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Abstract. In Part I of this paper we developed the theory and algorithms for performing Shape-From-Silhouette
(SFS) across time. In this second part, we show how our temporal SFS algorithms can be used in the applications
of human modeling and markerless motion tracking. First we build a system to acquire human kinematic models
consisting of precise shape (constructed using the temporal SFS algorithm for rigid objects), joint locations, and
body part segmentation (estimated using the temporal SFS algorithm for articulated objects). Once the kinematic
models have been built, we show how they can be used to track the motion of the person in new video sequences.
This marker-less tracking algorithm is based on the Visual Hull alignment algorithm used in both temporal SFS
algorithms and utilizes both geometric (silhouette) and photometric (color) information.
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1. Introduction

Human kinematic modeling and motion tracking are
difficult problems because of the complexity of the hu-
man body. Despite the difficulties, these problems have
received a great deal of attention recently due to the
large number of applications. Having a precise 3D kine-
matic (shape and joint) model of specific human is very
useful in a variety of different situations. For example,
such a model could be used in the garment/furniture
manufacturing industry to make clothes/furniture that
are tailored to the body shape and motion range of the
individual. A collection of such models can be used
to generate valuable statistics of body shape informa-
tion (such as arm length, shape, etc.) of people from

different races for anthropological studies. Likewise,
accurate human motion tracking is essential in a wide
variety of applications. For example, in intelligent en-
vironments such as smart offices or households (Shafer
et al., 1998; Coen, 1998; Lucente et al., 1998), track-
ing human motion and recognizing gestures is a natural
way for the computer to understand the action and in-
tention of humans. In the field of automatic surveillance
and security, it is important for computers to be able to
observe suspicious people and track their actions over
time. For sports science and medicine, the ability to
track the body parts of athletes is critical for improv-
ing their performance during competition or for injury
rehabilitation. Last but not least, the entertainment in-
dustry is another area where there is an increasing need
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for better human modeling and motion tracking algo-
rithms. Accurate human kinematic models and precise
tracking data are essential components for making ani-
mated virtual characters more human-like in both com-
puter games and motion picture production.

Although there are a variety of complete systems
(Cybearware, http://www.cyberware.com.; Thirdtech
inc, http://www.3rdtech.com.) and algorithms (Allen
et al., 2003) for human body shape acquisition using
laser-scanning devices, most of these systems are
expensive and do not estimate the important joint
information. Similarly, almost all commercial motion
capture systems (Meta motion, http://www.
metamotion.com., Vicon motion systems, http://www.
vicon.com.) attach optical or magnetic markers on
the person whose motion is to be tracked and use
triangulation on the positions of the markers to achieve
tracking. Although these systems generally produce
very good results, they are invasive and difficult to
use. In applications such as security, surveillance and
human-computer interaction, these systems are not
applicable because placing markers on the person is
either impossible or undesirable. In view of these lim-
itations of existing systems, the study of non-invasive,
vision-based human modeling and tracking is vital.
There are many advantages of using a vision-based
approach. For example, cameras are low-cost, easily
reconfigurable and non-invasive. Moreover, camera
images contain both shape and texture information
of the person. Finally instead of using two separate
systems for human modeling and motion tracking, one
multi-camera system can be used for both tasks.

In recent years researchers have proposed a variety of
vision-based systems to capture the 2D and 3D shapes
of human body parts (Kakadiaris et al., 1994; Le-
ung and Yang, 1995; Ju et al., 1996; Kakadiaris and
Metaxas, 1998; Plänkers et al., 1999; Fua et al., 2000;
Barron and Kakadiaris, 2000; O’Brien et al., 2000;
Cheung et al., 2000; Krahnstoever et al., 2001; Fua
et al., 2002; Sand et al., 2003). Moreover there are also
a large number of systems for tracking human motion
in video sequences (Rehg and Kanade, 1995; Gavrila
and Davis, 1996; Bregler and Malik, 1997, 1998;
Yamamoto et al., 1998; Haritaoglu et al., 1998; Jojic
et al., 1999; DiFranco et al., 1999; Cham and Rehg,
1999a, 1999b; Pavlovic et al., 1999; Delamarre and
Faugeras, 1999; Cheung et al., 2000; Sidenbladh et al.,
2000a, 2000b; Deutscher et al., 2000; Difranco et al.,
2001; Drummond and Cipolla, 2001; Liebowitz and
Carlsson, 2001; Sullivan and Carlsson, 2002; Mikic
et al., 2003; Carranza et al., 2003) using a variety

of model-based approaches. An extensive survey of
vision-based motion tracking systems can be found in
Moeslund and Granum (2001). Among the above sys-
tems, silhouette information has been used extensively
(Cai and Aggarwal, 1996; Wren et al., 1997; Kakadiaris
and Metaxas, 1998; Cai and Aggarwal, 1998; Beymer
and Konolige, 1999; Cheung et al., 2000; Mikic et al.,
2003; Carranza et al., 2003) since silhouettes are easy
to extract and provide valuable information about the
position and shape (posture) of the person. In partic-
ular, many human shape modeling and motion track-
ing systems (such as (Moezzi et al., 1997; Kakadiaris
and Metaxas, 1998) and more recently (Cheung et al.,
2000; Matusik, 2001; Mikic et al., 2001)) use Shape-
From-Silhouette to construct 3D estimates of the body
shape for modeling and tracking. None of these systems
have considered combining SFS temporally, however.

In Part I of this paper (Cheung et al., 2005), we
developed the theory of and proposed algorithms to
perform Shape-From-Silhouette (SFS) across time for
both rigid and articulated objects (see Cheung et al.,
2003a, 2003b; Cheung, 2003; Cheung et al., 2005)
for the details of the algorithms). In this second part
we apply our temporal SFS algorithms to build hu-
man kinematic modeling and motion tracking systems.
Our systems differ from previous work in several as-
pects. First, our kinematic modeling system estimates
the precise 3D shape and complete skeletal informa-
tion of the person using multiple camera views while
most of the other systems either use monocular im-
ages to reconstruct view-dependent 2D shape and joint
models (Kakadiaris et al., 1994; Barron and Kakadiaris,
2000; Krahnstoever et al., 2001) or only recover impre-
cise 3D shape (Cheung et al., 2000; Mikic et al., 2003)
or partial joint information (Kakadiaris and Metaxas,
1998; Plänkers et al., 1999). Secondly since we use
person-specific models to perform motion tracking in
new videos, our system is more accurate than other
model-based systems which use generic shapes (e.g.
rectangles or ellipses in 2D, cylinders or ellipsoids in
3D) to model the body parts of the person. Finally
our tracking algorithm incorporates both silhouette and
color information at the same time instead of using only
one of the two cues (Delamarre and Faugeras, 1999;
Sidenbladh et al., 2000b, 2000a; Carranza et al., 2003).

The remainder of this paper is organized as follows.
In Section 2 we describe our human kinematic model-
ing system. The joint skeleton of the person is first es-
timated using the articulated temporal SFS algorithm.
The 3D body shape (voxel model) of the person is
then estimated using the rigid temporal SFS algorithm
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and combined with the joint skeleton to form the kine-
matic model. In Section 3 the acquired kinematic model
is used to perform marker-less motion capture of the
same person in new video sequences using an image-
based articulated object tracking algorithm very similar
to the temporal SFS algorithms. Finally a discussion
and several suggestions for future work are included in
Section 4.

2. Human Kinematic Modeling

In this section we describe how to use our temporal
SFS algorithms for both rigid and articulated objects
to build a vision-based 3D human kinematic modeling
system. The system consists of three tasks: (1) con-
structing a joint skeleton of the person, (2) acquir-
ing detailed shape information and (3) merging the
shape and joint information to build a kinematic model.
Each task in our system is described in details in
Sections 2.2, 2.3 and 2.4, together with the results of ap-
plying the system to three people: SubjectE, SubjectG
and SubjectS.

2.1. Related Work

The work most related to our vision-based human body
kinematic information acquisition system is by Kaka-
diaris and Metaxas in (1995). They used deformable
templates to segment the 2D body parts in a silhou-
ette sequence. The segmented 2D shapes from three
orthogonal view-points are then combined into a 3D
shape by SFS. Although our idea of estimating the
joint locations individually instead of all at once is
partly inspired by their system, here we address the
acquisition of motion, shape and articulation informa-
tion, while (Kakadiaris and Metaxas, 1995) focuses
mainly on shape estimation. Besides the 2D work by
Krahnstoever et al. in (2001, 2003) (which we have
already discussed in Part I of this paper), the research
group led by Fua addressed the problem of 3D human
body modeling using a three-camera system (Plänkers
et al., 1999; Plänkers and Fua, 2001; Fua et al., 2002).
They first extract dense feature points on the surface
of the body parts by manual initialization and stereo
matching. The feature points are then tracked across the
video sequences using a template matching technique.
A flexible but complex human model consisting of de-
formable metaballs (Blinn, 1982) as shape primitives is
then used to fit the tracked feature points through a least
square framework. Though they have not demonstrated

the modeling of a complete body, their approach is able
to handle non-rigid deformation of the body parts. Sand
et al. (2003) have also captured the non-rigid deforma-
tion of the human body skin using silhouette images.
However, marker-based motion capture data is used in
their system to estimate the joint skeleton and track the
motion of the person.

2.2. Joint Skeleton Acquisition

The first task of our modeling system is to locate the
joint positions of the person using the articulated object
temporal SFS algorithm proposed in Part I of this paper
(Cheung et al., 2005). Once the joint locations have
been recovered, they are aligned and registered with
each other to form a complete joint skeleton of the
person.

2.2.1. Estimating Individual Joint Positions. Al-
though theoretically we can estimate all of the joint
positions of a person at the same time, in practice this
approach suffers from local minimum due to the high
dimensionality of the problem. Instead we take a se-
quential approach and model the joints one at a time.
The person is asked to treat their body as a one-joint
articulated object by moving their joints one at a time
while keeping the rest of their body still. For each per-
son, eight joint locations: left/right shoulder, elbow, hip
and knee are estimated. For each joint, Colored Surface
Points (CSPs) are first extracted from the video se-
quences. CSPs are essentially 3D colored points on the
surface of the object and are extracted by combining the
Shape-From-Silhouette and Stereo principles (the de-
tails of how to extract CSPs and their properties can be
found in Cheung et al. (2005) or in Cheung (2003)). The
CSPs are then used to recover the motion of the mov-
ing body part, its segmentation and the joint location
using the articulated temporal SFS algorithm described
in Sections 5.5 and 5.6 of Part I (Cheung et al., 2005).
Some of the input images and the results for SubjectS’s
right shoulder joint and SubjectG’s left knee joint are
shown in Figs. 1(a) and (b) respectively. Moreover the
joint estimation results for the right leg of SubjectG and
the left arm of SubjectS are shown in the movie clips
SubjectG-joints-rightleg.mpg and SubjectS-joints-
leftarm.mpg.1 Generally, the estimation of the shoul-
der and elbow joints of the arms are more accurate than
the hip and knee joints of the legs because it is more
difficult to keep the rest of the body still when moving
the leg. In our system, ankle and wrist joints are not
modeled (nor tracked) because the images of the feet
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Figure 1. Input images and results for (a) the right shoulder joint of SubjectS and (b) the left knee joint of SubjectG. For each joint, the
unaligned Colored Surface Points (CSPs) from different frames are drawn with different colors. The aligned and segmented CSPs are shown in
two different colors to show the segmentation. The estimated articulation point (joint location) is indicated by the black sphere.

and hands are too small in our current 640 × 480 im-
age resolution for accurate modeling. With cameras of
higher image resolution, the ankle and wrist joints can
be estimated using the same methods described above.

2.2.2. Joint Registration. After the joints and the as-
sociated body parts (described by CSPs) are recovered
individually, they are registered with respect to a ref-
erence frame to form an articulated model of the body.
The registration process consists of two procedures.
The first procedure involves aligning joints within each

Figure 2. The four steps of the Limb Joints Alignment Procedure illustrated using the right arm of SubjectE. The same procedure applies to
the legs by replacing the shoulder and elbow joints with the hip and knee joints. See text for details.

separate limb, while the second procedure performs a
global registration of all of the joints and body parts
with respect to the reference frame. Both procedures
are described below.

A. Limb Joints Alignment
Before registering all of the joints to the reference
frame, the two joints of each separate limb are first
aligned with each other. The limb joints alignment pro-
cedure is illustrated graphically using the right arm of
SubjectE in Fig. 2. The same procedure applies to the
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leg by replacing the shoulder and elbow joints with
the hip and knee joints. The idea of the procedure is
to align the shoulder and elbow joints with respect to
the shoulder sequence with the arm being straight. As
will be seen shortly, having the joints registered with
the arm being straight reduces the complexity of the
subsequent global registration procedure.

Consider the shoulder and elbow joints of the right
arm shown in Fig. 2. The shoulder joint is estimated in
a sequence of the person rotating her arm around the
shoulder with the elbow joint straight while the elbow
joint is estimated in a sequence of the person bend-
ing her arm at the elbow. We assume that the elbow
sequence contains one frame with the elbow straight.
In Step 1 (Figs. 2(a) and (b)) we compute the 6 DOF
transformation of the body from the shoulder sequence
to the elbow sequence by taking the shoulder model
and aligning it to the straight arm image in the el-
bow sequence using the rigid temporal SFS algorithm
(Cheung et al., 2005). In Step 2 (Figs. 2(c) and (d))
we map the shoulder joint location from the shoulder
sequence to the elbow sequence. In step 3 (Figs. 2(e)
and (f)) we compute the relative position of the elbow
and shoulder joints in the elbow sequence and map it
back into the shoulder sequence so that the elbow joint
location is estimated in the shoulder sequence. Finally

Figure 3. (a) Global joint registration. (b) For each limb, two steps are required to register the joints. (c) The final registered joint skeleton and
the aligned CSPs.

in Step 4 we segment the forearm in the shoulder se-
quence using the known elbow position.

B. Global Registration
Once the joints within each limb have been aligned,
global registration is performed to build the final joint
skeleton. The global registration for all four limbs is il-
lustrated in Fig. 3(a) and the procedure for one limb is
explained using the right arm of SubjectE in Fig. 3(b).
For each limb, the global registration procedure con-
sists of two steps. The first step aligns the body CSPs
against a reference frame using the rigid temporal SFS
algorithm. Once the 6D motion of the body has been
recovered, the position of the first limb joint (shoul-
der/hip) is calculated. The second step involves the
alignment of the limb itself. To simplify this step, we
assume that the reference frame is chosen such that
the images at the reference frame are captured with
all of the person’s limbs straight (the choice of a good
reference frame will become apparent in Section 2.3).
Since the joints within each limb are already registered
with the limb being straight (in the limb joint align-
ment procedure), the straight limb assumption of the
reference frame images enables us to treat the whole
limb as one rigid object rather than an articulated ob-
ject with two parts. In other words, we can ignore
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the second limb joint (elbow/knee) and the problem
becomes alignment of a rigid object around a fixed
point with only 3 DOF (the rotation around the joint).
The details of this algorithm are included in Sec-
tion 3.2.3). Figure 3(c) illustrates the final joint skeleton
of SubjectE and the registered CSPs obtained after the
global registration procedure.

2.3. Body Shape Acquisition

The next task is to acquire the shape of the body. One
possible choice is to use the CSPs extracted from the
sequences used to estimate the individual joints. We
do not use these CSPs to represent the body shape of
the person because they are not uniformly distributed
over the different body parts (most of the CSPs come
from the torso). This non-uniformity poses a severe dis-
advantage when using the model in motion tracking.
Moreover, due to errors in all the alignment and regis-
tration procedures, the CSPs obtained after the global
registration do not represent the actual shape of the
body accurately enough (see Fig. 3(c)). Hence instead
we build an accurate and detailed voxel model of the
person using the rigid object temporal SFS algorithm
proposed in Cheung et al. (2005). The centers of the
surface voxels of the voxel model are then extracted
and used to represent the shape of the person. There
are two advantages of using this approach. Since the
voxel model is reconstructed using a large number of

Figure 4. Results of body shape acquisition for SubjectE. (a) Four input images, (b) unaligned and aligned colored surface points from all
frames, (c) refined Visual Hull of the body displayed from several views.

silhouettes, the model is very accurate and the surface
voxel centers are close approximations to points on the
surface of the actual person. Moreover since the voxel
centers lie on a 3D grid, they are uniformly distributed.

To build these voxel models, video sequences of the
person standing on a turn table were captured by eight
cameras with thirty frames (roughly equal to a whole
revolution of the turntable) per camera. Note that there
is no need to calibrate the rotation axis and speed of
the turntable because our rigid body temporal SFS al-
gorithm is able to recover the 6 DOF motion of the
person on the turntable fully automatically. The per-
son is asked to remain still throughout the capture pro-
cess to satisfy the rigidity assumption. Moreover, the
person is also told to keep their limbs straight so that
the first frame of the sequence can be chosen as the
reference frame for the global body joints registration
discussed in Section 2.2.2. After applying the rigid ob-
ject temporal SFS algorithm to recover the motions, a
refined voxel model of the person is built using the Vi-
sual Hull refinement technique as described in Cheung
et al. (2005). The centers of the surface voxels of the
model are extracted and colored by back-projecting
them into the color images. Some of the input images,
the unaligned/aligned CSPs and the 3D refined voxel
model of SubjectE are shown in Fig. 4 and in the video
clip SubjectE-bodyshape.mpg. Figure 5 illustrates the
3D models of SubjectG and SubjectS. It can be seen
that excellent shape estimates of the human bodies are
obtained.
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Figure 5. Refined voxel models of (a) SubjectG, (b) SubjectS.

2.4. Merging Shape and Joint Information

The last task is to merge the joint and shape informa-
tion. Before the merge, slight modifications are made
to the joint positions to enforce left and right symmetry
of the joint skeleton (the asymmetry is caused by er-
rors in joint estimation and registration). Two rules are
applied: (1) The left and right shoulder joints have the
same height above the ground. The same applies to the
two hip joints. (2) The distance between the shoulder
and elbow joints on the left arm is equal to that on the
right arm. The same applies to the distances between
the hip and knee joints on the legs. These two rules are
reasonable because the person is told to stand upright
on the turntable when the reference frame is captured.
The rules can be enforced by averaging the correspond-
ing values for the left and right sides of the body. Once
the joint positions have been adjusted, they are trans-
fered to the voxel model. Since the joints are registered
with respect to the reference image used to create the
voxel model, the transfer is straightforward.

The only task remaining is to assign (segment) the
voxel centers to the corresponding body parts. Figure 6
illustrates an algorithm to do this based on the joint
locations. First, five cutting planes are found to separate
the four limbs away from the body (Fig. 6(c)). Once
the limb has been segmented, it can be divided into

the upper and lower parts using the elbow/knee joint
location. The ideal cutting plane for the arm would be
the one which passes through the shoulder joint and the
arm pit. To find this plane, a plane is swept circularly
around the shoulder joint across the body as shown
in Fig. 6(a). The plane which cuts the least number
of voxels is chosen to be the arm cutting plane. To
separate the legs from each other and from the body,
three planes are used. The first plane passes through
the right hip joint, the second plane passes through the
left hip joint, each of the planes making a 45 degree
angle with the horizontal. The third plane is a vertical
plane which makes a “Y” with the first two planes, as
shown in Fig. 6(b). With a slight abuse of terminology,
hereafter we treat the surface voxel centers as if they
are CSPs and call the merged model an articulated CSP
model of the person. As a summary, Fig. 7 illustrates
the three component tasks in our vision-based human
kinematic modeling system. Detailed implementations
of each component can be found in Cheung (2003).

2.5. Experimental Results

Articulated CSP models of a synthetic virtual per-
son (see Cheung et al., 2005), SubjectE, SubjectG,
and SubjectS are shown in Figs. 8(a)–(d) respectively.
The video clip Subject-EGS-kinematicmodels.mpg
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Figure 6. Segmenting the voxel centers to the appropriate body parts. (a) The arm cutting planes are found by sweeping a plane circularly
around the shoulder joints. The plane which cuts the least number of voxels is chosen. (b) The leg cutting planes are formed by two planes
passing through the hips joints at a 45 degree angle with the horizontal, and a vertical plane which separate the legs from each other. (c) Example
results with the joints, the cutting planes and the segmented voxels of the model.

Figure 7. Flow chart illustrating the three tasks in our human kinematic modeling system.

shows 3D fly-around views of the models of SubjectE,
SubjectG and SubjectS. Note that the articulated CSP
model can be turned into an articulated voxel model
by substituting the center points by solid voxels (3D
cubes). Table 1 shows the approximate timing for each
step in our modeling system (see Fig. 7 for a flow chart
of the system). These data processing times are ob-
tained on a 1.2 GHz Pentium PC. It can be seen that
modeling is not real-time. The steps to recover the mo-
tion of the person on the turntable (Visual Hull Align-
ment) and processing the data from all eight joints are
currently the bottlenecks of the system.

3. Human Articulated Tracking

In this section we show how the kinematic model
of a person obtained using the system described in
Section 2 can be used to track the motion of the person
in new video sequences. The formulation of our mo-
tion tracking algorithm is similar to the 3D CSPs/2D
image alignment principle used in both temporal SFS
alignment algorithms proposed in Part I of this paper
(Cheung et al., 2005). The main addition is the incor-
poration of joint constraints into the motion equations
as described in Section 3.2.
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Table 1. The approximate timing of each step of our modeling system obtained on a 1.2 GHz Pentium PC.

Tasks Time

Task 1: Joint Skeleton Acquisition
Data Capture 10 seconds per joint
Data Processing: (a) Joint Estimation ≈30 minutes per joint

(b) Joints Registration ≈1 hour for 8 joints

Task 2: Body Shape Acquisition
Data Capture 30 seconds
Data Processing: (a) Visual Hull Alignment ≈2 hours

(b) Visual Hull Refinement ≈5 minutes

Task 3: Merging Shape & Joint Information
Data Processing: (a) Symmetry Adjustments & Transfer ≈1 s

(b) Segmenting Surface Voxel Centers ≈2 minutes

Figure 8. Articulated model of (a) synthetic virtual person, (b) SubjectE, (c) SubjectG and (d) SubjectS. In (a) and (b), the CSPs are shown
with their original colors. In (c) and (d), the CSPs of different body parts are shown with different colors. For display clarity, the CSPs drawn
are down-sampled in the ratio of one in two in total number of points.

3.1. Related Work

Among all of the model based approaches to track
human motion, the work by Sidenbladh et al. in
(2000b, 2000a), that by Delamarre and Faugeras in
(1999), that by Carranza et al. in (2003) and that by
Mikic et al. in (2003) are the most related to our track-
ing algorithm.

Sidenbladh et al. (2000a) perform human motion
tracking by first modeling the person using articulated
cylinders as body parts. Each body part is projected
into a reference image to create an appearance model
(Sidenbladh et al., 2000b). Using a particle filtering
framework (Deutscher et al., 2000), the articulated 3D
appearance model is then used to track the motion
(Sidenbladh et al., 2000a). As pointed out by the au-
thors themselves, their model works well for tracking
a single body part but is too weak for constraining the

motion of the entire body without using specific motion
models. Hence their approach is restricted to tracking
simple motions such as walking or running for which
a motion model can be created by collecting examples
(Sidenbladh et al., 2000a).

In Delamarre and Faugeras (1999), silhouette con-
tours from multiple cameras are used to constrain the
articulated model (which consists of geometric primi-
tives such as cylinders and truncated cones) of a person.
The way of generating “forces” to align 2D contours
of the projected model with the silhouette boundary
is similar to the geometric constraints we use in our
tracking algorithm. In Carranza et al. (2003), first ren-
der a human model using graphics hardware and then
compare the rendered images (using pixel-wise XOR)
with the silhouette images extracted from video se-
quences to track human motion. Although it is unclear
exactly how their XOR errors are formulated as driving
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forces for optimizing the motion parameters, their grid-
search initialization procedure provides a good way to
reduce the problem of local minima. Mikic et al. also
use multiple-view silhouettes in Mikic et al. (2003) for
motion tracking, although their body part fitting is done
in 3D space and is closely related to our previous work
in Cheung et al. (2000). None of the above work uses
color information, unlike in our algorithm.

3.2. Image-Based Articulated Object Tracking

We consider the problem of tracking an articulated ob-
ject in (color and silhouette) video sequences using a
known articulated model of the object. We assume the
articulated model is constructed using the human kine-
matic modeling system described in Section 2. The
model consists of rigid parts with known shape de-
scribed in terms of CSPs. The rigid parts are connected
to each other at known joint locations.

3.2.1. Problem Scenario. Figure 9(a) depicts an ar-
ticulated CSP model of an object consisting of three
rigid parts A, B and C with part A being the base of the
object. Without loss of generality, we assume that the
model is at its reference configuration which means
the rotation angles of the joints and the translation of
the base part A are all zero. Hereafter we represent
the 3D position and color of the i th CSP of part Z
at time t by W i,Z

t and µi,Z respectively, where t = 0
denotes the model frame. Now assume the shape infor-
mation of the model is given as sets of CSPs represented
by {W i,A

0 , µ
i,A
0 ; i = 1, . . . , L A

0 }, {W i,B
0 , µ

i,B
0 ; i =

1, . . . , L B
0 }, {W i,C

0 , µ
i,C
0 ; i = 1, . . . , LC

0 } for the parts
A, B and C respectively and the joint locations of the

Figure 9. (a) The articulated CSP model of an articulated object
with three rigid parts A, B and C . (b) The object itself at run-time
t j . The articulated CSP model in (a) is used to estimate the motion
parameters of the object at t j .

model are known and denoted by Y B
0 and Y C

0 . Further-
more, we assume the model color and silhouette images
{I k

0 , Sk
0 ; k = 1, . . . , K } that were used to construct

the model are available.
Suppose we have imaged the articulated object by

K cameras at each of J time instants with the color
and silhouette images represented by {I k

j , Sk
j ; k =

1, . . . , K ; j = 1, . . . , J }. Also assume that we have
extracted from these images J sets of (unsegmented)
CSPs {W i

j , µ
i
j } (see Section 4.2.1 in Cheung et al.

(2005)). If we represent the positions and orientations
(with respect to the reference configuration at the model
frame) of the base part A at time t j as (Q A

j , s A
j ) and the

rotations of parts B and C about their joints as Q B
j , QC

j
respectively, the goal of image-based articulated object
tracking can then be stated as:

Image-Based Articulated Object Tracking:
Given the above input information, estimate (Q A

j , s A
j )

of the base part A and Q B
j , QC

j of the articulated joints
at time t j for all j = 1, . . . , J .

3.2.2. Tracking Principle. We explain the tracking
principle using the j th frame data captured at run-time
t j (see Fig. 9(b)). We assume the articulated object has
already been tracked at t j−1, i.e. we have initial esti-
mates of the parameters Q A

j−1, s A
j−1, Q B

j−1 and QC
j−1.

As a recap, we have the following information as the
input data:

1. Model data: (1a) segmented model CSPs {W i,A
0 ,

µ
i,A
0 , W i,B

0 , µ
i,B
0 , W i,C

0 , µ
i,C
0 },

(1b) known model joint positions Y B
0

and Y C
0 ,

(1c) model color and silhouette im-
ages {I k

0 , Sk
0 } used to construct the

model.
2. Data at t j : (2a) run-time unsegmented CSPs {W i

j ,

µi
j },

(2b) run-time color and silhouette im-
ages {I k

j , Sk
j },

(2c) estimated parameters Q A
j−1, s A

j−1,
Q B

j−1 and QC
j−1 from the previous

frame.

Just as when aligning two Visual Hulls (Cheung
et al., 2005), we pose the problem of estimating
Q A

j , s A
j , Q B

j and QC
j as the problem of minimizing the

geometric and color errors caused by projecting the 3D
CSPs into the 2D images. To be more specific, there are
two types of errors we can use:
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1. The forward geometric and photometric errors
of projecting (respectively) the segmented model
CSPs {W i,Z

0 , µ
i,Z
0 } into the run-time silhouette {Sk

j }
and color images {I k

j }.
2. The backward geometric and photometric error

of projecting (respectively) the run-time CSPs
{W i

j , µ
i
j } into the model silhouette {Sk

0 } and color
images {I k

0 }.

Given estimates of Q A
j , s A

j , Q B
j and QC

j , the forward
errors are obtained by applying the motions to the al-
ready segmented model CSPs and projecting them into
the run-time images. To calculate the backward errors,
however, an extra step is required. In order to apply
the correct motion transformations (for part A, B or
C) to the run-time CSPs, we have to decide for each
run-time CSP W i

j , which part of the articulated object it
belongs to. In other words, we have to segment the set
of run-time CSPs {W i

j , µ
i
j } into parts A, B and C . Seg-

menting a set of 3D points is a difficult problem, and
a variety of approaches have been used under differ-
ent situations. Two approaches for segmenting the run-
time CSPs based on the known shape information of the
model and the estimated motion parameters from the
previous frame are discussed in Cheung (2003). Once
the run-time CSPs have been segmented, the back-
ward errors can be calculated and added to the forward
errors.

Theoretically it is sufficient to just include the for-
ward errors in the optimization equations. However, the
advantage of including the backward errors is that the
motion parameters are then more highly constrained.
With the addition of the backward errors, tracking is
less likely to fall into local minimum, especially when
two parts of the articulated object are very close to each
other (see Section 3.3.3 for more details). The disad-
vantage of including the backward errors is the extra
step that is required to segment the run-time CSPs. The
backward errors should not be used if the segmentation
of the run-time CSPs is not reliable.

3.2.3. Incorporating Joint Constraints into the Op-
timization Equations. In this section we describe
how to incorporate joint constraints into the calcula-
tion of the forward and backward errors. For the for-
ward errors, let W̄ i,A

0 , W̄ i,B
0 and W̄ i,C

0 be the positions of
W i,A

0 , W i,B
0 and W i,C

0 at run-time t j (see Fig. 9(b)). Us-
ing the joint constraints between the articulated parts,
we have the following equations relating the trans-
formed model CSPs and the joint positions (Y B

j and

Y C
j ) at t j with the motion parameters:

Part A: W̄ i,A
0 = Q A

j W i,A
0 + s A

j , (1)

Part B: Y B
j = Q A

j Y B
0 + s A

j ,

W̄ i,B
0 = Q A

j Q B
j

(
W i,B

0 − Y B
0

) + Y B
j , (2)

Part C: Y C
j = Q A

j Q B
j

(
Y C

0 − Y B
0

) + Y B
j ,

W̄ i,C
0 = Q A

j Q B
j QC

j

(
W i,C

0 − Y C
0

) + Y C
2 . (3)

Using the above equations, the forward errors are writ-
ten as

e2,1 =
∑

Z=A,B,C

[
L Z

0∑

i=1

∑

k

{
τ ∗ dk

j

(
W̄ i,Z

0

)

+ [
ck

j

(
W̄ i,Z

0

) − µ
i,Z
0

]2}
]

, (4)

where dk
j (W̄ i,Z

0 ) represents the distance between the
2D projection of W̄ i,Z

0 and the silhouette image Sk
j ,

and ck
j (W̄

i,Z
0 ) denotes the projected color of W̄ i,Z

0 on
the color image I k

j with τ being a weighing constant
(see Section 4.2.3 of Cheung et al. (2005)). Note that
the error of a model CSP with respect to the kth run-
time color and silhouette image is calculated only if
the CSP is visible in that camera. Since in this case, the
object consists of articulated rigid parts, the “reverse
approach” described in Cheung et al. (2005) for testing
visibility is not applicable. An alternative method for
determining visibility for articulated object tracking is
presented in Cheung (2003).

To calculate the backward errors e1,2, we first ex-
press the positions of the (now assumed segmented)
run-time CSPs with respect to the model images in
terms of the motion parameters Q A

j , s A
j , Q B

j and QC
j

by inverse transforming the set of motion relations in
Eqs. (1) to (3). Then the transformed run-time CSPs are
projected into the model silhouette and color images to
get the geometric and photometric errors. Combining
the backward and forward error terms (Eq. (4)), the
optimization equation becomes:

arg min
s A

j ,Q A
j ,Q B

j ,QC
j

[e2,1 + e1,2], (5)

which can be solved using the Levenberg-Marquardt
(LM) algorithm described in Cheung (2003).

Although we have described the tracking algorithm
using an example articulated object consists of three
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parts, it can be easily extended to articulated objects
with N parts. In the special case where the motion (ro-
tation and translation) of the base (part A in our exam-
ple) is known, or if it is static, the problem degenerates
to tracking a multi-link object around a fixed point. An
example would be the situation we discussed in Sec-
tion 2.2.2 for globally registering the joints of the limbs.
Note that in such cases our algorithm still applies, the
only difference being that (Q A

j , s A
j ) are known con-

stants instead of parameters to be optimized in Eq. (5).
Our Image-Based Articulated Object Tracking Algo-
rithm is summarized below:

Image-Based Articulated Object Tracking Algo-
rithm

1. Initialize the motion parameters in the first frame t1.
2. For j = 1, . . . , J , estimate the motion parameters

at t j using the following steps:

(a) Initialize the motion parameters at t j with those
estimated at t j−1.

(b) Segment the run-time CSPs at t j .
(c) Apply the Iterative LM algorithm (Cheung,

2003) to Eq. (5) to minimize the sum of for-
ward errors and backward errors with respect
to the motion parameters Q A

j , s A
j , Q B

j and QC
j

until convergence is attained or for a fixed max-
imum number of iterations.

3.3. Tracking Full Body Human Motion

3.3.1. The Articulated Human Model. The articu-
lated CSP models used to track human motion are the
same as those built in Section 2 (see for example Fig. 8).
Each model consists of nine body parts: torso, right/left
lower/upper arms and legs, connected by eight joints:
right/left shoulder, elbow, hip and knee joints. Each
body part is assumed to be rigid with the torso being
the base. The shoulder and hip joints have 3 degrees-
of-freedom (DOF) each while there is 1 DOF for each
of the elbow and knee joints. Including translation and
rotation of the torso base, there are a total of 22 DOF
in the model.

3.3.2. Hierarchical Tracking. The most straightfor-
ward way to use the Image-Based Articulated Object
Tracking Algorithm for human motion tracking is to
apply it directly to all the body parts (with a total of 22
DOF) at the same time. In practice, however, this all-

at-once approach is prone to local minima because of
the high dimensionality. To reduce the chance of falling
into local minimum, we instead use a two-step hierar-
chical approach: first fit the torso base and then fit each
limb independently. This approach makes use of the
fact that the motion of the body is largely independent
of the motion of the limbs which are largely indepen-
dent of each other. The first step of our hierarchical ap-
proach involves recovering the global translation and
orientation of the torso base. This can be done using
the 6 DOF temporal SFS algorithm for rigid objects
(see Cheung et al., 2005). Once the global motion of
the torso has been estimated, the four joint positions:
left/right shoulders and hips are calculated. In the sec-
ond step, the four limbs are aligned separately around
these fixed joint positions just as in the special case
mentioned at the end of Section 3.2.3. Using such a
hierarchical approach not only reduces the chance of
falling into local minimum, but also reduces the pro-
cessing time as there are only four unknowns to be
optimized for each limb.

3.3.3. Dealing with Local Minimum. As common to
all methods which use an error minimization formu-
lation, our human motion tracking algorithm is prone
to the problem of local minima, especially since the
human articulated body has a very large number of
DOF. Although we have used the hierarchical approach
(discussed in Section 3.3.2) to reduce the dimensional-
ity, the problem of local minima cannot be completely
avoided.

Empirically we found that there are two situations
when our tracking algorithm is particularly vulnerable
to local minima. The first situation occurs when the
body parts are very close to each other. In this situa-
tion, there is a good chance that the optimization gets
trapped in a local minimum and the body parts pen-
etrate each other, such as in the two examples shown
in Fig. 10(a).

The second situation happens when the arm is
straight and there is not enough color (or texture) in-
formation on the arm to differentiate the rotation angle
of the shoulder joint about the axis along the length of
the arm. An example is illustrated in Fig. 10(b) where
the palm of the left arm of SubjectE is facing upward
but the recovered joint angles have the palm of the arm
facing downward (i.e. the joint angles of the left shoul-
der joint is rotated around the axis along the arm by
180 degrees). Note that the local minima in the first
situation is only a valid solution in the solution space
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Figure 10. Two situations where our tracking algorithm is particularly vulnerable to local minima. (a) The body parts are very close to each
other. (b) The arm is straight and of homogeneous color in which there is ambiguity around the shoulder joint.

but not a valid solution in the physical world while the
local minima in the second situation is valid in both
the solution space and the physical world, although it
is not the correct solution.

To cope with the first situation, collision detection
and reinitialization is added to our algorithm. In each
frame, after all of the joint angles have been estimated,
the body parts are checked for collision. If a collision
is detected between a limb and the body, within each
limb (e.g., collision of upper and lower arm) or be-
tween limbs, the joint angles of the limbs involved in
the collision are reinitialized and re-aligned. To reini-
tialize, instead of using only the joint angles estimated
from the previous one frame, those from the previous
three frames are used to predict the initial guess. To
increase the chance of climbing out of the local min-
imum, a small random perturbation is also added to
the initial guess. Although this heuristic is sufficient
to avoid some of the local minima, it still fails occa-
sionally. For a failed frame, to avoid propagating the
wrong estimates to the next frame, the joint angles are
set to be those estimated from the previous frame, hop-
ing that the local minimum problem will be resolved
in the next frame. For cases where a limb is totally lost
in the tracking, manual reinitialization is required to
restart the tracking of that limb.

The second situation is difficult to deal with because
the geometric constraints are unable to resolve the am-
biguity due to the symmetry of the arm. In cases when
there is no texture on the arm (as is the case for Sub-
jectE), the photometric constraints are also unable to
correct the mis-alignment. Although currently we have

not implemented a satisfactory solution to this situa-
tion, the tracking generally recovers by itself once the
arm is bent (when the ambiguity can be resolved by the
geometric constraints).

Another possible way to reduce the problem of lo-
cal minima in both situations is to impose angle and
velocity limits on each joint during tracking, similar to
the search grid idea used by Carranza et al. in (2003).
Although not implemented in our current system, we
are planning to incorporate the joint/velocity limit into
our system in the near future (see Section 4.2 for more
details).

3.4. Experimental Results

Two types of data were used to test our tracking algo-
rithm: (1) synthetic sequences with ground-truth were
generated using OpenGL to obtain a quantitative eval-
uation and (2) sequences of real people with different
motions were captured to obtain qualitative results. On
average, the tracking takes about 1.5 minutes per frame
on a 1.2 GHz Pentium PC.

3.4.1. Synthetic Sequences. Two synthetic motion
video sequences: KICK (60 frames) and PUNCH (72
frames) were generated using the synthetic human
model used in Part I (Cheung et al., 2005) with a total
of eight cameras per sequence. The articulated model
shown in Fig. 8(a) is used to track the motion in these
sequences. Figure 11 compares the ground-truth and
estimated joint angles of the left arm and right leg of
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Figure 11. Graphs comparing ground-truth and estimated joint angles of the left arm and right leg of the synthetic sequence KICK. The
estimated joint angles closely follow the ground-truth values throughout the whole sequence. The tracking results of the KICK sequence can be
seen in the movie Synthetic-track.mpg.

Figure 12. Twelve selected frames of the tracking results for the AEROBICS sequence. The tracked body parts and joint skeleton (rendered
color) are overlaid on one of the input camera images (which are converted from color to gray-scale for clarity). The whole sequence can be
seen in the movie SubjectG-track.mpg.
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the body in the KICK sequence. It can be seen that
our tracking algorithm performs very well. The movie
Synthetic-track.mpg illustrates the tracking results on
both sequences. In the movie, the upper left corner
shows one of the input camera sequences, the upper
right corner shows the tracked body parts and joint
skeleton (rendered in color) overlaid on the (gray-scale
version of the) input images. The lower left corner de-

Figure 13. Twenty-four selected frames of the tracking results for the KUNGFU sequence. The whole sequence can be seen in the movie
SubjectG-track.mpg.

picts the ground-truth motion rendered using an avatar
and the lower right corner represents the tracked mo-
tions with the same avatar. The avatar renderings show
that the ground-truth and tracked motions are almost
indistinguishable from each other.

3.4.2. Real Sequences. We also tested our tracking
algorithm on a variety of sequences of real human
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subjects performing a wide range of motions. For
SubjectG, three video sequences: STILLMARCH
(158 frames), AEROBICS (110 frames) and KUNGFU
(200 frames) were captured to test the tracking al-
gorithm. Eight cameras were used in each sequence.
Figures 12 and 13 show the tracking results on the
AEROBICS and KUNGFU sequences respectively.
Each figure shows selected frames of the sequence with

Figure 14. Twenty-four selected frames of the tracking results for the THROW sequence. The whole sequence can be seen in the movie
SubjectS-track.mpg.

the (color) tracked body parts and the joint skeleton
overlaid on one of the eight camera input images (which
are converted to gray-scale for display). The movie
SubjectG-track.mpg contains results on all three se-
quences. In the movie, the upper left corner represents
one of the input camera images and the upper right cor-
ner illustrates the tracked body parts with joint skeleton
overlaid on a gray-scale version of the input images.
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The lower left corner illustrates the results of apply-
ing the estimated motion data to a 3D articulated voxel
model (obtained from the articulated CSP model as
discussed at the end of Section 2.4) of the person
while the lower right corner shows the results of apply-
ing the estimated motion data to an avatar. The video
demonstrates that our tracking algorithm tracks well
on both simple motions (STILLMARCH, AEROBICS)

Figure 15. Twenty-four selected frames of the tracking results for the SLOWDANCE sequence. The whole sequence can be seen in the movie
SubjectE-track.mpg.

and more complicated motions (KUNGFU). Note that
in the above three sequences, the remedy discussed in
Section 3.3.3 is not used for dealing with the prob-
lem of local minimum. Since the motions in the
STILLMARCH and AEROBICS are simple, no lo-
cal minimum problems are encountered in these two
sequences. However, for the KUNGFU sequence, the
tracking of the right arm is lost in frame 91 for 10 frames
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due to a local minimum but recovers automatically at
frame 101.

A motion sequence THROW (155 frames) of Sub-
jectS was also captured. The sequence is first tracked
by our algorithm without using the local minimum
remedy. Since body parts are not checked for colli-
sion, when the left arm is very close to the body at
frame 70, a local minimum pulls the left arm inside the
body (see Fig. 10(a)). Moreover, the tracking of both
legs is also lost around frame 43 (which is shown in
Fig. 10(b)) when the legs start to cross each other. To
resolve these problems, the sequence is re-tracked with
the local minimum remedy turned on. The results are
shown in Fig. 14 which shows 24 selected frames of
the sequence with the (color) tracked body parts and the
joint skeleton overlaid on one of the eight camera input
images (which are converted to gray-scale for display).
The local minima problems of the legs and the left arm
are successfully resolved by checking for body part
collision and reinitialization. The whole THROW se-
quence can be seen in the movie SubjectS-track.mpg.

Two sequences: STEP-FLEX (90 frames) and
SLOWDANCE (270 frames) of SubjectE were also
captured and tracked. Some of the tracked frames are
shown in Fig. 15 for the SLOWDANCE sequence and
Fig. 16 for the STEP-FLEX sequence (the tracking re-
sults of both sequences are included in the movie clip

Figure 16. Twelve selected frames of the tracking results for the STEP-FLEX sequence. The whole sequence can be seen in the movie
SubjectE-track.mpg.

SubjectE-track.mpg). The shoulder joint ambiguity
problem (Fig. 10(c)) happens in the SLOWDANCE
sequence on the left arm around frame 28 and on the
right arm around frame 85, although the tracking recov-
ers in later frames of the sequence. Because we do not
include the waist joint in our kinematic model, gener-
ally motions involving the bending of the body around
the waist cannot be tracked accurately. However for the
bending motion in the STEP-FLEX sequence, the geo-
metric constraints from the silhouette drove our track-
ing algorithm to approximate the bending of the body
using the hip joints which are the only degrees of free-
dom that can explain the silhouette images. Note that
the tracked motion will be more accurate and natural if
the waist joint is modeled.

In the tracking results of the STEP-FLEX sequence,
there are frames in which a tracked foot slips/slides or
floats in the air when it has to be kept touching the
ground, causing unnatural looking motions. In cases
where the type of motion is known to have contacts
between the body parts and the surrounding environ-
ment (such as contact between the feet and the ground),
these contact constraints can be incorporated into the
optimization formulation to increase the tracking accu-
racy. However because our system is designed to cap-
ture general motion, currently we do not impose any
contact constraints during tracking.
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4. Conclusion

4.1. Summary

Compared to other human modeling approaches which
fit generic human models composed of simple shape
primitive to the input image data (Leung and Yang,
1995; Kakadiaris and Metaxas, 1998; Plänkers et al.,
1999; Cheung et al., 2000), our vision-based kinematic
modeling system constructs a body model from scratch
using simple joint connection knowledge of the body
without using any a priori shape model. We acquire and
register the skeletal structure using video sequences of
the person moving their limbs and extract shape infor-
mation (in terms of CSPs) of the body parts directly
from the silhouette and color images. The joint and
shape information is then merged to form a complete
kinematic model consisting of voxels segmented into
body parts and joint locations. Compared to laser scan-
ning technology which usually only captures shape
information, our system is cheaper, non-invasive and
more importantly, provides the joint locations. How-
ever, since our system uses the motion of the body
parts to recover the joint locations, it does not perform
as well with joints which have a restricted range of
movement, such as the neck, wrist and ankle joints.

Due to the high number of degrees of freedom of
the human body, motion tracking is a difficult prob-
lem. The problem is particularly challenging for vision-
based (marker-less) approaches because of self oc-
clusion, unknown kinematic information, perspective
distortion and cluttered environments. In this paper,
we have shown how to use detailed person-specific
shape models for human motion tracking. Our track-
ing algorithm has two major advantages compared to
other model-based methods. First, our person-specific
models closely approximate the actual shape of the
body parts, with joint information estimated directly
from the motion of the person. The accurate kinematic
model gives better shape and joint constraints than
methods which use simple approximating geometric
primitives. Secondly the (color) appearance model pro-
vided by the CSPs combines the geometric constraints
and color consistency in one optimization formulation.
Most other vision-based motion tracking methods lack
the ability to use both color and shape information
simultaneously.

For relatively simple motions, such as the
STILLMARCH and AEROBICS sequences, our track-
ing algorithm works very well. However, for complex

motions such as those in the KUNGFU and THROW
sequences, our algorithm suffers from the problem of
local minima. This problem is unavoidable because of
the error minimization formulation of the algorithm.
Although the remedy we suggested in Section 3.3.3
is able to resolve some of these local minima prob-
lems, there are unresolvable situations such as the one
in Fig. 10(b). Another way to alleviate the local min-
ima problem is to apply joint angles limits (or reach-
able workspace constraints as defined in Murray et al.
(1994)) to the tracking error measure. See Section 4.2
for more details of how this might be done.

4.2. Future Work

Our work in this paper can be considered as a step
toward building a completely vision-based and totally
autonomous 3D human modeling and motion capture
system. However, there are still several difficulties to
overcome before such systems are widely used in in-
dustry. We briefly discuss three possibilities for future
work to further improve our systems.

Because we model each separate body part as rigid,
our system is not able to capture subtle surface defor-
mation caused by muscles and clothing. The ability to
capture such deformation is essential for realistic an-
imation of the acquired model and captured motion
(Cheung et al., 2004). One possible future direction is
to incorporate deformable models into our system to
capture non-rigid movements of the skin, muscle and
clothing.

Although our tracking algorithm works well, it suf-
fers from the problem of local minima, a problem com-
mon to all methods that use an error optimization for-
mulation. In Section 3 we suggested including joint
angles and velocity limits to reduce the problem of lo-
cal minimum. Prior to tracking, the allowable range of
motions (of all the joint angles) and angular velocity of
the person are estimated. The space of all joint param-
eters is then divided into valid and invalid workspaces.
This a priori workspace information can then be in-
corporated into the tracking optimization equations by
adding very high errors to the error criterion when the
body joint angles are in the invalid workspace or the
angular velocities are out of the pre-estimated ranges,
while no extra error is added when the joint angles are
in the valid zones.

Last but not the least, the current versions of our
modeling and tracking systems are not real-time.
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Being able to model people and track their motions in
real-time is critical in applications such as user inter-
faces, security and surveillance. Another possible area
of future work is to explore the possibility of applying
efficient image alignment algorithms such as those in
Baker and Matthews (2004) to reduce the processing
time for both modeling and tracking.

Note

1. All movie clips can be found at http://www.cs.cmu.edu/ ˜ger-
man/research/Journal/IJCV/Applications/. Lower resolution ver-
sions of some of the movies are also included in the supplementary
movie SFSAT Applications.mpg.
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