it then su¢ ces to show that if

U�i <
�Ui; then Pi has a pro�table deviation.

This property can be established by contradiction. Suppose that there exists a truthful equi-

librium �r 2 E(�r) which sustains the schedules (q�i (�))i=1;2 and such that U�i < �Ui, for some i 2 N .
Then there also exists a (pure-strategy) equilibrium �M� of �M which sustains the same schedules

and such that (i) each Pi o¤ers the menu �M�
i de�ned by Im(�M�

i ) = Im(�r�i ); and (ii) each type �

selects the contract (q�i (�); t
�
i (�)) from each menu �M�

i , thus giving Pi a payo¤ U�i (See the proof

of part 2 of Theorem 2.) Below we, however, show that this cannot be the case: Irrespective of

which continuation equilibrium �M�
A one considers, Pi has a pro�table deviation, which establishes

the contradiction.

Case 1. Suppose that the schedules qi(�) and ti(�) that solve the program ~P de�ned in the main
text are such that the set of types � 2 � who strictly prefer the contract (qi(�); ti(�)) to any other
contract (qi; pi) 2 f(qi(�0); ti(�0)) : �0 2 �; �0 6= �g [ f(0; 0)g; in the sense de�ned by the IC and
IR constraints, has (probability) measure one. When this is the case, principal Pi has a pro�table

deviation in �M that consists in o¤ering the menu �Mi de�ned by Im(�Mi ) = f(qi(�); ti(�)) : � 2
�g: Irrespective of which particular continuation equilibrium �M�

A one considers, given (�Mi ; �
M�
�i );

almost every type � must necessarily choose the contract (qi(�); ti(�)) from �Mi ; thus giving Pi a

payo¤ �Ui > U�i .
47

Case 2. Next suppose that the schedules qi(�) and ti(�) that solve the program ~P are such

that almost every � 2 � strictly prefers the contract (qi(�); ti(�)) to any other contract (qi; pi) 2
f(qi(�0); ti(�0)) : �0 2 �; �0 6= �g, again in the sense de�ned by the IC constraints. However, now
suppose that there exists a positive-measure set of types �0 � � such that, for any �0 2 �0

the (IR) constraint holds as an equality. In this case, a deviation by Pi to the menu whose

image is Im(�Mi ) = f(qi(�); ti(�)) : � 2 �g need not be pro�table for Pi. In fact, any type

�0 2 �0 could punish such a deviation by choosing not to participate (equivalently, by choosing
the null contract (0; 0)). However, if this is the case, then Pi could o¤er the menu �M 0

i such that

Im(�M 0
i ) = f(q0i(�); t0i(�)) : � 2 �g where, for any � 2 �, q0i(�) � qi(�) and t0i(�) � ti(�) � ", " > 0:

Clearly, any such menu guarantees participation by all types. Furthermore, by choosing " > 0 small

enough, Pi can guarantee herself a payo¤ arbitrarily close to �Ui > U�i ; once again a contradiction.

Case 3. Finally, let Vi(�; �0) � �qi(�
0) + v�i (�; qi(�

0)) � ti(�0) denote the payo¤ that type �
obtains by selecting the contract (qi(�0); ti(�0)) speci�ed by the schedules qi(�) and ti(�) for type �0;

47Note that, while almost every � 2 � strictly prefers (qi(�); ti(�)) to any other pair (qi; pi) 2 Im(�Mi ) [ f(0; 0)g;
there may exist a positive-measure set of types �0 who, given (qi(�0); ti(�0)), are indi¤erent between choosing the

contract (~qj(�0+�qi(�0)); ~tj(�0+�qi(�0)) with Pj or choosing another contract (qj ; tj) 2 Im(�M�
j ): The fact that Pi is

not personally interested in (qj ; tj), however, implies that Pi�s deviation to �Mi is pro�table, irrespective of how one

speci�es the agent�s choice with Pj :
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and then selecting the contract (~qj(�+�qi(�0)); ~tj(�+�qi(�0)) with principal Pj , where qi(�) and ti(�)
are again the schedules that solve program ~P in the main text. Now suppose that the schedules

qi(�) and ti(�) are such that there exists a positive-measure set of types �0 � � such that (i) for

any � 2 �0, there exists a �0 2 � such that

Vi(�; �) = Vi(�; �
0)

with qi(�0) 6= qi(�),48 and (ii) for any � 2 �n�0;

Vi(�; �) > Vi(�; �̂) for any �̂ 2 � such that qi(�̂) 6= qi(�):

The set �0 thus corresponds to the set of types � for whom the contract (qi(�); ti(�)) is not

strictly optimal, in the sense that there exists another contract (qi(�0); ti(�0)) with (qi(�0); ti(�0)) 6=
(qi(�); ti(�)) that is as good for type � as the contract (qi(�); ti(�)):

Without loss of generality, assume that the schedules qi(�) and ti(�) are such that each type
� 2 � strictly prefers the contract (qi(�); ti(�)) to the null contract (0; 0). As shown in Case 2

above, when this property is not satis�ed, there always exists another pair of schedules q0i(�) and
t0i(�) that (i) guarantee participation by all types, (ii) preserve incentive compatibility for all �; and
(iii) yield Pi a payo¤ Ui > U�i .

Now, given qi(�) and ti(�); let z : �� � [ f?g be the correspondence de�ned by

z(�) � f�0 2 � : Vi(�; �) = Vi(�; �0) and qi(�0) 6= qi(�)g 8� 2 �

and denote by z(�) � Im(z) the range of z(�): This correspondence maps each type � 2 � into

the set of types �0 6= � that receive a contract (qi(�0); ti(�0)) di¤erent from the one (qi(�); ti(�))

speci�ed by qi(�); ti(�) for type �, but which nonetheless gives type � the same payo¤ as the contract
(qi(�); ti(�)):

Next, let g : �� � [ f?g denote the correspondence de�ned by

g(�) � f�0 2 �; �0 6= � : (qi(�0); ti(�0)) = (qi(�); ti(�))g 8� 2 �:

This correspondence maps each type � into the set of types �0 6= � that, given the schedules

(qi(�); ti(�)); receive the same contract as type �: Finally, given any set �0 � �; let

g(�0) � f
S
g(�) : � 2 �0g:

Starting from the schedules qi(�) and ti(�); then let q0i(�) and t0i(�) be a new pair of schedules
such that (i) q0i(�) = qi(�) for all � 2 �; (ii) t0i(�) = ti(�) for all � =2 �0 [ g(�0), and (iii) for any
48Cearly if qi(�) = qi(�0), which also implies that ti(�) = ti(�0); then whether type � selects the contract designed

for him or that designed for type �0 is inconsequential for Pi�s payo¤.
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� 2 �0 [ g(�0), t0i(�) = ti(�) � " with " > 0.49 Clearly, if " > 0 is chosen su¢ ciently small, then
the new schedules q0i(�) and t0i(�) continue to satisfy the (IC) and (IR) constraints of program ~P for
all �:

Now suppose that the original schedules qi(�) and ti(�) were such that f�0 [ g(�0)g\z(�) = ?.
Then the new schedules q0i(�) and t0i(�) constructed above guarantee that each type � 2 � now strictly
prefers the contract (q0i(�); t

0
i(�)) to any other contract (q

0
i(�

0); t0i(�
0)) 6= (q0i(�); t

0
i(�)): This in turn

implies that, irrespective of the agent�s continuation equilibrium �MA , Pi can guarantee herself a

payo¤arbitrarily close to �Ui by choosing " > 0 su¢ ciently small and o¤ering the menu �M 0
i such that

Im(�M 0
i ) = f(q0i(�); t0i(�)) : � 2 �g. Thus, starting from �M�

i ; Pi has again a pro�table deviation.

Next suppose that f�0 [ g(�0)g \ z(�) 6= ?: Note that this also implies that �0 \ z(�) 6= ?:
To see this, note that for any �̂ 2 g(�0) \ z(�), with �̂ =2 �0; there exists a �0 2 �0 such that
(qi(�

0); ti(�
0)) = (qi(�̂); ti(�̂)): But then, by de�nition of z; �0 2 z(�): That �0 \ z(�) 6= ? in turn

implies that, given the new schedules q0i(�) and t0i(�); there must still exist at least one type � 2 �0
together with a type ~� 2 z(�) such that type � is indi¤erent between the contract (q0i(�); t0i(�))
designed for him and the contract (q0i(~�); t

0
i(
~�)) 6= (q0i(�); t

0
i(�)) designed for type ~�: However, the

fact that the agent�s payo¤ �qi + v�i (�; qi) � v�i (�; 0) has the strict increasing-di¤erence property
with respect to (�; qi) guarantees that � =2 z(~�): That is, if type � is indi¤erent between the contract
designed for him and the contract designed for type ~�, then it cannot be the case that type ~� is

also indi¤erent between the contract designed for him and that designed for type �: Clearly, the

same property also implies that for any �00 2 z(~�), with �00 6= �; then necessarily � =2 z(�00): That
is, if type � is willing to swap contract with type ~� and if, at the same time, type ~� is willing to

swap contract with type �00; then it cannot be the case that type �00 is also willing to swap contract

with type �: These properties in turn guarantee that the procedure described above to transform

the schedules qi(�) and ti(�) into the schedules q0i(�) and t0i(�) can be iterated (without cycling) till
no type is any longer indi¤erent.

We conclude that if there exists a pair of schedules qi(�) and ti(�) that solve the program ~P
in the main text and yield Pi a payo¤ �Ui > U�i ; then irrespective of how one speci�es the agent�s

continuation equilibrium �M�
A , Pi necessarily has a pro�table deviation. This in turn proves that

condition (c) is necessary.

Proof of Proposition 2. Suppose that the principals collude so as to maximize their joint

pro�ts. In any mechanism that is individually rational and incentive compatible for the agent, the

49Note that �0 [ g(�0) represents the set of types who are either willing to change contract, or receive the same
contract as another type who is willing to change.
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principals�joint pro�ts are given by50Z ��

�

(
�[q1(�) + q2(�)] + �q1(�)q2(�)� 1

2 [q1(�)
2 + q2(�)

2]

�1�F (�)
f(�) [q1(�) + q2(�)]

)
dF (�)� U (14)

where U = �[q1(�) + q2(�)] + �q1(�)q2(�) � t(�) � 0 denotes the equilibrium payo¤ of the lowest

type. It is easy to see that, under the assumptions in the proposition, the schedules (qi(�))2i=1
that maximize (14) are those that maximize pointwise the integrand function and are given by

qi(�) = q
c(�); all �; i = 1; 2: The fact that these schedules can be sustained in a mechanism that is

individually rational and incentive compatible for the agent and that gives zero surplus to the lowest

type follows from the following properties: (i) the agent�s payo¤ �(q1+q2)+�q1q2 is increasing in �

and satis�es the strict increasing-di¤erence property in (�; qi); i = 1; 2; and (ii) the schedules qi(�);
i = 1; 2; are nondecreasing (see, e.g., Garcia, 2005).

Next, consider the result that the collusive schedules cannot be sustained by a noncooperative

equilibrium in which the agent�s strategy is Markovian. This result is established by contradiction.

Suppose, on the contrary, that there exists a pair of tari¤s Ti : Q ! R, i = 1; 2; that sustain

the collusive schedules as an equilibrium in which the agent�s strategy is Markovian. Using the

result in Proposition 1, this means that there exists a pair of nondecreasing functions ~qi : �i ! Q;
i = 1; 2; and a pair of scalars ~Ki � 0, i = 1; 2, that satisfy conditions (a)-(c) in Proposition 1, with
q�i (�) = qc(�); i = 1; 2. In particular, for any � 2 �; any i = 1; 2; it must be that

V �(�) = sup
(�1;�2)2�1��2

�
� [~q1(�1) + ~q2(�2)] + �~q1(�1)~q2(�2)� ~t1(�1)� ~t2(�2)

	
(15)

= sup
�i2�i

�
�~qi(�i) + v

�
i (�; ~qi(�i))� ~ti(�i)

	
= sup

�i2[mi(�);mi(��)]

�
�~qi(�i) + v

�
i (�; ~qi(�i))� ~ti(�i)

	
where the functions ~ti(�) are the ones de�ned in (1) with Ki = ~Ki; i = 1; 2; and where the function

V �(�) is the one de�ned in (3). Note that all equalities in (15) follow directly from the fact that

the mechanisms �ri = (~qi(�); ~ti(�)), i = 1; 2; are incentive-compatible and satisfy conditions (a) and
(b) in Proposition 1.

Next note that the property that for any message �i 2 [mi(�);mi(��)]; and any � 2 �, the
marginal valuation � + �~qi(�i) 2 [mj(�);mj(��)], combined with the property that the schedule

~qj(�), j 6= i; is continuous over [mj(�);mj(��)]; implies that, given any �i 2 [mi(�);mi(��)]; the

agent�s payo¤

wi(�; �i) � �~qi(�i) + v
�
i (�; ~qi(�i))� ~ti(�i)

= �~qi(�i) +
R �+�~qi(�i)
min�j

~qj(s)ds+ ~Kj � ~ti(�i)
50The result is standard and follows from the fact that the agent�s payo¤ �(q1 + q2) + �q1q2 is equi-Lipschitz

continuous and di¤erentiable in � (see, e.g., Milgrom and Segal, 2002).
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is Mi-Lipschitz continuous and di¤erentiable in � with derivative

@wi(�; �i)

@�
= ~qi(�i) + ~qj(� + �~qi(�i)) � 2 �Q �Mi:

Standard envelope theorem results (see, e.g., Milgrom and Segal, 2002) then imply that the value

function

Wi(�) � sup
�i2[mi(�);mi(��)]

�
�~qi(�i) + v

�
i (�; ~qi(�i))� ~ti(�i)

	
is Lipschitz continuous with derivative almost everywhere given by

@Wi(�)

@�
= ~qi(�

�
i ) + ~qj(� + �~qi(�

�
i )) = q

c(m�1(��i )) + ~qj(� + �~qi(�
�
i )) (16)

where ��i 2 argmax�i2[mi(�);mi(��)]

�
�~qi(�i) + v

�
i (�; ~qi(�i))� ~ti(�i)

	
is an arbitrary maximizer for type

�: The fact that the mechanisms (~qi(�); ~ti(�)), i = 1; 2; satisfy conditions (a) and (b) in Proposition
1, however, implies that

m(�) 2 arg max
�i2[mi(�);mi(��)]

�
�~qi(�i) + v

�
i (�; ~qi(�i))� ~ti(�i)

	
:

Using (16) and property (a), the agent�s value function can then be rewritten as

Wi(�) = �q
c(�) + v�i (�; q

c(�))� ~ti(m(�)) =
Z �

�
[qc(s) + ~qj(s+ �q

c(s))]ds+Wi(�) (17)

We thus conclude that the functions ~ti(�) must satisfy

~ti(m(�)) = �qc(�) + v�i (�; q
c(�))�

Z �

�
[qc(s) + ~qj(s+ �q

c(s))]ds�Wi(�) (18)

= �qc(�) + [v�i (�; q
c(�))� v�i (�; 0)]�

Z �

�
[qc(s) + ~qj(s+ �q

c(s))� ~qj(s)]ds�Wi(�) + ~Kj

Note that the second equality follows from the fact that v�i (�; 0) =
R �
min�i

~qj(s)ds+ ~Kj =
R �
� ~qj(s)ds+

~Kj : Also note that necessarily Bi � Wi(�)� ~Kj � 0, i = 1; 2; else, given �r1 and �r2, type � would
be strictly better o¤ participating only in principal Pj�s mechanism, j 6= i: Using (18), principal i�s
equilibrium U�i can then be expressed as

U�i =

Z ��

�
hi(q

c(�); �)dF (�)�Bi

where hi(q; �) is the function de�ned in (6).

We are �nally ready to establish the contradiction. Below, we show that, given �j = (~qj(�); ~tj(�)),
j 6= i; the value �Ui of program P, as de�ned in the main text, is strictly higher than U�i : This con-
tradicts the assumption made above that the pair of mechanisms �i = (~qi(�); ~ti(�)); i = 1; 2; satis�es
condition (c) of Proposition 1.
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Take an arbitrary interval
�
�0; �00

�
� (�; ��) and, for any � 2

�
�0; �00

�
, letQ(�) � [qc(�)� "; qc(�) + "] ;

where " > 0 is chosen so that, for any � 2
�
�0; �00

�
and any q 2 Q(�); (� + �q) 2 [m(�);m(��)]: Note

that, for any � 2
�
�0; �00

�
; the function hi(�; �) de�ned in (6) is continuously di¤erentiable over Q(�)

with

@hi(q
c(�); �)

@q
= � + �~qj(� + �q

c(�))� qc(�)� 1�F (�)
f(�)

h
1 + �

@~qj(�+�q
c(�))

@~�j

i
= � � (1� �) qc(�)� 1�F (�)

f(�) � 1�F (�)
f(�) �

@~qj(�+�q
c(�))

@~�j
< 0

where the inequality follows from the de�nition of qc(�) and from the fact that ~qj(�) is strictly
increasing over [m(�);m(��)]: The last result implies that there exists a nondecreasing schedule

qi : �! Q such that (i) Z ��

�
hi(qi(�); �)dF (�) >

Z ��

�
hi(q

c(�); �)dF (�); (19)

and (ii) � + �qi(�̂) 2 [m(�);m(��)] for all (�; �̂) 2 �2: Now let ti : � ! R be the function that is
obtained from qi(�) using (5) and setting Ki = 0: That is, for any � 2 �;

ti(�) = �qi(�) + [v
�
i (�; qi(�))� v�i (�; 0)]�

Z �

�
[qi(s) + ~qj(s+ �qi(s))� ~qj(s)]ds:

It is easy to see that the pair of functions qi(�); ti(�) constructed above satis�es all the IR constraints
of program ~P. To see that they also satisfy all the IC constraints, note that the agent�s payo¤ under
truthtelling is

X(�) � �qi(�) + [v�i (�; qi(�))� v�i (�; 0)]� ti(�) =
Z �

�
[qi(s) + ~qj(s+ �qi(s))� ~qj(s)]ds;

whereas the payo¤ that type � obtains by mimicking type �̂ is

R(�; �̂) � �qi(�̂) +
h
v�i (�; qi(�̂))� v�i (�; 0)

i
� ti(�̂)

= �qi(�̂) +

Z �+�qi(�̂)

�
~qj(s)ds� ti(�̂)

Now, for any (�; �̂) 2 �2; let �(�; �̂) � X(�) � R(�; �̂). Note that, for any �̂; �(�; �̂) is Lipschitz
continuous and its derivative, wherever it exists, satis�es

@�(�; �̂)

@�
= qi(�) + ~qj(� + �qi(�))� [qi(�̂) + ~qj(� + �qi(�̂))]

Because qi(�) and ~qj(�) are both nondecreasing, we then have that, for all �̂; a.e. �; @�(�;�̂)@� (���̂) � 0:
Because, for any �; �(�; �) = 0, this in turn implies that, for all (�; �̂) 2 �2; �(�; �̂) =

R �
�̂
@�(s;�̂)
@� � 0;

which establishes that qi(�); ti(�) is indeed incentive compatible.
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Now, it is easy to see that principal i�s payo¤ under qi(�); ti(�) is

Ui =

Z ��

�
[ti(�)�

qi(�)
2

2
]dF (�) =

Z ��

�
hi(qi(�); �)dF (�)

which, by construction, is strictly higher than U�i : This in turn implies that, given the mechanism

�rj = (~qj(�); ~tj(�)), the value �Ui of program ~P is necessarily higher than U�i . Hence, any pair

of mechanisms �i = (~qi(�); ~ti(�)); i = 1; 2, that satisfy conditions (a) and (b) in Proposition 1,

necessarily fail to satisfy condition (c). Because conditions (a)-(c) are necessary, we thus conclude

that there exists no equilibrium in which the agent�s strategy is Markovian that sustains the collusive

schedules.

Proof of Proposition 3. The result is established using Proposition 1. Below we show that

the pair of quantity schedules ~qi(�) = ~q(�); i = 1; 2, where ~q : [0; ��+� �Q]! Q is the function de�ned
in (8), together with the pair of transfer schedules ~ti(�) = ~t(�), i = 1; 2; where ~t : [0; ��+ � �Q]! R is
the function de�ned by

~t(s) = s~q(s)�
Z s

0
~q(s)ds 8s 2 [0; �� + � �Q]

satisfy conditions (a)-(c) in Proposition 1. That these schedules satisfy condition (a) is immediate.

Thus consider condition (b). Fix �r�j = (~qj(�); ~tj(�)). Note that, given any q 2 Q, the function
gi(�; q) : �! R de�ned by

gi(�; q) � �q + v�i (�; q)� v�i (�; 0) = �q +
Z �+�q

�
~q(s)ds = �q +

Z �+�q

�
~q(s)ds

is (i) Lipschitz continuous with derivative bounded uniformly over q; and (ii) satis�es the "convex-

kink" condition of Assumption 1 in Ely (2001)� this last property follows from the assumption that

�+ �q�(�) � ��: Combining Theorem 2 of Milgrom and Segal (2002) with Theorem 2 of Ely (2001),

it is then easy to verify that the schedules qi : �! Q and ti : �! R satisfy all the (IC) and (IR)
constraints of program ~P if and only if qi(�) is nondecreasing and ti(�) satis�es

ti(�) = �qi(�) + [v
�
i (�; qi(�))� v�i (�; 0)]�

Z �

�
[qi(s) + ~q(s+ �qi(s))� ~q(s)]ds�K 0

i (20)

for all � 2 �; with K 0
i � 0:

Next, let t� : �! R be the function that is obtained from (20), letting qi(�) = q�(�) and setting
K 0
i = 0� note that this function reduces to the one in (10) after a simple change in variable. The

fact that qi(�) and ti(�) satisfy all the IC and IR constraints of program ~P, together with the fact
that the mechanism �r�j = (~qj(�); ~tj(�)) is incentive compatible and individually rational for each
�j 2 �i in turn implies that each type � prefers the allocation

(q�(�); t�(�); ~q(m(�)); ~t(m(�))) = (q�(�); t�(�); q�(�); ~t(m(�)))
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to any allocation (qi; ti; qj ; tj) such that (qi; ti) 2 f
�
q�(�0); t�(�0)

�
: �0 2 �g [ (0; 0); and (qj ; tj) 2

f(~q(�j); ~t(�j)) : �j 2 �jg [ (0; 0): But this also means that the schedules q0 : [m(�);m(��)]! Q and

t0 : [m(�);m(��)]! R given by

q0(s) � q�(m�1(s)) and t0(s) � t�(m�1(s))

are incentive-compatible over [m(�);m(��)]: In turn this means that the schedule t0(�) can also be
written as

t0(s) � sq0(s)�
Z s

m(�)
q0(x)dx:

Furthermore, it is immediate that, when Pj o¤ers the mechanism �r�j = (~qj(�); ~tj(�)) and Pi o¤ers
the schedules (q0(�); t0(�)) ; it is optimal for each type � to participate in both mechanisms and report
m(�) to each principal. Because for each s 2 [m(�);m(��)]; q0(s) = ~q(s) and because ~q(s) = 0 for

any s < m(�); we then have that, for any s 2 [m(�);m(��)];

t0(s) = ~t(s):

Furthermore, because for any s > m(��);
�
~q(s); ~t(s)

�
=
�
~q(m(��)); ~t(m(��))

�
= (q0(��); t0(��)); it im-

mediately follows from the aforementioned results that, when both principals o¤er the mechanism

�r�i = (~qi(�); ~ti(�)); i = 1; 2; each type � �nds it optimal to participate in both mechanisms and

report s = m(�) to each principal. Note that, in so doing, each type � obtains the equilibrium

quantity q�(�) and pays the equilibrium price ~t(m(�)) = t�(�) to each principal.

We have thus established that the pair of mechanisms �r�i = (~qi(�); ~ti(�)); i = 1; 2; satis�es

conditions (a) and (b) in Proposition 1. To complete the proof, it remains to show that they also

satisfy condition (c). For this purpose, recall that, given �r�j = (~qj(�); ~tj(�)); a pair of schedules
qi : � ! Q and ti : � ! R satis�es the (IC) and (IR) constraints of program ~P if and only if

the function qi(�) is nondecreasing and the function ti(�) is as in (20). This in turn means that the
value of program ~P coincides with the value of program ~Pnew, as de�ned in the main text. Now
note that, for any � 2 int(�); the function h(�; �) : Q ! R is maximized at q = q�(�): To see this,
note that the fact that q�(�) solves the di¤erential equation in (7) implies that the function h(�; �)
is di¤erentiable at q = q�(�) with derivative

@h(q�(�); �)

@q
= � + �~q(� + �q�(�))� q�(�)� 1�F (�)

f(�)

h
1 + �@~q(�+�q

�(�))
@�i

i
= 0: (21)

Together with the fact that h(�; �) is quasiconcave, this property implies that h(q; �) is maximized
at q = q�(�): This implies that the solution to the program ~Pnew is the function q�(�) along with
Ki = 0. However, by construction, the payo¤U�i that principal Pi obtains in equilibrium by o¤ering

the mechanism �r�i is

U�i =

Z ��

�
[~t(m(�))� ~q(m(�))2

2 ]dF (�) =

Z ��

�
[t�(�)� q�(�)2

2 ]dF (�) =

Z ��

�
h(q�(�); �)dF (�) = �Ui;
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where �Ui is the value of program ~Pnew (and hence of program ~P as well). We thus conclude that

the pair of mechanisms �r�i = (~qi(�); ~ti(�)); i = 1; 2; satis�es condition (c), which completes the

proof.

Proof of Proposition 4.

Consider the "only if" part of the result. Starting from any pure-strategy equilibrium �M of

�M ; one can construct another pure-strategy equilibrium �̂M that sustains the same SCF �, but

in which the agent�s strategy �̂MA satis�es the following property: Given any i 2 N ; any menu �Mi ,
and any action pro�le (e; a�i); there exists a unique action ai(e; a�i;�Mi ) 2 Ai such that the agent
always chooses a contract �i from �Mi which responds to e¤ort e with the action ai(e; a�i;�Mi ),

when the contracts the agent selects with the other principals respond to the same e¤ort choice

with the actions a�i: The proof for this step follows from arguments similar to those that establish

Theorem 3. Given �̂M , it is then easy to construct a pure-strategy truthful equilibrium ��� of ��r

that sustains the same SCF. The proof for this step follows from arguments similar to those that

establish Theorem 2. The only delicate part is in specifying how the agent reacts o¤-equilibrium

to a revelation mechanism ��
r

i 6= ��
r�
i : In the proof of Theorem 2, it was assumed that the agent

responds to an o¤-equilibrium mechanism �ri 6= �r�i as if the game were �M and Pi o¤ered the

menu whose image is Im(�Mi ) = Im(�ri ): However, in the new revelation game ��r; the image

Im(��
r

i ) of a direct revelation mechanism ��
r

i is a subset of Ai as opposed to a menu of contracts.
This, nonetheless, does not pose any problem. It su¢ ces to proceed as follows. Given any direct

mechanism ��
r

i ; and any e¤ort choice e; let Ai(e;��
r

i ) � fai : ai =��
r

i (e; a�i); a�i 2 A�ig denote the
set of responses to e¤ort choice e that the agent can induce in ��

r

i by reporting di¤erent messages

a�i 2 A�i: Given any mechanism ��
r

i ; then let �
M
i = �(��

r

i ) denote the menu of contracts whose

image is Im(�Mi ) = f�i 2 Di : �i(e) 2 Ai(e;��
r

i ) all e 2 Eg: Clearly, for any (e; a�i); the maximum
payo¤ that the agent can guarantee himself in �M given the menu �Mi is the same as in��r given��

r

i :

The rest of the proofs then parallels that of Theorem 2, by having the agent react to any mechanism
��
r

i 6=��
r�
i as if the game were �M and Pi o¤ered the menu �Mi = �(��

r

i ):

Next, consider the "if" part of the result. The proof parallels that of part (ii) of Theorem

2 using the mapping � : ��ri ! �Mi de�ned above to construct the equilibrium menus, and the

mapping ' : �Mi ! ��ri de�ned below to construct the agent�s reaction to any o¤-equilibrium menu

�Mi 6= �M�
i : Let ' : �Mi ! ��ri be any arbitrary function that maps each menu �

M
i into a direct

mechanism ��
r

i = '(�
M
i ) with the following property

��
r

i (e; a�i) 2 arg max
ai2fâi:âi=�i(e); �i2Im(�Mi )g

v(e; ai; a�i) 8(e; a�i) 2 E �A�i:

The agent�s reaction to any menu �Mi 6= �M�
i is then the same as if the game were��r and Pi o¤ered

the direct mechanism ��
r

i = '(�
M
i ): The rest of the proof is based on the same arguments as in the

proof of part (ii) of Theorem 2 and is omitted for brevity.
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Proof of Theorem 5.

The proof is in two parts. Part 1 proves that if there exists a pure-strategy equilibrium �M
�

of �M that implements the SCF �; there also exists a truthful pure-strategy equilibrium �r� of �̂r

that implements the same outcomes. Part 2 proves that any SCF � that can be sustained by an

equilibrium of �̂r can also be sustained by an equilibrium of �M :

Part 1. Let �M� and �M�
A denote respectively the equilibrium menus and the continuation

equilibrium that support � in �M . Then, for any i; let ��i (�) denote the contract that A takes in

equilibrium with Pi when his type is �:

As a preliminary step, we establish the following result.

Lemma 1 Suppose the SCF � can be sustained by a pure-strategy equilibrium of �M : Then it can

also be sustained by a pure-strategy equilibrium in which the agent�s strategy satis�es the following

property. For any k 2 N ; � 2 � and �k 2 Dk, there exists a unique ��k(�; �k) 2 D�k such that A
always selects ��k(�; �k) with all principals other than k when (i) Pk deviates from the equilibrium

menu, (ii) the agent�s type is �, (iii) the lottery over contracts A selects with Pk is �k, and (iv) any

principal Pi, i 6= k, o¤ers the equilibrium menu.

Proof of Lemma 1. Let ~�
M
and ~�MA denote respectively the equilibrium menus and the

continuation equilibrium that support � in �M . Take any k 2 N and, for any (�; �); let Uk (�; �)

denote the lowest payo¤ that the agent can in�ict to principal Pk, without violating his rationality.

This payo¤ is given by

Uk (�; �) �
Z
Y

�Z
A
uk (a; �k(y; �); �) dy1(�k(y; �))� � � � � dyn(�k(y; �))

�
d�1 � � � � � d�n;

where, for any y 2 Y;

�k(y; �) 2 arg min
e2E�(y;�)

�Z
A
uk (a; e; �) dy1(e)� � � � � dyn(e)

�
(22)

with

E�(y; �) � argmax
e2E

�Z
A
v (a; e; �) dy1(e)� � � � � dyn(e)

�
:

Next, for any (�; �k) 2 ��Dk; let

D�k(�; �k; ~�
M
�k) � arg max

��k2Im(~�
M
�k)

V (��k; �k; �)

denote the set of lotteries in the menus ~�
M
�k that are optimal for the agent, given (�; �k); where

Im(~�
M
�k) � �j 6=k Im(~�

M
j ): Then for any (�; �k) 2 � � Dk, let ��k(�; �k) 2 D�k be any pro�le of

lotteries such that

��k(�; �k) 2 arg min
�0�k2D�k(�;�k;~�

M
�k)

Uk
�
�k; �

0
�k; �

�
(23)
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Now consider the following pure-strategy pro�le ��M : For any i 2 N ; ��Mi is the pure strategy

that prescribes that Pi o¤ers the same menu ~�
M
i as under ~�M . The continuation equilibrium ��MA

is such that, when either �Mi = ~�
M
i for all i; or jfi 2 N : �Mi 6= ~�

M
i gj > 1, then ��MA (�; �

M ) =

~�MA (�; �
M ); for any �: When instead �M is such that �Mi = ~�

M
i for all i 6= k; while �Mk 6= ~�

M
k for

some k 2 N , then each type � selects the pro�le of lotteries (�k; ��k) de�ned as follows: (i) �k is
the same lottery that type � would have selected with Pk according to the original strategy ~�MA ,

given the menus (~�
M
�k; �

M
k ); ��k = ��k(�; �k) is the pro�le of lotteries de�ned in (23). Given any

pro�le of contracts y selected by the lotteries (�k; ��k); the e¤ort the agent selects is then �k(�; y),

as de�ned in (22).

It is immediate that the behavior prescribed by the strategy ��MA is sequentially rational for

the agent. Furthermore, given ��MA ; a principal Pi who expects all other principals to o¤er the

equilibrium menus ~�
M
�i cannot do better than o¤ering the equilibrium menu ~�

M
i . We conclude that

��M is a pure-strategy equilibrium of �M and sustains the same SCF as ~�M .

Hence, without loss, assume �M� satis�es the property of Lemma 1. For any i; k 2 N with

k 6= i; and for any (�; �k) 2 � � Dk; let �i(�; �k) denote the unique lottery that A selects with

Pi when (i) his type is �; (ii) the contract selected with Pk is �k, and (iii) the menus o¤ered are

�Mj = �M�
j for all j 6= k; and �Mk 6= �M�

k :

Next, consider the following strategy pro�le �̂r� for �̂r: Each principal o¤ers a direct mechanism

�̂
r�
i such that, for any (�; ��i; k) 2 ��D�i �N�i;

�̂
r�
i (�; ��i; k) =

8>><>>:
��i (�) if k = 0 and ��i = �

�
�i(�)

�i(�; �k) if k 6= 0 and ��i is such that �j = �j(�; �k) for all j 6= i; k
�i 2 argmax�0i2Im(�M�

i ) V (��i; �
0
i; �) in all other cases.

By construction, �̂
r�
i is incentive compatible. Now consider the following strategy �̂r�A for the agent

in �̂r:

(i) Given the equilibrium mechanisms �̂
r�
; each type � reports a message m̂r

i = (�; �
�
�i(�); 0) to

each Pi: Given any pro�le of contracts y selected by the lotteries ��(�), the agent then mixes over E

with the same distribution he would have used in �M given (�; �M�;m�(�); y); where m�(�) � ��(�)
are the equilibrium messages that type � would have sent in �M given the equilibrium menus �M�.

(ii) Given any pro�le of mechanisms �̂
r
such that �̂

r

i = �̂
r�
i for all i 6= k; while �̂

r

k 6= �̂
r�
k for

some k 2 N ; let �k denote the lottery that type � would have selected with Pk in �M , had the
menus o¤ered been �M = (�M�

�k ; �
M
k ) where �

M
k is the menu with image Im(�Mk ) = Im(�̂

r

k). The

strategy �̂r�A then prescribes that type � reports to Pk any message mr
k such that �

r
k(m

r
k) = �k and

then reports to any other principal Pi, i 6= k, the message m̂r
i = (�; ��i; k), with

��i = (�k; (�j(�; �k))j 6=i;k):
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Given any contracts y selected by the lotteries � = (�k; �j(�; �k)j 6=k), A then selects e¤ort �k(�; y);

as de�ned in (22).

(iii) Finally, for any pro�le of mechanisms �̂
r
such that jfi 2 N : �̂

r

i 6= �̂
r�
i gj > 1, simply let

�̂rA(�; �
r) be any strategy that is sequentially rational for A, given (�; �̂

r
).

The behavior prescribed by the strategy �̂r�A is clearly a continuation equilibrium. Furthermore,

given �̂r�A , any principal Pi who expects all other principals to o¤er the equilibrium mechanisms

�̂
r�
�i cannot do better than o¤ering the equilibrium mechanism �̂

r�
i ; for any i 2 N : We conclude

that the strategy pro�le �̂r� in which each Pi o¤ers the mechanism �̂
r�
i and A follows the strategy

�̂�A is a truthful pure-strategy equilibrium of �̂r and sustains the same SCF � as �M� in �M :

Part 2. We now prove that if there exists an equilibrium �̂r of �̂r that sustains the SCF �,

then there also exists an equilibrium �M� of �M that sustains the same SCF. For any i 2 N and any

�Mi 2 �Mi ; let �̂ri (�Mi ) � f�̂ri 2 �ri : Im(�̂
r

i ) = Im(�Mi )g denote the set of revelation mechanisms
with the same image as �Mi . The proof follows from the same arguments as in the proof of Part

2 in Theorem 2. It su¢ ces to replace the mappings �ri (�) with the mappings �̂ri (�) and then make
the following adjustment to Case 2. For any pro�le of menus �M for which there exists a j 2 N
such that (i) �̂ri (�

M
i ) 6= ? for all i 6= j, and (ii) �̂rj(�

M
j ) = ?, let �̂

r

j be any arbitrary revelation

mechanism such that

�̂
r

j(�; ��j ; k) 2 arg max
�j2Im(�Mj )

V (�j ; ��j ; �) 8 (�; ��j ; k) 2 ��D�j �N�j :

For any � 2 �; the strategy �M�
A (�; �M ) then induces the same distribution over outcomes as the

strategy �̂r�A given �̂
r

j and given �̂
r

�j 2 �̂r�j(�M�j) � �i6=j�̂ri (�Mi ), in the sense made precise by (11).

Proof of Theorem 6. The proof is in two parts. Part 1 proves that for any equilibrium �M

of �M ; there exists an equilibrium ~�r of ~�r that implements the same outcomes. Part 2 proves the

converse.

Part 1. Let Qi be a generic partition of �Mi and denote by Qi 2 Qi a generic element of Qi:
Now consider a partition-game �Q in which (i) �rst each principal Pi chooses an element of Qi;
(ii) after observing the collection of cells Q = (Qi)

n
i=1; the agent then selects a pro�le of menus

�M = (�M1 ; :::; �
M
n ); one from each cell Qi, then chooses the lotteries over contracts �; and �nally,

given the contracts y selected by the lotteries �, chooses e¤ort e 2 E.
The proof of Part 1 is in two steps. Step 1 identi�es a collection of partitions QZ = (QZi )i2N

such that the agent�s payo¤ is the same for any pair of menus �Mi ; �
M 0
i 2 QZi ; i = 1; :::; n: It

then shows that, for any �M 2 E(�M ) there exists a �� 2 E(�QZ ) that implements the same
outcomes. Step 2 uses the equilibrium �� of �Q

Z
constructed in Step 1 to prove existence of a

truthful equilibrium ~�r of ~�r which also supports the same outcomes as �M .
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Step 1. Take a generic collection of partitions Q =(Qi)i2N ; one for each �Mi , i = 1; :::; n with
Qi consisting of measurable sets.51 Consider the following strategy pro�le �� for the partition game
�Q: For any Pi; let ��i 2 �(Qi) be the distribution over Qi induced by the equilibrium strategy �Mi
of �M : That is, for any subset Ri of Qi the union of whose elements is measurable,

��i(Ri) = �
M
i (
S
Ri):

Next consider the agent. For any Q = (Q1; :::; Qn) 2 �i2NQi, A selects the menus �M from �i2NQi
using the distribution ��A(�jQ) � �M1 (�jQ1) � � � � � �Mn (�jQn), where for each Qi; �Mi (�jQi) is the
regular conditional distribution over �Mi that is obtained from the equilibrium strategy �Mi of Pi

conditioning on �Mi 2 Qi:52 After selecting the menus �M , A follows the same behavior prescribed
by the strategy �MA for �M :

Now, �x the agent�s strategy ~�A as described above. It is immediate that, irrespective of the

partitions Q, the strategies (��i)i2N constitute an equilibrium for the game �Q(��A) among the

principals.

In what follows, we identify a collection of partitions QZ that make ��A sequentially rational
for the agent. Consider the equivalence relation �i de�ned as follows: given any two menus �Mi
and �M 0

i ;

�Mi �i �M 0
i () Z�(��i;�

M
i ) = Z�(��i;�

M 0
i ) 8(�; ��i);

where, for any mechanism �i, Z�(��i;�i) � argmax�i2Im(�i) V (�i; ��i; �):
Now, let QZ = (QZi )i2N be the collection of partitions generated by the equivalence relations

�i, i = 1; :::; n: It follows immediately that, in the partition game �Q
Z
; ��A is sequentially rational

for A. We conclude that for any �M 2 E(�M ) there exists a �� 2 E(�QZ ) which implements the
same outcomes as �M .

Step 2. We next prove that starting from ��; one can construct a truthful equilibrium ~�r for ~�r

that also sustains the same outcomes as �M in �M . To simplify the notation, hereafter we drop

the superscrips Z from the partitions Q, with the understanding that Q refers to the collection of

partitions generated by the equivalence relations �i de�ned above. For any i 2 N , any Qi 2 Qi,
and any (�; ��i) 2 � � D�i; then let Z�(��i;Qi) � Z�(��i;�Mi ) for some �Mi 2 Qi: Since for any
two menus �Mi ; �

M 0
i 2 Qi; Z�(��i;�Mi ) = Z�(��i;�M 0

i ) for all (�; ��i); then Z�(��i;Qi) is uniquely

determined by Qi: Now, for any Qi 2 Qi; let ~�
r
i

���
Qi
2 ~�ri denote the revelation mechanism given by

~�
r
i (�; ��i) = Z�(��i;Qi) 8 (�; ��i) 2 ��D�i: (24)

51 In the sequel, we assume that any set of mechanisms �Mi is a Polish space and whenever we talk about measur-

ability, we mean with respect to the Borel �-algebra � on �Mi :
52Assuming that each �Mi is a Polish space endowed with the Borel �-algebra �i, the existence of such a conditional

probability measure follows from Theorem 10.2.2 in Dudley (2002, p. 345).
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For any set of mechanisms B � ~�ri , then let Qi(B) � fQi 2 Qi : ~�
r
i

���
QZi

2 Bg denote the set of

corresponding cells in Qi. The strategy ~�ri 2 �(~�ri ) for Pi is given by

~�ri (B) = ��i(Qi(B)) 8B � ~�ri :

Next, consider the agent. Given any pro�le of mechanisms ~�
r 2 ~�r; let Q(~�r) = (Qi(~�

r
i ))i2N 2

�i2NQi denote the pro�le of cells in �Q such that, for any i 2 N ; the cell Qi(~�
r
i ) is such that

Z�(��i;Qi(~�
r
i )) =

~�
r
i (��i; �) for any (�; ��i) 2 ��D�i: Now, let ~�rA be any truthful strategy that

implements the same distribution over A�E as ��A given Q(�r): That is, for any (�; ~�
r
) 2 �� ~�r;

�~�rA(�;
~�
r
) = ���A(�;Q(

~�
r
)) �

Z
�M1

� � �
Z
�Mn

��MA
(�; �M )d�M1 (�

M
1 jQ1(~�

r
1))� � � � � d�Mn (�Mn jQn(~�

r
n)):

The strategy ~�rA is clearly sequentially rational for A: Furthermore, given ~�
r
A; the strategy

pro�le (~�ri )i2N is an equilibrium for the game among the principals. We conclude that ~�r =

(~�rA; (~�
r
i )i2N ) is an equilibrium for ~�r and sustains the same outcomes as �M in �M .

Part 2. We now prove the converse: Given an equilibrium ~�r of ~�r that sustains the SCF �,

there exists an equilibrium �M of �M that sustains the same SCF.

For any i 2 N , let �i : ~�ri ! �Mi denote the injective mapping de�ned by the relation

Im(�i(~�
r
i )) = Im(

~�
r
i ) 8~�

r
i 2 ~�ri

and �i(~�ri ) � �Mi denote the range of �i(�): For any �Mi 2 �i(~�ri ); then let ��1i (�Mi ) denote the
unique revelation mechanism such that Im(~�

r
i ) = Im(�

M
i ):

Now consider the following strategy for the agent in �M . For any �M such that, for all i 2 N ,
�Mi 2 �i(~�ri ); let �MA be such that ��MA (�; �

M ) = �~�rA(�; �
�1(�M )); where ��1(�M ) � (��1i (�Mi ))ni=1:

If instead �M is such that �Mj 2 �j(~�rj) for all j 6= i; while for i; �Mi =2 �i(~�ri ); then let �MA be such

that ��MA (�; �
M ) = �~�rA(�;

~�
r
i ; (�

�1
j (�

M
j ))j 6=i) where ~�

r
i is any revelation mechanism that satis�es

~�
r
i (�; ��i) = Z�(��i;�

M
i ) 8 (�; ��i) 2 ��D�i:

Finally, for any �M such that jfj 2 N : �Mj =2 �j(~�
r
j)gj > 1, simply let �MA (�; �

M ) be any

sequentially rational response for the agent given (�; �M ). It immediately follows that the strategy

�MA constitutes a continuation equilibrium for �M .

Now consider the following strategy pro�le for the principals. For any i 2 N , let �Mi = �i(~�
r
i );

where �i(~�ri ) denotes the randomization over �
M
i obtained from the strategy ~�ri using the mapping

�i: Formally, for any measurable set B � �Mi ; �
M
i (B) = ~�ri (f~�

r
i : �i(

~�
r
i ) 2 Bg): It is easy to see

that any principal Pi who expects the agent to follow the strategy �MA and any other principal Pj

to follow the strategy �Mj = �j(~�
r
j) cannot do better than following the strategy �

M
i = �i(~�

r
i ): We

conclude that �M is an equilibrium of �M and sustains the same SCF � as ~�r in ~�r:
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