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Abstract
We regard the problem of generating randomized roundings
with a single cardinality constraint. This is motivated by
recent results of Srinivasan (FOCS 2001), Gandhi et al.
(FOCS 2002, J.ACM 2006) and the first author (STACS
2005, STACS 2006). Our work results in (a) an improved
version of the bitwise derandomization given by the first
author, (b) the first derandomization of Srinivasan’s tree-
based randomized approach, together with a proof of its
correctness, and (c) an experimental comparison of the
resulting algorithms.

Our experiments show that adding a single cardinal-
ity constraint typically reduces the rounding errors and not
seriously increases the running times. In general, our deran-
domization of the tree-based approach is superior to the de-
randomized bitwise one, while the two randomized versions
produce very similar rounding errors. When implementing
the derandomized tree-based approach, however, the choice
of the tree is important.

1 Introduction and Results
Randomized rounding is one of the core primitives
in randomized computation. Hromkovič [Hro05] lists
it as one of seven design paradigms for randomized
algorithms. While proven to be very efficient in many
theoretical analyses, virtually no experimental research
has been done on randomized rounding. The survey
article [MNR97], one of the few sources that mention
this aspect, has a 10-line section on computational
experience building on [NRT87], [DR89] and a personal
communication by Pulleyblank and Raghavan. Since,
clearly, this short-coming cannot be solved in a single
paper, in this work we concentrate on a particular
aspect that became very interesting recently, namely
randomized roundings that respect disjoint cardinality
constraints.

1.1 Rounding. Rounding is usually understood as
replacing a non-integral number by one of the two
neighboring integers. That is, y is called rounding of
x ∈ R if y ∈ Z and |y − x| < 1. Note that the integral
part of x is not important, so whenever convenient we
may assume that the numbers to be rounded are in [0, 1].

Rounding comes up in many areas. Natural exam-
ples include rounding in statistics, where it is used to
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increase readability of data and for confidentiality pro-
tection reasons [CCE85], or the digital halftoning prob-
lem in image processing, which is to transform a gray-
scale image into one having black and white pixels only
(cf. [AKOT03, Doe04, LA08]).

In algorithmics, rounding also is a way of dealing
with the fact that many problems in which integral so-
lutions are sought, become much easier without the in-
tegrality constraint. Hence solving the problem without
caring for integrality and then trying to round it to an
integer one, is a natural and often successful approach.

1.2 Independent Randomized Rounding. Clas-
sical randomized rounding was introduced by Ragha-
van and Thompson [RT87, Rag88]. The key idea is to
round x randomly with probabilities given by its frac-
tional part. Hence y is called randomized rounding of
x ∈ [0, 1] if

Pr(y = 1) = x,(1.1)
Pr(y = 0) = 1 − x.

Often, randomized rounding is used in the context of
integer linear programming. If A is an m×n matrix with
entries in [0, 1] (this is just a normalization), x ∈ [0, 1]n

and b ∈ Rm such that Ax ≤ b, then a (random)
vector y obtained from applying randomized rounding
independently to the components of x satisfies

(1.2) (Ay)i ≤ bi + O(
√

max{bi, log(m)} log(m))

for all i ∈ [m] := {1, . . . , m} with high probability.
Such bounds stemming from so-called large deviations
bounds on sums of independent random variables are
the reason why randomized rounding found numerous
applications in approximation algorithms [MNR97].

This approach was derandomized using the method
of conditional probabilities and pessimistic estimators
by Raghavan [Rag88]. This yields deterministic round-
ing algorithms computing roundings with bounds on the
rounding errors comparable to (1.2).

1.3 Randomized Roundings Respecting Car-
dinality Constraints. Whereas the independence in
randomly rounding the variables ensures that the round-
ing errors |(Ax)i − (Ay)i| are small with high probabil-
ity, it is very weak in guaranteeing that a constraint
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is satisfied without error. Being the simplest type of
such constraints, in this paper we are only concerned
with cardinality constraints. These are constraints re-
quiring that for a set of variables, their sum does not
change through the rounding. In other words, for a
J ⊆ [n] we need that the rounding y of x ∈ [0, 1]n satis-
fies

∑
j∈J yj =

∑
j∈J xj . Clearly, this makes sense only

if
∑

j∈J xj is an integer.
Such constraints are quite common in the optimiza-

tion literature, but they are also very useful in the de-
sign of randomized algorithms. Examples of this kind
include routing applications ([RT87, RT91, Sri01]), flow
problems ([RT87, RT91, GKR+03]), partial and capac-
itated covering problems ([AS04, GKPS02, GHK+03,
CN06]) and the assignment problem with extra con-
straints ([AFK02]).

While clearly useful, it is not so easy to generate
randomized roundings respecting such constraints. As
said above, independent randomized rounding is not
suitable. On the other hand, independence and the
resulting large deviation bounds for the rounding errors
were the reason why the classical randomized rounding
became that successful.

The first to overcome this difficulty was Srini-
vasan [Sri01] (see also [GKPS06]). He presented a way
to compute randomized roundings that respect the con-
straint that the sum of all variables remains unchanged
(global cardinality constraint). Though not indepen-
dent, they still fulfill some negative correlation prop-
erties, which imply the usual Chernoff bounds. Among
other results, this yields a randomized algorithm for the
integer splittable flow problem.

Srinivasan also shows that, surprisingly, the simple
approach of generating independent randomized round-
ings until the hard constraint is satisfied, is not feasible.
The resulting roundings may not be randomized round-
ings.

The deterministic “pipage rounding” algorithm of
Ageev and Sviridenko [AS99, AS00, AS04] allows to
round edge weights in a bipartite graph in such a way
that the sum of weights incident with a vertex changes
by less than one (“degree preservation”). This yields
improved approximation algorithms for maximum cov-
erage problems and max-cut problems with given sizes
of parts. Ageev and Sviridenko note that their ideas
could be used in a randomized way, but “the resulting
algorithm will be too sophisticated to admit derandom-
ization”.

The ideas of [AS99, AS00, AS04] and [Sri01] were
combined in Gandhi, Khuller, Parthasarathy and Srini-
vasan [GKPS02, GKPS06] to obtain randomized round-
ings of edge weights in bipartite graphs that are de-
gree preserving and in addition fulfill negative correla-

tion properties on sets of edges incident with a common
vertex. This again yields improved randomized approx-
imation algorithms for several problems as well as some
nice per-user fairness properties.

Both in [Sri01] and [GKPS02, GKPS06], the deran-
domization problem was not regarded.

Independent of [Sri01, GKPS02, GKPS06] and us-
ing different methods, the first author in [Doe05]
and [Doe06] (the latter is the paper we will refer to in
the following) developed another way to generate ran-
domized roundings that respect cardinality constraints.
Due to the simpler, less sequential random experiment
underlying the construction, this approach could be de-
randomized via a reduction to Raghavan’s derandomiza-
tion [Rag88] for the problem without hard constraints.
Also, this approach proved to be superior for more
complicated sets of cardinality constraints. For exam-
ple, generating randomized roundings for the bipartite
edge weight rounding problem can now be done in time
O(|E|�) instead of O(|V ||E|). Here (V, E) is the bipar-
tite graph considered and � is an upper bound for the
(binary) coding length of each edge weight.

To ease the distinction, we call Srinivasan’s ap-
proach tree-based and the one of [Doe06] bitwise, a nam-
ing motivated by underlying algorithms. Let us add
that the approach of [Doe06] was extended to use other
expansions than the binary one in [Doe07]. This gives
superior results if all numbers to be rounded are ratio-
nal and their denominators contain only small prime
factors. While this is useful for certain problems, e.g.,
the controlled rounding problem from statistics, we shall
not regard this aspect here.

1.4 Motivation. From the above, it is clear that
for complex rounding problems, the new approach
of [Doe05, Doe06] is the preferred choice. What is
not clear, and hence is the starting point of this re-
search, is how the tree-based and bitwise method com-
pare for disjoint cardinality constraints; as the examples
in [Sri01, Doe05] indicate, this is a highly useful special
case. Since the problem for disjoint constraints is in
both of these methods easily reduced to the one of one
cardinality constraint involving all variables (by round-
ing the variables within each hard constraint in turn),
we restrict ourselves to this problem.

Due to their very different nature, a comparison
of the two rounding methods is not trivial (see below
for a precise description of the methods). Also, such
a comparison can probably not be done via theoretical
means only, as both methods give the same asymptotic
running times and error guarantees.

A second set of questions regarded in this work is
how randomized rounding with hard constraints com-
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pares to the classical approach of Raghavan and Thomp-
son (without constraints), again both in terms of run-
ning times and rounding errors.

1.5 Results. We implemented the algorithms intro-
duced above. It is known that derandomized algorithms
often are superior to their randomized counter-parts due
to their greedy way of making some decisions. We ob-
served the same for classical randomized rounding with-
out constraints and, to a significantly lesser degree, for
the approach in [Doe06]. This first observation made it
highly desirable to also have a derandomization of Srini-
vasan’s rounding approach. This seems difficult due to
its highly sequential nature, but a careful analysis of
Raghavan’s paper [Rag88] shows that his pessimistic es-
timator can also be used in the more dependent random
experiment underlying Srinivasan’s randomized round-
ing. Hence a first, theoretical result stemming from this
work is that Srinivasan’s randomized roundings can be
derandomized in time O(mn), where m × n is the di-
mension of the matrix encoding the rounding errors.

Comparing randomized and derandomized versions
again, we find that both Raghavan’s and Srinivasan’s
approach show a similar advantage of the derandom-
ized version over the randomized one, whereas deran-
domization was found to be less superior for the bitwise
approach. We find two possible reasons. (i) The bit-
levels are rounded independently, and hence there is no
way of exploiting a greedy behaviour interrelating the
bit-levels. (ii) In [Doe06], the problem is reduced to a
derandomization problem for {−1, 0, 1} matrices. Since
Raghavan’s derandomization is formulated for {0, 1}
matrices only, in [Doe06] a simple union bound type ap-
proach is taken (writing A = A1−A2 for {0, 1} matrices
A1, A2 and derandomizing with respect to them). Ex-
tending Raghavan’s derandomization to {−1, 0, 1} ma-
trices (and thus being able to derandomize with respect
to A directly), we observe a much weaker effect, con-
cluding that (ii) was the main reason for the derandom-
ization being less superior to the randomized version
than expected.

We compare the different ways of computing round-
ings for two classes of instances, namely random in-
stances and structured instances stemming from formu-
lating the problem of generating low-discrepancy point
sets for numerical integration as a rounding problem.

Summarized, the details given in Section 4 show the
following. In most cases, the algorithms respecting the
cardinality constraint on all variables produce smaller
rounding errors on other constraints than classical ran-
domized rounding and its derandomization. In such,
there is no “price of hard constraints” except a moder-
ate increase in running times. In most cases, the bit-

wise derandomization of [Doe06] suffers from regarding
bit-levels independently, both in terms of run-time and
rounding errors. On the other hand, both randomized
versions produce almost identical rounding errors. We
also observe that when implementing the derandomized
tree-based approach, the choice of the tree is important.
In particular, we observe the natural choice of a tree
that results in rounding the variables in a (again nat-
ural) linear order, to lead to five times larger rounding
errors in certain instances. Even when using a random
linear order, we still see much larger rounding errors.

2 Description of the Rounding Algorithms

We shall now describe the three randomized rounding
algorithms and their derandomizations. As discussed
earlier, we lose nothing by assuming that the numbers
x1, . . . , xn to be rounded are all in [0, 1]. We shall
assume that we have only one constraint involving all
variables. To make the cardinality constraint feasible,
we assume that the sum of all variables is an integer.

2.1 Randomized Rounding. As discussed in the
introduction, classical randomized rounding (without
hard constraints) was introduced by Raghavan and
Thompson. It consists of simply rounding each variable
independently with probabilities as in (1.1).

Srinivasan’s approach to maintain a single cardinal-
ity constraint involving all variables is repeatedly round-
ing as follows. In arbitrary order, take two variables xj1

and xj2 , add a random ε to one and reduce the other by
ε. The random ε is chosen from [−1, 1] in such a way
that one variables becomes an integer, the other vari-
able stays in [0, 1] and E(xjk

) = xjk
for k = 1, 2. Note

that this precisely defines the distribution of ε. The pro-
cedure that performs this operation on two variables is
called simplify.

While Srinivasan’s approach builds on the fact that
rounding with cardinality constraints is easy for two
variables, the approach in [Doe06] exploits the fact
that this problem is easy if all variables have values in
{0, 1

2}. Let us describe this special case first and then
the reduction to the special case. If all variables are in
{0, 1

2} and add up to an integer, we can partition the
variables that are equal to 1

2 into pairs. For each pair,
independently and uniformly at random, we pick one
variable to be rounded up to one and round the other
down to zero. Clearly, this maintains the cardinality
constraint and satisfies (1.1).

If all variables have a finite binary representation
each of length at most �, we can use the above to reduce
the binary length. We write x = x′ + 2−�+1x′′ with
x′ ∈ [0, 1]n having binary length �−1 and x′′ ∈ {0, 1

2}n.
Let y′′ be the outcome of the above rounding procedure
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applied to x′′. Then y := x′ + y′′ has binary length
�−1 and satisfies

∑n
j=1 yj =

∑n
j=1 xj . Hence repeating

this for another � − 1 iterations, we obtain a random
binary vector that respects the cardinality constraint
with probability one.

As is obvious from the description or proven
in [RT87, Sri01, Doe06], all three types of roundings
(i) can be computed in time O(n) (assuming constant
length binary expansions in the third case), (ii) are ran-
domized roundings in the sense of (1.1), (iii) respect
the hard constraint (except for Raghavan’s approach),
and (iv) satisfy large deviation bounds like (1.2). More
precisely, for all λ ≥ 1, we have |(Ay)i − (Ax)i| ≤
(e−1)

√
max{(Ax)i, ln(2m)} ln(2λm) for all i ∈ [m] with

probability at least 1− 1/λ (for all three ways of gener-
ating randomized roundings).

2.2 Derandomizations. The derandomization
problem is to (typically deterministically) compute a
rounding y of x that satisfies bounds like (1.2) not
only with high probability, but surely. This is done
via the method of conditional probabilities. We round
the variables one after the other, where the current
variable is rounded to that value which, assuming the
remaining variables are rounded in the randomized
rounding fashion, minimizes the probability of violating
the large deviation bounds (or a suitable estimate
thereof). Typically, this leads to a run-time of O(nm).

The crucial problem here is estimating the condi-
tional probabilities involved. Raghavan [Rag88] gives
so-called pessimistic estimators that fulfill this purpose
under reasonable restrictions. This leads to the follow-
ing result.

Theorem 2.1. (Raghavan (1988)) Let x ∈ ([0, 1] ∩
Q)n and A ∈ {0, 1}m×n. In the RAM model of
computation, a y ∈ {0, 1}n can be computed in time
O(mn) such that for all i ∈ [m],

|(Ay)i − (Ax)i| ≤ (e − 1)
√

max{(Ax)i, ln(2m)} ln(2m).

Building on this derandomization, the following
derandomization for the case of cardinality constraints
was derived in [Doe06].

Theorem 2.2. Let A ∈ [0, 1]m×n. Let x ∈ [0, 1]n such
that

∑n
j=1 xj ∈ Z. Then for all � ∈ N, in time O(mn�)

a rounding y ∈ {0, 1}n of x can be computed such that∑n
j=1 yj =

∑n
j=1 xj and

|(Ax)i−(Ay)i| ≤ 90
√

max{(Ax)i, ln(4m)} ln(4m)+n2−�

for all i ∈ [m].

It is noted in [Doe06], the proof there is not opti-
mized to yield the best possible constant. After adding

a small improvement in Section 3, we obtain a deran-
domization that in our experiments in Section 4 pro-
duces rounding errors that are between 50% and 150%
of those produced by Raghavan’s derandomization.

For Srinivasan’s way of generating randomized
roundings no derandomization was known previously.
We shall fix this in the following section.

3 New Derandomizations
In this section, we sketch the new derandomizations we
developed while experimenting. Most noteworthy is the
derandomization of Srinivasan’s randomized roundings
with cardinality constraints.

3.1 Derandomizing Srinivasan’s Randomized
Roundings. As discussed in the introduction, Srini-
vasan did not provide a derandomization for his ran-
domized roundings with cardinality constraints. Due to
the sequential, highly dependent nature of the under-
lying random experiment (see the previous section), it
may seem unlikely that a derandomization for this ap-
proach exists (at least the first author thought so and
therefore developed an alternative approach). In this
subsection, we show that not only does a derandomiza-
tion exist; Raghavan’s method works directly (i.e. the
pessimistic estimators can be used to select between the
two outcomes of an application of simplify).

Theorem 3.1. Let A ∈ [0, 1]m×n and x ∈ [0, 1]n, such
that

∑n
j=1 xj ∈ Z. Then, a y ∈ {0, 1}n can be computed

in time O(mn) such that
∑n

j=1 yj =
∑n

j=1 xj and for
all i ∈ [m],

|(Ay)i − (Ax)i| ≤ (e − 1)
√

max{(Ax)i, ln(2m)} ln(2m).

Proof. We will show that for each binary decision the
algorithm has to make (in this case, assigning xa or
xb out of a pair of variables xa, xb), the estimated
conditional probability of a large deviation will decrease
with at least one of these assignments. The rest of the
result follows from Raghavan’s original paper [Rag88].

The formula for Raghavan’s pessimistic estimators
is

C+
i

n∏

j=1

((eai,jti − 1)pj − 1)

for the probability that (Ay)i grows too big, and

C−
i

n∏

j=1

((e−ai,jti − 1)pj − 1)

for the probability that it grows too small, where
C+

i , C−
i and ti are row-specific constants, pj is the

expected value of xj , and ai,j is the entry of the matrix
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A in position (i, j). In particular, note that for a fix i,
the constant in front of pj depends only on ai,j , which
is in our setting either 0 or 1, and if ai,j = 0, then this
constant is naturally 0.

Consider thus one estimator, with an estimated
probability of failure of P , and assume that ai,a = ai,b =
1. Letting Pa resp. Pb be the result of adjusting for xa

resp. xb being assigned, we will show min(Pa, Pb) ≤ P
by showing Pa + Pb ≤ 2P . Abstracting away the
common constants, we see that this depends on the
value of

(pa + δa + 1
c )(pb − δa + 1

c )+

(pa − δb + 1
c )(pb + δb + 1

c ) − 2(pa + 1
c )(pb + 1

c )

= (pb − pa)(δa − δb) − δ2
a − δ2

b

for a constant c. Now we only have to consider the cases
of the simplify procedure of [Sri01]: If pa + pb ≤ 1,
then δa = pb and δb = pa, and the expression reduces to
−2papb < 0; otherwise, δa = pb −1 and δb = pa −1, and
the expression reduces to 2pa +2pb−2papb−2 = 2(pa−
1)(1−pb) < 0 (since pa, pb < 1). The theorem, including
the constant, now follows from Raghavan [Rag88].

Remarkably, in this case the proof of the deran-
domization turns out to be easier than the proof of the
randomization, which uses more complicated machinery
of negative correlation (see [Sri01]).

3.2 Extending Raghavan’s Derandomization to
{−1, 0, 1} Matrices. As discussed in the introduction,
Raghavan formulated his derandomization for {0, 1}
matrices only, but the bitwise derandomization needs
a derandomization for {−1, 0, 1} matrices.

The simple way (taken in [Doe06]) is to decompose
the {−1, 0, 1} matrix A into two {0, 1} matrices A1, A2

such that A = A1 − A2, solve the derandomization
problem for the matrix

(
A1
A2

)
and note that the rounding

errors for A are at most twice the ones for
(
A1
A2

)
.

For randomized rounding, such tricks may increase
the theoretical bounds, but clearly, the true rounding
errors would be those given by the Chernoff bounds
using the matrix A, simply because we do independent
randomized rounding without taking the matrix into
account in the rounding procedure.

Surprisingly, things are different for derandomiza-
tions as first experiments showed (cf. Subsection 4.6).
For this reason, we extended Raghavan’s derandomiza-
tion to {−1, 0, +1} matrices.

Theorem 3.2. Let x ∈ ([0, 1] ∩ Q)n and A ∈
{−1, 0, 1}m×n. Denote by |A| the matrix obtained from
A by taking absolute values in each entry. Then in the

RAM model of computation, a y ∈ {0, 1}n can be com-
puted in time O(mn) such that for all i ∈ [m],

|(Ay)i−(Ax)i| ≤ (e−1)
√

max{(|A|x)i, ln(2m)} ln(2m).

Proof. Since we use Theorem 3.2 only in the case that
x ∈ {0, 1

2}n, we shall prove the result only for this
setting. So let us assume that x ∈ {0, 1

2}.
We claim that we can now use Raghavan’s pes-

simistic estimators. To see this, note first that they
bound the probability that the rounding error in one
of the m linear constraints exceeds the given limit, by
the sum of these probabilities (cf. e.g. equation (2.8)
in [Rag88]). Hence it suffices that we show that the es-
timators for each of these individual events also work if
some aij have the value −1.

Such an estimator bounds the probability that a
weighted sum

∑n
j=1 ajXj , aj ∈ {0, 1}, of independent

{0, 1}–valued random variables Xj deviates from its
expectation by more than given limits. Now assume
that some of the aj are −1 and that all Xj are
randomized roundings of numbers xj ∈ {0, 1

2}. Then
we define a∗

j by a∗
j = 1, if aj = −1 and xj = 1

2 , and
a∗

j = aj otherwise. We also define δj = 1, if aj = −1 and
xj = 1

2 , and δj = 0 otherwise. Then
∑n

j=1 ajXj has the
same distribution as

∑n
j=1(a

∗
jXj − δj). In consequence,∑n

j=1 ajXj has the same distribution of its deviation
from the mean as

∑n
j=1 a∗

jXj =
∑n

j=1 |aj |Xj . For
the latter, however, we may simply employ Raghavan’s
estimators.

In Subsection 4.6 we shall see that using the new
version of the derandomization in the bit-wise deran-
domization reduced the rounding errors observed in ex-
periments by roughly a third.

On the theoretical side, using this derandomization,
for any A ∈ {0, 1}m×n and x ∈ {0, 1

2}n we can
compute in time O(mn) a rounding y of x respecting
the cardinality constraint such that |(Ay)i − (Ax)i| ≤
(e − 1)

√
max{(Ax)i, ln(2m)} ln(2m) for all i ∈ [m]

(where the constant e−1 is an improvement by a factor
of two over the previous method of combining Lemma 4
in [Doe06] with Raghavan’s derandomization). Since
the constant of 90 in Theorem 2.2 depends superlinearly
on the one of the {0, 1

2} case, this reduces the constant
in Theorem 2.2 to 18 (this is f(e − 1) in [Doe06]).

Theorem 3.3. Let A ∈ [0, 1]m×n. Let x ∈ [0, 1]n such
that

∑n
j=1 xj ∈ Z. Then for all � ∈ N, in time O(mn�)

a rounding y ∈ {0, 1}n of x can be computed such that∑n
j=1 yj =

∑n
j=1 xj and

|(Ax)i−(Ay)i| ≤ 18
√

max{(Ax)i, ln(4m)} ln(4m)+n2−�

for all i ∈ [m].
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From now on, when talking about the derandomized
version of the bitwise approach in [Doe06], we shall
always mean the improved variant just discussed.

4 Experiments

We will now present our experimental results. As men-
tioned in the introduction, we test randomized and
derandomized versions of Raghavan’s classical round-
ings [Rag88], Srinivasan’s tree-based roundings [Sri01],
and the first author’s bitwise roundings [Doe06], mak-
ing six methods in total. The tests are divided into two
groups: random instances, with various parameters, and
structured instances stemming from an approach to gen-
erate low-discrepancy point sets via randomized round-
ing respecting a cardinality constraint due to the first
author and Gnewuch [DG06]. We will first give a short
discussion of implementation details.

Throughout this section, we use shorthand names
for the methods in graphs and tables: ragh-rand and
ragh-derand for random respectively derandomized clas-
sical rounding, sri-rand and sri-derand for Srinivasan’s
method, and doerr-rand and doerr-derand for bitwise
rounding.

4.1 Implementation. All methods were imple-
mented by the authors in standard C code, and com-
piled by the GNU C compiler (gcc) version 4.1.1 un-
der Linux. In general, double-precision floating point
numbers were used for all real-valued numbers; no sig-
nificant imprecision was detected (more on this below).
For the randomizations, and other randomness called
for, the GNU C library pseudo-random function was
used, seeded from the Linux entropy pool.

The text in this section assumes familiarity with
the methods. For descriptions, see Section 2 and the
original papers.

4.1.1 Classical Roundings. The classical deran-
domized rounding was implemented following Ragha-
van’s paper [Rag88], using floating-point numbers to
emulate reals, but restricted to 0/1 entries in the ma-
trix (the extended derandomization described in Sec-
tion 3 that handles matrices with -1 entries was im-
plemented for a special case only, for use in the bit-
wise derandomization). To get an O(mn) running time,
as described in the paper, the pessimistic estimators
were calculated fully only initially (this calculation tak-
ing O(mn) time), and subsequently modified for every
assignment made. Though this was a potential source
of accumulated imprecision, comparing the values of the
modified estimators to the values of estimators recalcu-
lated from scratch revealed no significant errors (usually
the error had roughly the same order of magnitude as

the floating point epsilon used, 10−16).
The method is greedy in that when selecting be-

tween two assignments, it picks the assignment which
minimizes the sum of the pessimistic estimators (rep-
resenting the risk of breaking a bound). Parameters
were chosen so that the initial sum of the estimators
was 0.99, and this value subsequently decreases steadily
during the run of the algorithm (literally not a single
occasion was found where both assignments considered
would lead to an increased estimated risk, not even due
to floating point imprecision).

Classical randomized rounding provided no imple-
mentation difficulties beyond the issue of randomness
touched on above.

4.1.2 Srinivasan’s Tree-based Method. We have
implemented Srinivasan’s method for generating ran-
domized roundings respecting disjoint cardinality con-
straints [Sri01], here referred to as the tree-based
method since the repeated applications of the simplify
procedure forms a tree of variable comparisons, as well
as our new derandomization of this procedure given in
Section 3.

The order of comparisons for both the randomized
and derandomized versions is that of a balanced tree,
with the variables taken in the order they are given
(implemented in-place through a loop with increasing
step lengths). Though the adjustment of probabilities
is highly sequential, the precision in the calculations was
again found to cause no problems.

The derandomization uses classical derandomized
rounding, modified to consider two variables at a time.
The specifics of this procedure are as given above.

4.1.3 Bitwise Rounding. Finally, we implemented
the bitwise roundings of the first author [Doe06], using
the extension described in Section 3. We chose 64-bit
long integers as precision for the fix-precision numbers,
to match the 52-bit mantissa of the doubles we used
elsewhere.

For the pairing of variables that is performed when
rounding each bit, we just pair the variables up in the
order they are given (i.e. for each bit, the first two
variables that are non-zero in this bit are paired, and
the next two, and so on).

The derandomization uses the modification of
Raghavan’s derandomization given in Theorem 3.2 in
a special-case modification that uses the fact that all
variables to be rounded are 0 or 1

2 . We did not try to
further optimize Raghavan’s derandomization for this
case, though we would expect some additional advan-
tages. In particular, we did not use the opportunity to
in this case exactly compute the conditional probabili-
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ties via binomial coefficients.

4.2 Running Time. Here, we show the running
times for the methods. The times were measured on
a CPU server with Intel Xeon CPUs at 3 GHz with 512
KB of cache, and 3 GB of memory.

Table 1 gives the running times for a rounding
call for an instance with 10,000 variables and 10,000
rows of the matrix, for the variables having long and
short bitstrings (i.e. random values resp. all xj = 1

2 ).
The calculation of the rounding error for this size of
instances takes approximately one second. Because the
random methods round 10,000 variables so quickly that
the measured times threaten to be mostly noise, these
times are given for rounding a million variables as well.

Though the difference in time for the O(n) random
methods and the O(mn) derandomized methods is quite
big, the time required for the derandomizations is still
manageable for these sizes, and as we shall see in
the following sections, the derandomizations frequently
have a big advantage in terms of solution quality.

4.3 Random Instances. Our first set of tests are
square random matrices with 0/1 entries. The matrices
are either dense, with a 1

2 independent chance of any
given entry being a 1, or sparse, with a 1

20 independent
chance, and the variables are either random, i.e., uni-
formly random in (0, 1), or all equal to 1

2 . For the meth-
ods that support hard constraints, one global constraint
preserving the sum of all variables was used; the sum
of the variables is an integer in each case. The source
of randomness was again the GNU C library pseudo-
random routine, seeded from the Linux entropy pool.

Figure 1 shows the average rounding errors (i.e.,
the average values of the (maximum) rounding errors)
for the six methods, for each of these four types of
random experiment; the average is taken over ten
instances for each point. The largest difference is that
between the random and the derandomized methods,
which is presumably due to the greedy nature of the
derandomizations, but also note how the behaviour of
the classical roundings depends on the denseness of
the matrix, and how that of the bitwise roundings
varies with the bit-length of the probabilities. To
show the results more precisely, Table 2 gives the
average rounding errors adjusted by the outcome of
classical randomized rounding. As can be seen, the
effect of derandomization in these experiments is a gain
of a factor of approximately two (with the exception
of bitwise rounding for long bitstrings, as discussed
elsewhere.) The line “theory bound” shows the value
of relative size of the bound given in Theorem 2.1.

More discussion on these outcomes follows in Sec-

tion 4.7.

4.4 Low-discrepancy Pointset Instances. Our
second set of tests are instances of a more structured
type. The source of the instances is the problem of gen-
erating low-discrepancy pointsets, i.e. placing n points
in a d-dimensional hypercube [0, 1]d so that, roughly
speaking, every subcube contains approximately the ex-
pected number of points. Doerr and Gnewuch [DG06]
have proposed a method for creating such pointsets,
where a critical part of the process involves solving a
rounding problem.

The rounding instances of this section are dis-
cretizations of the problem: The axes are subdivided
into k intervals, forming a non-regular grid of kd small
boxes, and the corresponding rounding instance is the
problem of deciding the number of points to be placed
in each such box. Thus, instances in this section are
created deterministically from three parameters: the
number of points n, the number of subdivisions k, and
the number of dimensions d. The result is a round-
ing instance on kd variables, with a kd × kd matrix of
soft constraints describing the discrepancy of subcubes
formed from the grid1 and one global hard cardinality
constraint stating that the number of points in total is
to be preserved. If you are familiar with the topic, you
should note that the rounding errors for these instances
are not the final discrepancies, which will be higher, as
the exact placements of the points inside their boxes
have not yet been fixed.

Our first test uses two dimensions only, with the
number of subdivisions varying from 2 to 100 (repre-
senting instances with 4 to 10, 000 variables). Since the
exact value of n turns out to have significant and ir-
regular effects on the rounding errors, we did runs with
n varied from 90 to 110 to introduce some variation.
The results are displayed in Figure 2; the first three
graphs display the range of variation for the random
and derandomized versions of the three basic methods,
and the fourth compares the average outcomes for the
derandomized versions. For these experiments, there
is no clear difference between Srinivasan’s method and
bitwise rounding, but it seems that ignoring the cardi-
nality constraint not only leads to the wrong number of
points, but to lower-quality solutions as well.

Our second test for these instances varies the num-
ber of dimensions from 2 to 14, while keeping the num-
ber of subdivisions constant at 2 (thus creating in-
stances with 22 = 4 to 214 = 16384 variables). The
number of points was again varied from 90 to 110. The

1For reasons we will not go into here, it suffices to consider
subcubes with one corner in the origin.
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Figure 1: Rounding errors inflicted by the six rounding algorithms on four different types of random input
instances (described in Section 4.3).

169 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Instance ragh-rand sri-rand doerr-rand ragh-derand sri-derand doerr-derand
10,000 numbers, short < 0.01s < 0.01s < 0.01s 49s 40s 24s
10,000 numbers, long < 0.01s < 0.01s 0.02s 52s 75s 666s

1 million numbers, short 0.05s 0.09s 0.38s - - -
1 million numbers, long 0.05s 0.14s 1.20s - - -

Table 1: Times needed to round instances with 10,000 and 1 million numbers. Short means that the numbers
to be rounded have a 1-bit expansion, that is, are all 1

2 . Long numbers are 32-bit random numbers in
{0, 2−32, . . . , 1 − 2−32}. For the derandomized versions, a random {0, 1} matrix of 10,000 rows was used to
define the linear constraints.

results are shown in Figure 3. Again, the classical
roundings are of lower quality, but here we also see a
noticeable advantage of the derandomization of Srini-
vasan’s method over derandomized bitwise rounding.

4.5 Effect of Tree Shape in Srinivasan’s
Method. In this section, we discuss an odd effect that
occurred in testing the derandomization of Srinivasan’s
method.

Specifically, we found that for certain structured in-
stances, the shape of the tree of simplify comparisons
has a large effect on the rounding error in the derandom-
ization (though none was seen for the random version
of the method, or for random instances). The “tree”
in our first implementation, as the issue was not con-
sidered, was actually a stack—simply a list, where the
variables were assigned one by one, which viewed as a
tree would have depth n for n variables. When tested on
the discrepancy instances of the previous section, this
less balanced, stack-like derandomization turned out to
produce increasingly bad solutions with an increasing
number of subdivisions. In addition, this effect seems
to be a property of the tree shape itself, rather than of
choosing a particularly bad variable ordering, as random
permutations of the order of the variables (“shuffling”)
before the call was not found to compensate.

Figure 4 illustrates the effect, repeating the same
d = 2, 2 ≤ k ≤ 100 experiment as in Figure 2. On
the left is the average outcomes of the variants of Srini-
vasan’s method—the standard random procedure, the
stack-like derandomization with and without shuffling
the variables, and the derandomization using a balanced
tree, the latter being the one used in the rest of this
paper. On the right is a graph illustrating the ranges
(tenth to ninetieth percentile of the tests, together with
the median). Note that even when shuffling the vari-
ables it is rare to get an ordering which produces even
as good results as the average outcome of the random
version, not to mention the far superiour balanced de-
randomization.

We can offer no good explanation for such a specific

occurrence. In the absence of better interpretation, all
we can say is to recommend to avoid unbalanced trees
in derandomizations of Srinivasan’s method.

4.6 Effect of Using the Extended Raghavan De-
randomization. In Section 3, we extended Raghavan’s
derandomization to include matrices having −1 entries.
In Fig. 5 we depict the rounding errors produced by
the bitwise derandomization using both the (old) de-
composition trick and the new version of Raghavan’s
derandomization. We applied both algorithms on ran-
dom instances as described in more detail in Section 4.3.
We see that, roughly speaking, we pay for using the de-
composition trick with a 50% increase in the rounding
errors.

4.7 Discussion. We now summarize and interpret
the results of the experiments we described in the
previous subsections.
Price of Constraints. Contrary to what one might
expect, the results show that adding a single hard
constraint does not make rounding significantly harder,
neither in terms of running times nor rounding errors.

For rounding errors, often the opposite is true.
As Table 2 demonstrates, in particular in the presence
of constraints that involve many variables, an additional
cardinality constraint involving all variables leads to
rounding errors reduced by up to 38%. Note that a
few such large constraints suffice to show this effect, as
demonstrated by the rounding problem stemming from
the higher-dimensional discrepancy problem.

Concerning running times, for full bit-length num-
bers the two bitwise approaches lose about a factor of 15
over Raghavan’s approaches (without hard constraint),
whereas Srinivasan’s randomized approach and our de-
randomization thereof are about 50% slower. For all
randomized versions, this is not too important since all
algorithms round a million numbers in less than two
seconds.
Tree-based or Bitwise? With two substantially
different methods to generate randomized roundings
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Figure 2: Rounding errors in low-discrepancy point set instances of dimension d = 2. The number k of subdivisions
ranges from 2 to 100. In a) to c), each of the three algorithms in its randomized and derandomized version is
applied. The number of points in the discrepancy problem ranges from 90 to 110. Depicted are the ranges of the
(maximum) rounding errors for each of these 21 instances together with the average value. In d), the averages
are compared for the three derandomizations.

respecting hard constraints, the important question
naturally is which one is the better. For the randomized
versions, surprisingly the results lead to almost no
distinction. At most Fig. 3 shows a few-percent lead of
the tree-based approach in average, with the invervals
in which the errors lie mostly overlapping.

For the derandomized versions, our derandomiza-
tion of Srinivasan’s tree-based approach typically is
clearly superior to the bitwise one. As a comparison
of Fig. 1 a) and b) versus c) and d) shows, this stems
from rounding each bit-level separately without tak-
ing care for previously accrued errors. The lead of the
tree-based approach was strongest for dense random in-
stances (41.4% vs. 57.6% of the error caused by indepen-
dent randomized rounding), but less significant for the

discrepancy instances. For the 2-dimensional case, both
derandomizations seem to be equally good in average,
with the tree-based method showing greater variation
in the quality from instance to instance (cf. Fig. 2 d)).

It should be noted that the derandomization of
Srinivasan’s approach can produce much worse results
depending on the tree that is used. The theoretical
bounds proven in [GKPS06] hold for any tree, so no
preference is expressed there. However, the results in
Section 4.5 show that using the natural stack-type tree
(pairing the variables one after the other) can produce
five times as large rounding errors.
Randomized or Derandomized? All experiments
show that the derandomized algorithms achieve smaller
rounding errors. For the 2-dimensional matrix rounding
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Method [0, 1] vector, [0, 1] vector, constant 1/2, constant 1/2, d = 2, 12 ≤ d ≤ 14
dense sparse dense sparse 90 ≤ k ≤ 100 k = 2

ragh-rand 100% 100% 100% 100% 100% 100%
sri-rand 86.1% 98.8% 86.2% 97.7% 61.9% 70.9%

doerr-rand 85.8% 98.1% 86.2% 97.9% 62.5% 74.7%
ragh-derand 49.2% 45.2% 47.5% 42.5% 26.7% 56.3%
sri-derand 41.4% 45.9% 44.8% 49.5% 25.2% 35.9%

doerr-derand 57.6% 66.3% 43.0% 49.6% 25.5% 44.7%
Theory bound 284% 234% 232% 192% 259% 324%

Table 2: Adjusted rounding errors for the different instances, averaged over different problem sizes. For the
random instances, sizes vary from 8,000 to 10,000. For each instance size, the observed discrepancies are rescaled
to give 100% for ragh-rand.

problem and Raghavan’s method, we observe nearly
a factor four advantage of the derandomization. The
superiority of the derandomizations naturally stems
from the greediness of these approaches. Nevertheless,
we did not expect to gain that much. Depending on the
application, this might be worth the extra computation
effort.

This finding seems to be mostly independent from
having hard constraints. To the best of our knowledge,
however, it has not been published yet even in the clas-
sical setting without constraints. Note that repeatedly
generating a randomized solution until a good one is
found will give inferiour results. The problem is that
computing the rounding error is quite costly (about 1s
for the 10k×10k instances in Table 4.2). Hence doing so
between 50 and 100 times is as costly as running a de-
randomized algorithm, but is unlikely to find an equally

good solution.

5 Conclusions

In this work, we regarded the problem of generating ran-
domized roundings with a single cardinality constraint
and the corresponding derandomizations from the al-
gorithm engineering perspective. This is motivated by
recent results of Srinivasan and the first author. Guided
and motivated by our experimental findings, we im-
proved the bitwise derandomization given in [Doe06]
and developed the first derandomization of Srinivasan’s
tree-based randomized approach [Sri01]. We then ex-
perimentally compared the resulting (and previous) al-
gorithms. To the best of our knowledge, this is the first
experimental investigation of randomized rounding even
in the case of no hard constraints.

Both for random instances and more structures ones
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stemming from modelling a geometric discrepancy prob-
lem, our experiments show that adding a single cardinal-
ity constraint reduces the rounding errors (by up about
40%) without seriously increasing the running times. In
general, the derandomized tree-based approach is supe-
rior to the derandomized bitwise one, while the ran-
domized versions produce very similar rounding errors.
When implementing the derandomized tree-based ap-
proach, however, the choice of the tree used can make
a huge difference (a factor of up to five in the rounding
errors).
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