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Summary. This article concerns a new joint modeling approach for correlated data analysis. Utilizing
Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional gener-
alized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated
outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an effi-
ciency gain in the estimation of regression coefficients. The availability of joint probability models enables us
to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for
discrete correlated data, including multidimensional logistic regression models and a joint model for mixed
normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared
to the popular generalized estimating equations, which is a moment-based estimating equation method to
join univariate GLMs. Two real-world data examples are used in the illustration.
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1. Introduction
Multidimensional outcomes are frequently collected from
biomedical studies. For example, a vector response variable
might comprise multiple measurements from several response
variables, such as blood pressure, heart rate, and some heart
function indicators for a subject. Other examples of such data
include clustered data collected from nuclear families of two
parents and one affected child in genetic studies, and longitu-
dinal data with a fixed number of repeated measurements col-
lected, for example, from crossover trials (Jones and Kenward,
1989). Regression analysis is challenged by such data in study-
ing the relationships between vector response variables and
associated covariates. It is not uncommon that such data are
analyzed via separate univariate regression models, one for
each response component.

An estimating equations (EE)-based approach has been
widely used in practice to join marginal models for correlated
outcomes. The EE method enjoys the robustness against mis-
specification of fully parametric models, because typically it
only requires the correct specification of the first two mo-
ments of data distributions. On the other hand, there are
a few shortcomings associated with the EE method due to
the lack of a fully parametric model, including (i) the loss of
estimation efficiency, (ii) the lack of procedures for model as-
sessment and selection, and (iii) the difficulty of incorporating
vector outcomes of mixed types.

The burn injury data reported in Fan and Gijbels (1996)
is an example of vector outcomes of mixed types. The data
contain 981 cases of burn injuries, where two response vari-
ables, the disposition of death and the total burn area, are
both related to a patient’s age. To model the respective
relationships, we let the severity of burn injury be y1 =
log (burn area + 1), which is a continuous response variable,
and let the disposition y2 be a binary response with 1 for
death from burn injury and 0 for survival. To investigate how
age (x) affects the severity of burn injury and the probabil-
ity of death, one may propose two marginal mean models:
µi1 = β01 + β11xi, and logit(µi2) = β02 + β12xi, where µi1 =
E(yi1 |xi ) is the expected log-burn area, and µi2 = P (yi2 =
1 |xi) is the probability of death from burn injury for patient
i, given the age of the patient. Note that the two regression
models have different regression coefficients as well as differ-
ent link functions (i.e., the identity and the logit). A simple
analysis of the data would be just to fit the two marginal mod-
els separately, because this can be easily done using existing
software, such as SAS or R. Obviously, this analysis is not ef-
ficient as it ignores the correlation between the two response
variables. Moreover, as far as a joint regression analysis is
concerned, a conditional interpretation for one response vari-
able on others is often of interest. In this burn injury data
analysis, we can obtain the conditional distribution of death
given burn severity as a function of age, or vice versa (see
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Figure 2 in Section 5). However, joining marginal models by
a certain working correlation structure in the EE framework,
unfortunately, does not lead to such a conditional distribution
interpretation.

In this article, we attempt to develop a unified and flexi-
ble likelihood framework to join various marginal models and
overcome the above shortcomings. For the ease of exposition,
we consider the familiar generalized linear models (GLMs) as
marginal models. To join marginal GLMs, we invoke Gaussian
copulas (e.g., Joe, 1997; Song, 2000) as the link model, and
the resulting joint regression model is referred to as the vec-
tor GLM (VGLM). Considering applications of the proposed
method to analysis of biomedical data, we focus particularly
on the development of the VGLM for correlated discrete out-
comes and correlated mixed outcomes. Our simulation studies
and data analyses will center on vector logistic models and
vector models for mixed outcomes, with comparisons to the
moment-based EE approach. In particular, we use two exam-
ples to show the gain of a joint analysis in improving estima-
tion efficiency and the flexibility of handling mixed outcomes.
The first example presents the detail concerning the analysis
of the burn injury data discussed above. The other exam-
ple illustrates the utility of a three-dimensional vector logis-
tic model in the analysis of a randomized, placebo-controlled
trial on multiple sclerosis patients to study the efficacy of
fampridine, a compound to enhance nerve conduction (Davis,
2002). Although the illustration is oriented to the two limited
scenarios, the proposed method is general enough to be ap-
plicable in a much broader range of problems that require a
joint regression analysis.

The organization of the article is as follows. In Section 2,
we first describe a general strategy of joining marginal models
and then briefly review univariate GLM as well as Gaussian
copulas. A general theory of the maximum likelihood infer-
ence is discussed in Section 3. To illustrate efficiency gain in
parameter estimation, Section 4 focuses on three-dimensional
VGLMs for discrete data, with comparisons of the respective
asymptotic relative efficiencies (AREs) to the popular gen-
eralized estimating equations (GEEs). We present two data
analyses in Section 5 and give some concluding remarks in
Section 6. Some technical details can be found in the Web
Supplementary Materials.

2. Framework
To develop a likelihood-based machinery to integrate univari-
ate regression models into a joint analysis, a fully parametric
multidimensional link model is inevitable. In this section, we
first describe a general strategy of joining univariate regres-
sion models, and then give a brief review of Gaussian copula
models.

2.1 Joining Marginal Models
GLMs (Nelder and Wedderburn, 1972) have been playing
a central role in the regression analysis of one-dimensional
nonnormal data. In a GLM, a univariate response y is as-
sumed to follow an exponential dispersion family distribution
(Jørgensen, 1987, 1997), denoted by ED(µ, ϕ), with mean µ
and dispersion parameter ϕ. The density function of ED(µ,
ϕ) is given by

g(y;µ,ϕ) = c(y;ϕ) exp[{θy − κ(θ)}/ϕ], y ∈ R, θ ∈ Θ, (1)

where κ(·) is the cumulant generating function, Θ is an open
interval, and ϕ varies in a subset of (0, ∞). It is known that
the mean and variance are, respectively, µ = E(y) = τ(θ)
and var(y) = ϕ v(µ), where v(·) is the unit variance function,
with τ(·) = κ̇(·) and v(·) = τ̇{τ−1(·)} being the respective first
derivatives of κ(·) and τ(·).

A GLM also postulates that the mean µ is related to p
covariates x = (x1, . . . ,xp)

T by a known link function h,

h(µ) = η(x) = xTβ = β0 + β1x1 + · · · + βpxp, (2)

where β = (β0, β1, . . . ,βp)
T is a vector of regression coeffi-

cients. Statistical inference for β is one of the main tasks in
the theory of GLMs.

To jointly analyze vector data by the GLM approach, mul-
tidimensional GLMs, or VGLMs, specify the conditional dis-
tribution of a vector response y given x as follows:

f(y |x;β,ϕ,Γ) = δ(y, η1, . . . , ηm;ϕ,Γ), (3)

with, in general, the regression coefficients β = (βT
1 , . . . ,βT

m)T

and the linear predictors ηj = ηj(x) = xTβj , j = 1, . . . ,m.
The parametric link model δ(·; ϕ, Γ) is parameterized by the
vector of dispersion parameters ϕ = (ϕ1, . . . ,ϕm)T and the
association matrix Γ. Here Γ = (γij) characterizes the associ-
ation among the components of y. The regression coefficients
βj ’s are allowed to be different.

Examples of the VGLM (3) with the common regres-
sion parameter include the log-linear representation (Bishop,
Fienberg, and Holland, 1975) or the Bahadur (1961) repre-
sentation for correlated binary responses (see Zhao and Pren-
tice, 1990; Fitzmaurice et al., 1993), and generalized linear
mixed models (see Breslow and Clayton, 1993; McCulloch
and Searle, 2001; Diggle et al., 2002). Examples of models
with different βj ’s include the bivariate logit model (see Mc-
Cullagh and Nelder, 1989, section 6.5.6) and the bivariate
probit model (Ashford and Sowden, 1970) for correlated bi-
nary responses, among others.

In this article, we consider a new class of parametric link
models δ(·) via the multivariate distributions generated by
Gaussian copulas (Song, 2000). The resulting framework pro-
vides a unified and flexible approach to a joint regression anal-
ysis of correlated continuous, discrete, or mixed outcomes.
Advantages of the copula link model and the resulting VGLMs
include (i) the association coefficients in the copula model are
not constrained by marginal means, (ii) the VGLMs are re-
producible or marginally closed, and (iii) the regression coef-
ficients have marginal interpretation.

2.2 Multivariate ED Family Distributions
We now give a brief review of the Gaussian copula and the
resulting multivariate ED (MED) distributions (Song, 2000),
which pertain to the specification of the link model δ(·).

For component j, j = 1, . . . ,m, denote the marginal cumu-
lative distribution function (CDF) of ED(µj , ϕj) by Gj (yj ;
µj , ϕj) or simply Gj(yj). Following Sklar (1959), a joint CDF
with m ED margins can be constructed by the Gaussian cop-
ula in the form

F (y;µ,ϕ,Γ) = C {G1(y1;µ1, ϕ1), . . . , Gm(ym;µm, ϕm) |Γ} ,
(4)
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where µ = (µ1, . . . ,µm)T is the vector of m means, ϕ =
(ϕ1, . . . ,ϕm)T is the vector of m dispersion parameters, and
C(·) is the m-variate Gaussian copula with the CDF given by

C(u |Γ) = Φm

{
Φ−1(u1), . . . ,Φ

−1(um)
∣∣Γ

}
,

u = (u1, . . . , um)T ∈ (0, 1)m. (5)

Here Φm (or φm) and Φ (or φ) are the respective CDFs
(or densities) of m-variate normal Nm(0, Γ) with a corre-
lation matrix Γ and the standard univariate normal N(0,1)
marginals. Note that all marginal parameters are brought
into the F, and the parameters for association are inherited
from the correlation matrix Γ of the multivariate normal. It
is known that the Gaussian copula in equation (4) is a joint
CDF of m uniform random variables on (0, 1) with associa-
tion matrix Γ = (γjj′)m×m in which the diagonals γjj = 1 and
off-diagonals |γjj′ | < 1. Like the multivariate Gaussian distri-
bution, an MED distribution is fully parameterized by the
three sets of parameters, µ, ϕ, and Γ, and it can accommo-
date both positive and negative associations.

Clearly, the multivariate normal distribution is a special
case of the MED when all margins are univariate Gaussian. In
this case µ is the vector of mean parameters, ϕ is the vector of
variance parameters, and Γ is the Pearson correlation matrix.
With non-Gaussian margins, the (i,j)th element of Γ becomes
a pairwise nonlinear association, namely, the van der Waerden
coefficient (Klaassen and Wellner, 1997), defined by

γij = corr
[
Φ−1{Gi(yi)},Φ−1{Gj(yj)}

]
. (6)

When both marginal CDFs Gt(·), t = i, j are continuous,
γij represents the linear correlation of two normal scores
Φ−1{Gt(yt)}, t = i, j. When yi and yj are discrete, the equa-
tion (6) still holds, but the interpretation would be different
with different data types. For example, when yt, t = i, j are
both binary, the resulting bivariate binary model will have the
same joint probability mass function as that induced from the
threshold latent variable model via dichotomization (Song,
2007, p. 133). This implies that the association parameter
γij can be interpreted as the tetrachoric correlation (Harris,
1988). See Song (2000) for more details in other distribution
cases such as Poisson distribution.

In the following, we give density functions of MEDs with
different marginal distributions. When all m margins are con-
tinuous, the joint density of an MED in equation (5) is given
by

f(y;µ,ϕ,Γ) = c {G1(y1), . . . , Gm(ym) |Γ}
m∏
i=1

gi(yi;µi, ϕi),

(7)

where c(·) is the density of the copula C(·) in (4) given by

c(u |Γ) = |Γ|−1/2 exp
{

1

2
qT

(
Im − Γ−1

)
q
}

,

with q = (q1, . . . , qm)T being a vector of normal scores qi =
Φ−1(ui), i = 1, . . . ,m, and Im being the m-dimensional iden-
tity matrix. Obviously, Γ = Im implies the independence of
the m components, similar to the multivariate normal.

Consequently, when the function δ required in the VGLM
(3) is chosen to be the density f specified by equation (7),
the VGLM yields a large class of multidimensional regression

models for various correlated continuous data, including the
vector normal linear model, the vector gamma GLM model,
the vector inverse Gaussian GLM model, and the vector com-
pound Poisson GLM model.

When all m margins are discrete, the joint probability func-
tion of a discrete MED distribution takes the form

f(y) = P(Y1 = y1, . . . , Ym = ym)

=

2∑
j1=1

· · ·
2∑

jm=1

(−1)j1+···+jmC(u1,j1 , . . . , um,jm |Γ), (8)

where uj,1 = Gj(yj−) and uj,2 = Gj(yj). Here Gj(yj−) is the
left-hand limit of Gj at yj .

Likewise, a large class of multidimensional regression mod-
els for correlated discrete data is specified under a unified
framework, by taking this probability mass function f in equa-
tion (8) as the δ for the VGLM in equation (3). In this article,
a special vector GLM from this class, the vector logistic model
for correlated dichotomous data, will be studied in detail in
Section 4.

When the m margins appear to be mixed outcomes, say,
the first m1 margins being continuous and the remaining m2 =
m − m1 margins being discrete, the joint density function is
given as follows. Let u = (uT

1 , uT
2 )T , with u1 = (u1, . . . , um1)

T

and u2 = (um1+1, . . . , um)T . The same partition and notation
are applied for vectors x and q. Let

Cm1
1 (u1,u2 |Γ)

=
∂m1

∂u1 · · · ∂um1

C(u1, . . . , um |Γ)

= (2π)−
m2
2 |Γ|− 1

2

∫ Φ−1(um1+1)

−∞

· · ·
∫ Φ−1(um)

−∞
exp

{
1

2

(
qT

1 ,xT
2

)
Γ−1

(
qT

1 ,xT
2

)T − 1

2
qT

1 q1

}
dx2.

Then, the joint density is given by

f(y) =

m1∏
j=1

gj(yj) ×
2∑

jm1+1=1

· · ·
2∑

jm=1

(−1)jm1+1+···+jmCm1
1

× (G1(y1), . . . , Gm1(ym1), um1+1,jm1+1 , . . . , um,jm |Γ),

(9)

where ut,jt ’s are the same as defined in equation (8). Section 5
presents an application of this joint modeling in the analysis
of correlated mixed outcomes from a study of burn injuries.

3. Simultaneous Maximum Likelihood Inference
Given covariates (X1, . . . ,Xn), suppose the responses
(y1, . . . ,yn) follow an m-variate MED distribution,

yi |Xi = (xi1, . . . ,xim) ∼ MEDm(µi,ϕi,Γ), i = 1, . . . , n,

where response vector yi = (yi1, . . . , yim)T has mean µi =
(µi1(xi1), . . .,µim(xim))T and dispersion ϕi = (ϕi1, . . . ,ϕim)T .
Here Xi = (xi1, . . . ,xim) is a p × m matrix of covariates.
Moreover, the mean µij follows a marginal GLM, hj(µij) =
ηj(xij) with ηij = xT

ijβj and link function hj , j = 1, . . . ,m.
When modeling the dispersion parameter is also of interest,
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similar to Smyth (1989), one may specify an additional GLM
to characterize the varying dispersion as a function of co-
variates. The primary objective is to establish simultaneous
maximum likelihood inferences for all the model parameters
θ = (β, ϕ, Γ).

In many cases, the general model above may become more
specific. For example, typically in longitudinal or clustered
data analysis, a VGLM (3) takes a common regression pa-
rameter vector β with a common link function. In addition,
the association matrix Γ may be further parameterized by a
parameter vector α, denoted by Γ(α), such as exchangeable,
AR(1) or 1-dependence. In this case, we have θ = (β, ϕ, α).

Let the log-likelihood function of the given model be

)(θ;Y,X) =

n∑
i=1

)i(θ;yi,Xi). (10)

Then, the MLE of θ is

θ̂ = argmax
θ

)(θ;Y,X).

To find the MLE θ̂ numerically, we implement a Gauss–
Newton-type algorithm that allows us to search for the MLE
with no need of second derivatives of the log-likelihood func-
tion (Ruppert, 2005). As seen in Section 1 of Web Supplemen-
tary Materials, explicitly deriving the second-order derivatives
of the log likelihood may appear to be very difficult. This issue
could be more troublesome in the case of discrete data.

It follows from the standard ML theory that under certain
regularity conditions, the MLE θ̂ is consistent and asymp-
totically normal. When the analytic expressions of second-
order derivatives of the log likelihood are unavailable, follow-
ing Ruppert (2005), we estimate the observed Fisher Infor-
mation using the following sandwich form:

Î = A−1
n (θ̂)Bn(θ̂)A−1

n (θ̂), (11)

where An(θ) is the numerical Hessian matrix and Bn(θ) =
1
n

∑n

i=1 )̇i(θ;yi,Xi))̇i(θ;yi,Xi)
T .

The key step in the above Gauss–Newton algorithm
adopted in the search for the MLE is to take step-halving
that guarantees likelihood increases progressively over itera-
tions. Precisely, the (k + 1)th iteration updates the parameter
θ by

θk+1 = θk + ε
{
Bn(θk)

}−1
)̇(θk),

where ε is the step-halving term that is chosen as follows:
starting at 1, it halves each time until )(θk+1) > )(θk) holds
in one iteration. Finally, the algorithm stops when the in-
crease in the likelihood is no longer possible or the difference
between two consecutive updates is smaller than a prespeci-
fied precision level.

Among several optimization algorithms that we have tried,
such as Newton–Raphson, downhill simplex, and a quasi-
Newton based on numerical derivatives, the Gauss–Newton-
type algorithm appears to provide the best trade-off between
computational efficiency and analytic complexity, as well as
the best numerical stability.

To make the presentation of this article less technical, a
Web supplementary document has been created to list all gen-
eral results regarding the log-likelihood functions and their

scores corresponding to various VGLMs for continuous, dis-
crete, and mixed data types.

4. VGLMs for Trivariate Discrete Data
The moment-based EE method, such as GEEs, has been
widely used in practice to conduct a joint analysis of corre-
lated data that follow marginally the same type of univariate
distribution. This section concerns trivariate VGLMs for dis-
crete data. Then we compare the ARE with the popular GEE
method. Note that in the case of correlated binary data, the
corresponding GEEs estimation is coincident with the MLE
derived from the log-linear model representation (Diggle et al.,
2002, section 8.2). Under the two different link models for cor-
related binary data, it is of interest to examine which method,
the Gaussian copula or the log-linear model representation,
leads to better estimation efficiency, if the marginal logistic
models are specified the same.

4.1 Trivariate VGLMs
For simplicity, we consider the exchangeable correlation struc-
ture, namely, all off-diagonal elements of the association
matrix Γ equal to a constant α, |α| < 1. Refer to the supple-
mentary document for other types of association structures.

The trivariate probability mass function f is obtained from
equation (8) as

f(yi;θ) = P (Yi1 = yi1, Yi2 = yi2, Yi3 = yi3)

=

2∑
j1=1

2∑
j2=1

2∑
j3=1

(−1)j1+j2+j3C(ui,1,j1 , ui,2,j2 , ui,3,j3 |α),

where C(ui,1,j1 , ui,2,j2 , ui,3,j3 |α)=Φ3{Φ−1(ui,1,j1),Φ
−1(ui,2,j2),

Φ−1(ui,3,j3) |α} with ui,j,1 = Gi(yij) and ui,j,2 = Gi(yij−), j =
1, 2, 3. Φm(· |α) (or φm(· |α)) denotes the CDF (or the den-
sity) of m-dimensional normal distribution with the standard
normal margins and the exchangeable correlation coefficient
α. The parameter vector is then θ = (β, α) as all dispersion
parameters ϕij = 1.

Let ui,j1,j2,j3 = (ui,1,j1 , ui,2,j2 , ui,3,j3), and let ḟk(·) be the
first-order derivative of density f with respect to θk. Then,
the scores are

)̇θk (θ) =

n∑
i=1

ḟk(yi;θ)/f(yi;θ)

=

n∑
i=1

2∑
j1=1

2∑
j2=1

2∑
j3=1

{
(−1)j1+j2+j3 Ċθk (ui,j1,j2,j3 |α)

}

/f(yi;θ).

Moreover, by the chain rule, the scores with respect to βj are
given by

∂C(ui,j1,j2,j3 |α)

∂βj

=

3∑
t=1

∂C(ui,j1,j2,j3 |α)

∂ui,t,jt

∂ui,t,jt

∂βj

,
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where the first factor on the right-hand side takes the follow-
ing forms:

∂C(ui,j1,j2,j3 |α)

∂ui,1,j1

= Φ2 {∆α(ui,2,j2 , ui,1,j1),∆α(ui,3,j3 , ui,1,j1) | γ} ,

∂C(ui,j1,j2,j3 |α)

∂ui,2,j2

= Φ2 {∆α(ui,1,j1 , ui,2,j2),∆α(ui,3,j3 , ui,2,j2) | γ} ,

∂C(ui,j1,j2,j3 |α)

∂ui,3,j3

= Φ2 {∆α(ui,1,j1 , ui,3,j3),∆α(ui,2,j2 , ui,3,j3) | γ} ,

with ∆α(ui,t,jt , ui,s,js) =
Φ−1(ui,t,jt

)−αΦ−1(ui,s,js )√
1−α2

and γ = α
1 +α

.

On the other hand, the second factor is given by

∂ui,t,jt

∂βj

=
∂ui,t,jt

∂µit

xitj

ḣt(µit)
.

Note that derivatives ∂ui,j,jt/∂µit can have closed form ex-
pressions when certain marginal distributions are assumed.
For example, the Bernoulli margin for binary data leads to

∂ui,t,1

∂µit

= −1[yit = 0],
∂ui,t,2

∂µit

= −1[yit = 1],

where 1[A] denotes the indicator function on set A, whereas
the Poisson margin for count data gives

∂ui,t,1

∂µit

= Git(yit − 1) −Git(yit),

∂ui,t,2

∂µit

= Git(yit − 2) −Git(yit − 1),

where Git(·) is the Poisson CDF with mean µit.
Similarly, for the association parameter α,

C(ui,j1,j2,j3 |α)

∂α
=

∫ Φ−1(ui,1,j1 )

−∞

∫ Φ−1(ui,2,j2 )

−∞

∫ Φ−1(ui,3,j3 )

−∞

× ∂

∂α
{lnφ3(z1, z2, z3 |α)}

×φ3(z1, z2, z3 |α) dz1 dz2 dz3, (12)

with

∂

∂α
{lnφ3(z1, z2, z3 |α)}

= − 1

2(1 − α)

[
z2

1 + z2
2 + z2

3

1 − α
− 1 + 2α2

(1 − α)(1 + 2α)2 (z1 + z2 + z3)
2

− 6α

1 + 2α

]
.

The integral in (12) will be evaluated using the Gaussian–
Hermite quadrature method (Lange, 1998, chapter 16).

4.2 Comparison of Asymptotic Efficiency
Now we present a comparison of the ARE between the Gaus-
sian copula link model and the moment-based GEEs link
method for trivariate binary data. We focus only on the
regression parameters β, because the association parameter

α is usually treated as a nuisance parameter in the GEEs
and is not really comparable between the two classes of link
models.

According to Diggle et al. (2002), the sandwich estimator
of the asymptotic covariance matrix of the GEE estimator
β̂gee is vargee = I−1

0 (θ)I1(θ)I−1
0 (θ), where

I0(θ) =

n∑
i=1

∂µT
i

∂β
V−1

i

∂µi

∂β
, and

I1(θ) =

n∑
i=1

∂µT
i

∂β
V−1

i cov(yi)V−1
i

∂µi

∂β

with cov(yi) being the covariance matrix of yi, usually esti-
mated by (yi −µi)(yi −µi)

T . The working covariance matrix

Vi = ϕA
1
2
i R(α)A

1
2
i , where Ai is an m × m diagonal matrix

diag{v(µij), j = 1, . . . ,m}, and R(α) is a working correla-
tion matrix. The variance function is v(µ) = µ(1 − µ) for
the binomial distribution. Under the exchangeable correla-
tion structure, the correlation parameter α can be estimated
by

α̂ =
1

3n

n∑
i=1

(ei1ei2 + ei1ei3 + ei2ei3), (13)

where eij = (yij − µij)/
√

v(µij) are the Pearson residuals.
Let varvglm be the asymptotic covariance of the ML estimator
βvglm from the VGLM. The ARE takes the form

ARE(β) = diag{varvglm}[diag{vargee}]−1. (14)

The comparison is based on a hypothetical clinical trial in
which a binary response is repeatedly measured over three
time periods. Following Fitzmaurice et al. (1993), we assume
at each trial period that placebo (xt = 0) or an active drug
(xt = 1) is randomly assigned among the subjects, and all the
eight possible covariate configurations have equal probability
of occurrence. A logistic model for the marginal expectation
is specified as

logit(µit) = β0 + β1xit + β2(t− 1), t = 1, 2, 3, (15)

where β0 = 0, and β1 = β2 = 0.5. The exchangeable cor-
relation structure arises from the design of this three-period
crossover trial. Hence it seems reasonable to assume that the
logistic VGLM model describes adequately the mechanism of
data generation from this trial. Note that in such a setting,
we are able to analytically derive the closed form expressions
of vargee and varvglm , so the calculation of the ARE does not
require simulation data. Related details concerning the deriva-
tions of these closed form expressions are listed in Section 2
of the Web Supplementary Materials.

Figure 1 displays the ARE for the estimator of treatment
effect β1 as a function of the association parameter α ∈ [0,
1), with the exchangeable structure for the VGLM, where
α = 0 corresponds to the case of independence. We invoked a
Monte Carlo method to convert the value of α in the VGLM
into the value of correlation in the GEE via equation (13). For
the GEEs, both the exchangeable and independence working
covariance matrices are considered in the comparison, respec-
tively. When the exchangeable covariance matrix was used,



6 Biometrics

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison with GEE Sandwich Estimator

Correlation

A
R

E

GEE:exchangeable
GEE:independence

Figure 1. Asymptotic efficiencies of the VGLM estimator of the slope parameter β1 relative to the estimators, respectively,
from the GEE under the trivariate logistic model.

i.e., both the first and second moments of the outcome vari-
able are correctly specified, the GEE is highly efficient, so
we observe that the VGLM performs only marginally better
than the GEE, and the efficacy gain, although small, occurs
only at high correlations. This is in agreement with the results
of Liang and Zeger (1986). However, when the independence
working covariance matrix is employed in the GEE, which is
somewhat similar to running univariate logistic regression sep-
arately across time periods, the estimator from the VGLM is
clearly more efficient than the corresponding GEE estimator.

5. Data Examples
We present two data examples to further illustrate the pro-
posed VGLMs. One is to join two GLMs for mixed outcomes
of binary and normal responses and the other is to join three
cross-sectional logit regression models for a three-visit longi-
tudinal trial data.

5.1 Joint Analysis of Burn Injury Data
To demonstrate the flexibility of the proposed VGLM, we now
apply a VGLM to analyze the burn injury data introduced

in Section 1. There are two response variables, of which the
severity of burn injury by y1 is continuous and the disposition
of death y2 is binary. It is of interest to investigate how age
(x) affects the severity of burn injury and the probability of
death. Therefore, we proposed two marginal mean models: one
is a normal linear model for the expected log-burn area, µi1 =
β01 + β11xi, and the other is a logistic model for the proba-
bility of death from burn injury, logit(µi2) = β02 + β12xi.

Suppressing the subject index, from equation (9) we can
write the joint density of y = (y1, y2) as follows:

f(y1, y2) =

{
φ(y1;µ1, ϕ1){1 − C∗

1 (µ2, z1 |α)}, if y2 = 0,

φ(y1;µ1, ϕ1)C
∗
1 (µ2, z1 |α), if y2 = 1,

(16)

where φ(·; µ1, ϕ1) is the density of N(µ1, ϕ1), z1 = (y1 − µ1)/√
ϕ1, and C∗

1 (a, b |α) = Φ(Φ−1(a)−αb√
1−α2

). An advantage of this

joint copula modeling is that it avoids the artificial bimodal
mixture of two normal margins, which is usually incurred by
the conditional modeling approach such as Fitzmaurice and
Laird’s (1995).
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For the burn injury data {yi, (xi1, xi2)}, i = 1, . . . ,n, the
log likelihood for θ = (β1, β2, ϕ1, α) is given by

)(θ) =
∑
i∈I0

ln
[
φ(yi1;µi1, ϕ1)

{
1 − C∗

1 (µi2, zi1 |α)
}]

+
∑
i∈Ī0

ln
[
φ(yi1;µi1, ϕ1)C

∗
1 (µi2, zi1 |α)

]

=

n∑
i=1

lnφ(yi1;µi1, ϕ1) +
∑
i∈I0

ln
{
1 − C∗

1 (µi2, zi1 |α)
}

+
∑
i∈Ī0

lnC∗
1 (µi2, zi1 |α),

where I0 = {i : yi2 = 0} and Ī0 = {i : yi2 = 1} are subsets of
indices for survived and dead subjects, respectively.

Both joint model and individual univariate models were
applied to fit the data, and the results are summarized in
Table 1. The estimated association parameter α by the VGLM
was 0.80, which indicates a strong association between these
two responses. Overall, the point estimates obtained by the
VGLM and the separate univariate models are very similar to
each other. However, the VGLM appears to be much more ef-
ficient than the separate univariate analysis. More specifically,
the effect of age on the burn severity is found to be statisti-
cally significant by the VGLM but marginally significant by
the univariate linear regression model. So, ignoring the strong
association between the response variables will greatly reduce
the power of the statistical inference. As discussed previously,
one important advantage of our approach over the EE-based
approach is that we can obtain the conditional distribution
of death given burn severity based on the VGLM, as shown
in Figure 2. When the logarithm of burn area is below 7, the
probability of death is weakly associated with age; however,
when the logarithm of the burn area is between 7 and 10, the
older age has a significantly higher probability of death than
the younger age given the same burn area. In conclusion, the
joint modeling approach in this example provides substantial
improvements in efficiency over the univariate analysis and
hence is preferred.

5.2 Joint Analysis of Longitudinal Trial Data
Data arising from longitudinal clinical trials can be analyzed
by the proposed VGLMs. This example concerns a data set
collected from 80 subjects with multiple sclerosis in a random-
ized, placebo-controlled trial studying the efficacy of fampri-
dine, a compound to enhance nerve conduction (Davis, 2002).

Table 1
The estimates and standard errors obtained from the analysis of the burn injury data, where both joint model and

separate univariate models are applied

VGLM Univariate models

Model β β̂ S.E. Z β̂ S.E. Z

Linear Intercept 6.6980 0.0479 139.73 6.7118 0.0690 97.24
(log(burn area+1)) Age 0.0039 0.0012 3.16 0.0035 0.0018 1.97
Logit Intercept −4.0521 0.1658 −24.44 −3.6891 0.2342 −17.78
(death) Age 0.0527 0.0028 19.13 0.0509 0.0046 11.07
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Figure 2. Conditional distribution of death given the burn
area under various ages.

Prior to the initiation of treatment, the time that each pa-
tient was required to walk a specified distance was recorded
as the baseline reference. During the treatment period, the
same process was repeated for each patient at weeks 2, 4, and
6, and the outcome variable was the change from baseline in
ambulation time. For individual i at visit j, let yij be the re-
sponse variable with 1 indicating improvement from baseline,
and 0 otherwise. The marginal expectations were specified as
follows:

logit(µij) = β0 + β1xi1 + β2xij2, i = 1, . . . , 80, j = 1, 2, 3,

where µij = P (yij = 1), and two covariates, treatment (x1)
and visit (x2), are defined as xi1 = 1 for fampridine and 0 for
placebo, and xij2 = j for visit j.

We applied the proposed VGLM to fit the data. The re-
sults are reported in Table 2. The estimate of the association
parameter by the VGLM was 0.71 under the exchangeable
correlation matrix. Clearly, our analysis suggested that fam-
pridine was effective in improving the multiple sclerosis pa-
tients’ nerve conduction. That is, the odds of improvement
for the patients taking fampridine was 2.66 times as high as
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Table 2
Estimated regression coefficients, standard errors, and Z-statistics from the VGLM fit

VGLM GEE

Variable β̂ S.E. Z p-value β̂ S.E. Z p-value

Intercept 0.4456 0.3619 1.23 0.2183 0.4601 0.4021 1.14 0.2525
Treatment (x1) 0.9803 0.4376 2.24 0.0251 0.9451 0.4447 2.13 0.0336
Visit (x2) −0.0250 0.1232 −0.20 0.8390 −0.0347 0.1430 −0.24 0.8084

the patients taking placebo. However, the odds of improve-
ment were not related to a specific visit. Given the level of
the association around 0.7, according to the simulation study
in Section 4.2, it is not surprising to see that the analysis
based on the GEE yielded similar results. In this particular
example, VGLM did not show an appreciable efficacy gain
compared with the GEE. This may be due to the fact that
the exchangeable correlation matrix well approximates the
true underlying covariance structure.

One advantage of the VGLM approach is the availability
of likelihood, which enables us to conduct statistical infer-
ence and model selection easily. To illustrate, we output the
−2×log likelihood in the analysis, namely 213.7212, 213.7894,
and 218.7406 for the model with both covariates, the model
with only visit covariate, and the model with only treatment
covariate, respectively. Then, the standard likelihood ratio
test leads to p-values of 0.0251 for treatment and of 0.794
for visit under the chi-square distribution with one degree of
freedom. These p-values are comparable to those reported in
Table 2, which were found via the traditional z-test statistics.
In a similar fashion, one can calculate the Akaike informa-
tion criterion (AIC) or Bayesian information criterion (BIC)
to assess the goodness of fit for model selection.

6. Concluding Remarks
This article presents a class of multidimensional GLMs that
can accommodate a variety of correlated discrete, continu-
ous, and mixed outcomes. We developed a simultaneous max-
imum likelihood inference that was implemented by a Gauss–
Newton-type algorithm. Our focus in this article is on the joint
analysis of correlated discrete and mixed outcomes through
the Gaussian copula link model, because this approach has
not been studied thoroughly in the literature. An advantage
of the proposed theory is that all different types of data can
be treated under one unified MLE framework. Another ad-
vantage is that the proposed joint regression analysis leads to
a more powerful inference than separate univariate regression
analysis.

Because few probability model-based methods are avail-
able for practitioners to analyze correlated discrete and mixed
data, the models proposed in the present article provide a
useful arsenal to conduct maximum likelihood statistical in-
ference in a joint model that integrates univariate GLMs via
the Gaussian copula. With available likelihoods, it is straight-
forward to define likelihood ratio statistics in the context of
hypothesis testing. In contrast, for the GEE approach test-
ing hypotheses based on likelihood ratios for discrete data
becomes a difficult issue because of the lack of a likeli-

hood function. In addition, model selection along the lines
of the AIC or BIC can be readily established in the VGLM
framework.

The proposed VGLMs for correlated discrete data need
to evaluate multivariate normal CDFs. R software provides
a package mvtnorm based on Genz’s algorithm (Genz, 1992)
that can compute the normal CDF of 100 dimensions or less.
Although deriving joint probability mass functions may be-
come analytically tedious for high dimensions, one may invoke
software such as MAPLE to obtain derivatives of the log like-
lihood. Nevertheless, for discrete outcomes with moderate to
large dimensions, one may overcome the tediousness by invok-
ing the method of composite likelihood (Lindsay, 1988; Varin
and Vidoni, 2005), which comprise valid low-dimensional like-
lihood objects. Such a dimensional reduction procedure may
be initiated from, say, pairwise analysis that infers all pairwise
associations, which then gives useful clues to break down the
likelihood function according to the sparsity of the association
matrix. Recently, a new idea, called the continued extension
argument proposed by Denuit and Lambert (2005), shed light
on overcoming difficulties in the application of copulas to dis-
crete marginals. This continued extension idea is to transform
a discrete response variable into a continuous one by adding
a uniformly distributed continuous random variable. As a re-
sult, estimation and inference can be made in the framework
of copula models with continuous marginals, where numerical
calculations appear much simpler. Both directions are worth
serious further exploration.

As always in the application of parametric models for data
analysis, model assumption diagnostics are necessary before
the results are employed to draw final conclusions. Checking
assumptions on the marginal model specifications can be done
similarly as in the classical GLM theory. Other copulas than
the Gaussian copula may also be possible to establish similar
frameworks to that presented in this article. Consequently,
there is an issue of copula selection, which needs some future
research.

7. Supplementary Materials
The Web Supplementary Materials referenced in Sections 3
and 4.2 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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