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5S.1
Graphical Representation of 
One-Dimensional, Transient Conduction 
in the Plane Wall, Long Cylinder, and Sphere

In Sections 5.5 and 5.6, one-term approximations have been developed for transient,
one-dimensional conduction in a plane wall (with symmetrical convection conditions)
and radial systems (long cylinder and sphere). The results apply for Fo � 0.2 and can
conveniently be represented in graphical forms that illustrate the functional depen-
dence of the transient temperature distribution on the Biot and Fourier numbers.

Results for the plane wall (Figure 5.6a) are presented in Figures 5S.1 through
5S.3. Figure 5S.1 may be used to obtain the midplane temperature of the wall, T(0, t) �
To(t), at any time during the transient process. If To is known for particular values of 
Fo and Bi, Figure 5S.2 may be used to determine the corresponding temperature at
any location off the midplane. Hence Figure 5S.2 must be used in conjunction with
Figure 5S.1. For example, if one wishes to determine the surface temperature (x* �
�1) at some time t, Figure 5S.1 would first be used to determine To at t. Figure 5S.2
would then be used to determine the surface temperature from knowledge of To. The
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procedure would be inverted if the problem were one of determining the time required
for the surface to reach a prescribed temperature.

Graphical results for the energy transferred from a plane wall over the
time interval t are presented in Figure 5S.3. These results were generated from
Equation 5.46. The dimensionless energy transfer Q/Qo is expressed exclusively in
terms of Fo and Bi.

Results for the infinite cylinder are presented in Figures 5S.4 through 5S.6, and
those for the sphere are presented in Figures 5S.7 through 5S.9, where the Biot
number is defined in terms of the radius ro.
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FIGURE 5S.4 Centerline temperature as a function of time for an infinite cylinder of radius ro [1]. Used with permission.
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The foregoing charts may also be used to determine the transient response of a
plane wall, an infinite cylinder, or sphere subjected to a sudden change in surface
temperature. For such a condition it is only necessary to replace T� by the prescribed
surface temperature Ts and to set Bi�1 equal to zero. In so doing, the convection coef-
ficient is tacitly assumed to be infinite, in which case T� � Ts.
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Adapted with permission.
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5S.2
Analytical Solution of 
Multidimensional Effects

Transient problems are frequently encountered for which two- and even three-
dimensional effects are significant. Solution to a class of such problems can be
obtained from the one-dimensional analytical results of Sections 5.5 through 5.7.

Consider immersing the short cylinder of Figure 5S.10, which is initially at a
uniform temperature Ti, in a fluid of temperature T� � Ti. Because the length and
diameter are comparable, the subsequent transfer of energy by conduction will be
significant for both the r and x coordinate directions. The temperature within the
cylinder will therefore depend on r, x, and t.

Assuming constant properties and no generation, the appropriate form of the
heat equation is, from Equation 2.24,

where x has been used in place of z to designate the axial coordinate. A closed-form
solution to this equation may be obtained by the separation of variables method.
Although we will not consider the details of this solution, it is important to note that
the end result may be expressed in the following form:

That is, the two-dimensional solution may be expressed as a product of one-
dimensional solutions that correspond to those for a plane wall of thickness 2L and
an infinite cylinder of radius ro. For Fo � 0.2, these solutions are provided by the
one-term approximations of Equations 5.40 and 5.49, as well as by Figures 5S.1 and
5S.2 for the plane wall and Figures 5S.4 and 5S.5 for the infinite cylinder.

T(r, x, t) � T�

Ti � T�
 � 

T(x, t) � T�

Ti � T�
�Plane
wall

 � 
T(r, t) � T�

Ti � T�
�Infinite
cylinder

1
r  

�
�r

 �r 

�T
�r� � 

�2T
�x2

 � 

1
� 

�T
�t
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Results for other multidimensional geometries are summarized in Figure 5S.11.
In each case the multidimensional solution is prescribed in terms of a product
involving one or more of the following one-dimensional solutions:

(5S.1)

(5S.2)

(5S.3) C(r, t) � 

T(r, t) � T�

Ti � T�
�Infinite
cylinder

 P(x, t) � 

T(x, t) � T�

Ti � T�
�Plane
wall

 S(x, t) � 

T(x, t) � T�

Ti � T�
�Semi-infinite
solid

W-14 5S.2 � Analytical Solution of Multidimensional Effects
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FIGURE 5S.11 Solutions for multidimensional systems expressed as products of 
one-dimensional results.
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The x coordinate for the semi-infinite solid is measured from the surface, whereas
for the plane wall it is measured from the midplane. In using Figure 5S.11 the coor-
dinate origins should carefully be noted. The transient, three-dimensional tempera-
ture distribution in a rectangular parallelepiped, Figure 5S.11h, is then, for example,
the product of three one-dimensional solutions for plane walls of thicknesses 2L1,
2L2, and 2L3. That is,

The distances x1, x2, and x3 are all measured with respect to a rectangular coordinate
system whose origin is at the center of the parallelepiped.

The amount of energy Q transferred to or from a solid during a multidimen-
sional transient conduction process may also be determined by combining one-
dimensional results, as shown by Langston [1].

EXAMPLE 5S.1

In a manufacturing process stainless steel cylinders (AISI 304) initially at 600 K are
quenched by submersion in an oil bath maintained at 300 K with h � 500 W/m2 � K.
Each cylinder is of length 2L � 60 mm and diameter D � 80 mm. Consider a time
3 min into the cooling process and determine temperatures at the center of the cylin-
der, at the center of a circular face, and at the midheight of the side. Note that Prob-
lem 5.124 requires a numerical solution of the same problem using FEHT.

SOLUTION

Known: Initial temperature and dimensions of cylinder and temperature and con-
vection conditions of an oil bath.

Find: Temperatures T(r, x, t) after 3 min at the cylinder center, T(0, 0, 3 min), at the
center of a circular face, T(0, L, 3 min), and at the midheight of the side, T(ro, 0, 3 min).

Schematic:

Cylinder
AISI 304

Oil Bath

x

L = 30 mm

L = 30 mm

T(0, L, t)

T(r, x, 0) = Ti = 600 K

T(ro, 0, t)

T(0, 0, t)

ro = 40 mm

r

T∞
h

= 300 K
= 500 W/m2•K

T(x 1, x 2, x 3, t) � T�

Ti � T�
 � P(x 1, t) � P(x 2, t) � P(x 3, t)

5S.2 � Analytical Solution of Multidimensional Effects W-15
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Assumptions:
1. Two-dimensional conduction in r and x.

2. Constant properties.

Properties: Table A.1, stainless steel, AISI 304 [T � (600 � 300)/2 � 450 K]:
� � 7900 kg/m3, c � 526 J/kg � K, k � 17.4 W/m � K, � � k/�c � 4.19 	 10�6 m2/s.

Analysis: The solid steel cylinder corresponds to case (i) of Figure 5S.11, and
the temperature at any point in the cylinder may be expressed as the following prod-
uct of one-dimensional solutions.

where P(x, t) and C(r, t) are defined by Equations 5S.2 and 5S.3, respectively.
Accordingly, for the center of the cylinder,

Hence, for the plane wall, with

it follows from Equation 5.41 that

where, with Bi � 0.862, C1 � 1.109 and 
1 � 0.814 rad from Table 5.1. With
Fo � 0.84,

Similarly, for the infinite cylinder, with

it follows from Equation 5.49c that

where, with Bi � 1.15, C1 � 1.227 and 
1 � 1.307 rad from Table 5.1. With
Fo � 0.47,

�o

�i
�Infinite
cylinder

 � 1.109 exp [�(1.307 rad)2
 	 0.47] � 0.550

�*o  � 

�o

�i
 � C1 exp (��2

1Fo)

 Fo � 

�t
r 2

o

 � 

4.19 	 10�6
 m2/s 	 180 s

(0.04 m)2
 � 0.47

 Bi�1
 � 

k
hro

 � 

17.4 W/m � K
500 W/m2

 � K 	 0.04 m
 � 0.87

�o

�i
 � 

T(0, 3 min) � T�

Ti � T�
�Plane
wall

 � 1.109 exp [�(0.814 rad)2
 	 0.84] � 0.636

�*o  � 

�o

�i
 � C1 exp (��2

1Fo)

 Fo � 

�t
L2

 � 

4.19 	 10�6
 m2/s 	 180 s

(0.03 m)2
 � 0.84

 Bi�1
 � 

k
hL

 � 

17.4 W/m � K
500 W/m2

 � K 	 0.03 m
 � 1.16

T(0, 0, 3 min) � T�

Ti � T�
 � 

T(0, 3 min) � T�

Ti � T�
�Plane
wall

� 
T(0, 3 min) � T�

Ti � T�
�Infinite
cylinder

T(r, x, t) � T�

Ti � T�
 � P(x, t)C(r, t)
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Hence, for the center of the cylinder,

�

The temperature at the center of a circular face may be obtained from the require-
ment that

where, from Equation 5.40b,

Hence, with x* � 1, we have

Hence

Hence

�

The temperature at the midheight of the side may be obtained from the require-
ment that

where, from Equation 5.49b,

With r* � 1 and the value of the Bessel function determined from Table B.4,

�(ro)
�o

 � 

T(ro, 3 min) � T�

T(0, 3 min) � T�
�Infinite
cylinder

 � J0(1.307 rad 	 1) � 0.616

�*
�*o

 � 

�
�o

 

 � J0(�1r*)

T(ro, 0, 3 min) � T�

Ti � T�
 � 

T(0, 3 min) � T�

Ti � T�
�Plane
wall

� 
T(ro, 3 min) � T�

Ti � T�
�Infinite
cylinder

 T(0, L, 3 min) � 300 K � 0.24(600 � 300) K � 372 K

 
T(0, L, 3 min) � T�

Ti � T�
 � 0.437 	 0.550 � 0.240

 
T(L, 3 min) � T�

Ti � T�
�Plane
wall

 � 0.687 	 0.636 � 0.437

 
T(L, 3 min) � T�

Ti � T�
�Plane
wall

 � 

T(L, 3 min) � T�

T(0, 3 min) � T�
�Plane
wall

� 
T(0, 3 min) � T�

Ti � T�
�Plane
wall

�(L)
�o

 � 

T(L, 3 min) � T�

T(0, 3 min) � T�
�Plane
wall

 � cos (0.814 rad 	 1) � 0.687

�*
�*o

 � 

�
�o

 

 � cos (�1x*)

T(0, L, 3 min) � T�

Ti � T�
 � 

T(L, 3 min) � T�

Ti � T�
�Plane
wall

� 
T(0, 3 min) � T�

Ti � T�
�Infinite
cylinder

T(0, 0, 3 min) � 300 K � 0.350(600 � 300) K � 405 K

T(0, 0, 3 min) � T�

Ti � 

T�
 � 0.636 	 0.550 � 0.350
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Hence

Hence

�

Comments:
1. Verify that the temperature at the edge of the cylinder is T(ro, L, 3 min) � 344 K.

2. The Heisler charts of Section 5S.1 could also be used to obtain the desired
results. Accessing these charts, one would obtain �o/�i�Plane wall � 0.64, �o/�i�Infinite

cylinder � 0.55, �(L)/�o�Plane wall � 0.68, and �(ro)/�o�Infinite cylinder � 0.61, which are
in good agreement with results obtained from the one-term approximations.

3. The IHT Models, Transient Conduction option for the Plane Wall and Infinite
Cylinder may be used to calculate temperature ratios required for the foregoing
product solution.

 T(ro, 0, 3 min) � 300 K � 0.216(600 � 300) K � 365 K

 
T(ro, 0, 3 min) � T�

Ti � T�
 � 0.636 	 0.339 � 0.216

T(ro, 3 min) � T�

Ti � T�
�Infinite
cylinder

 � 0.616 	 0.550 � 0.339

 � 
T(0, 3 min) � T�

Ti � T�
�Infinite
cylinder

T(ro, 3 min) � T�

Ti � T�
�Infinite
cylinder

 �  
T(ro, 3 min) � T�

T(0, 3 min) � T�
�Infinite
cylinder
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Reference

Problems

1. Langston, L.S., Int. J. Heat Mass Transfer, 25, 149–150,
1982.

One-Dimensional Conduction: 
The Plane Wall

5S.1 Consider the thermal energy storage unit of Problem
5.11, but with a masonry material of � � 1900 kg/m3,
c � 800 J/kg � K, and k � 0.70 W/m � K used in place
of the aluminum. How long will it take to achieve 75%
of the maximum possible energy storage? What are the
maximum and minimum temperatures of the masonry
at this time?

5S.2 An ice layer forms on a 5-mm-thick windshield of a car
while parked during a cold night for which the ambient
temperature is �20°C. Upon start-up, using a new

defrost system, the interior surface is suddenly exposed
to an airstream at 30°C. Assuming that the ice behaves
as an insulating layer on the exterior surface, what
interior convection coefficient would allow the exterior
surface to reach 0°C in 60 s? The windshield thermo-
physical properties are � � 2200 kg/m3, cp � 830 J/kg �
K, and k � 1.2 W/m � K.

One-Dimensional Conduction: 
The Long Cylinder
5S.3 Cylindrical steel rods (AISI 1010), 50 mm in diame-

ter, are heat treated by drawing them through an oven
5 m long in which air is maintained at 750°C. The
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rods enter at 50°C and achieve a centerline tempera-
ture of 600°C before leaving. For a convection coeffi-
cient of 125 W/m2 � K, estimate the speed at which the
rods must be drawn through the oven.

5S.4 Estimate the time required to cook a hot dog in boiling
water. Assume that the hot dog is initially at 6°C, that
the convection heat transfer coefficient is 100 W/m2 � K,
and that the final temperature is 80°C at the centerline.
Treat the hot dog as a long cylinder of 20-mm diame-
ter having the properties: � � 880 kg/m3, c � 3350
J/kg � K, and k � 0.52 W/m � K.

5S.5 A long bar of 70-mm diameter and initially at 90°C is
cooled by immersing it in a water bath that is at 40°C
and provides a convection coefficient of 20 W/m2 � K.
The thermophysical properties of the bar are � �
2600 kg/m3, c � 1030 J/kg � K, and k � 3.50 W/m � K.

(a) How long should the bar remain in the bath in order
that, when it is removed and allowed to equilibrate
while isolated from any surroundings, it achieves a
uniform temperature of 55°C?

(b) What is the surface temperature of the bar when it
is removed from the bath?

One-Dimensional Conduction: 
The Sphere

5S.6 A sphere of 80-mm diameter (k � 50 W/m � K and
� � 1.5 	 10�6 m2/s) is initially at a uniform, elevated
temperature and is quenched in an oil bath maintained at
50°C. The convection coefficient for the cooling process
is 1000 W/m2 � K. At a certain time, the surface temper-
ature of the sphere is measured to be 150°C. What is the
corresponding center temperature of the sphere?

5S.7 A spherical hailstone that is 5 mm in diameter is
formed in a high-altitude cloud at �30°C. If the stone
begins to fall through warmer air at 5°C, how long will
it take before the outer surface begins to melt? What is
the temperature of the stone’s center at this point in
time, and how much energy (J) has been transferred to
the stone? A convection heat transfer coefficient of
250 W/m2 � K may be assumed, and the properties of
the hailstone may be taken to be those of ice.

5S.8 In a process to manufacture glass beads (k � 1.4 W/m �
K, � � 2200 kg/m3, cp � 800 J/kg � K) of 3-mm diame-
ter, the beads are suspended in an upwardly directed
airstream that is at T� � 15°C and maintains a convec-
tion coefficient of h � 400 W/m2 � K.

(a) If the beads are at an initial temperature of Ti �
477°C, how long must they be suspended to achieve
a center temperature of 80°C? What is the corre-
sponding surface temperature?

(b) Compute and plot the center and surface tempera-
tures as a function of time for 0 � t � 20 s and
h � 100, 400, and 1000 W/m2 � K.

Multidimensional Conduction
5S.9 A long steel (plain carbon) billet of square cross sec-

tion 0.3 m by 0.3 m, initially at a uniform temperature
of 30°C, is placed in a soaking oven having a tempera-
ture of 750°C. If the convection heat transfer coeffi-
cient for the heating process is 100 W/m2 � K, how
long must the billet remain in the oven before its cen-
ter temperature reaches 600°C?

5S.10 Fireclay brick of dimensions 0.06 m 	 0.09 m 	
0.20 m is removed from a kiln at 1600 K and cooled in
air at 40°C with h � 50 W/m2 � K. What is the temper-
ature at the center and at the corners of the brick after
50 min of cooling?

5S.11 A cylindrical copper pin 100 mm long and 50 mm in
diameter is initially at a uniform temperature of 20°C.
The end faces are suddenly subjected to an intense
heating rate that raises them to a temperature of
500°C. At the same time, the cylindrical surface is
subjected to heating by gas flow with a temperature of
500°C and a heat transfer coefficient of 100 W/m2 � K.

(a) Determine the temperature at the center point of the
cylinder 8 s after sudden application of the heat.

(b) Considering the parameters governing the temper-
ature distribution in transient heat diffusion prob-
lems, can any simplifying assumptions be justified
in analyzing this particular problem? Explain briefly.

5S.12 Recalling that your mother once said that meat should
be cooked until every portion has attained a tempera-
ture of 80°C, how long will it take to cook a 2.25-kg
roast? Assume that the meat is initially at 6°C and that
the oven temperature is 175°C with a convection heat
transfer coefficient of 15 W/m2 � K. Treat the roast as a
cylinder with properties of liquid water, having a diam-
eter equal to its length.

End face

100 mm

50 mm

Gas flow

� Problems W-19
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5S.13 A long rod 20 mm in diameter is fabricated from alu-
mina (polycrystalline aluminum oxide) and is initially
at a uniform temperature of 850 K. The rod is suddenly
exposed to fluid at 350 K with h � 500 W/m2 � K.
Estimate the centerline temperature of the rod after
30 s at an exposed end and at an axial distance of
6 mm from the end.

5S.14 Consider the stainless steel cylinder of Example 5S.1,
which is initially at 600 K and suddenly quenched in
an oil bath at 300 K with h � 500 W/m2 � K. Use the
Transient Conduction, Plane Wall and Cylinder mod-
els of IHT to obtain the following solutions.

(a) Calculate the temperatures, T(r, x, t), after 3 min
at the cylinder center, T(0, 0, 3 min), at the center

of a circular face, T(0, L, 3 min), and at the mid-
height of the side, T(ro, 0, 3 min). Compare your
results with those in the example.

(b) Use the Explore and Graph options of IHT to cal-
culate and plot temperature histories at the cylin-
der center, T(0, 0, t), and the midheight of the
side, T(ro, 0, t), for 0 � t � 10 min. Comment on
the gradients occurring at these locations and what
effect they might have on phase transformations
and thermal stresses. Hint: In your sweep over the
time variable, start at 1 s rather than zero.

(c) For 0 � t � 10 min, calculate and plot tempera-
ture histories at the cylinder center, T(0, 0, t), for
convection coefficients of 500 W/m2 � K and
1000 W/m2 � K.

W-20 5S.2 � Analytical Solution of Multidimensional Effects
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