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Abstract—Blind signal detection in multiuser CDMA system
is particularly attractive when only the desired user signature is
known to a given receiver. A problem common to several existing
blind multiuser CDMA detectors is that the detection perfor-
mance is very sensitive to the Signature Waveform Mismatch
(SWM) which may be caused by channel distortion. In this paper
we consider the design of a blind multiuser CDMA detector that
is robust to the SWM. We present a convex formulation for this
problem by using the Second Order Cone (SOC) programming.
The resulting SOC problem can be solved efficiently using the
recently developed interior point methods. Computer simulations
indicate that the performance of our new robust blind multiuser
detector is superior to those of many existing methods.

Index Terms—BIlind multiuser detection, robust multiuser
detection, second order cone programming.

I. INTRODUCTION
A commonly encountered problem

One possible approach to deal with the SWM problem is to
allow the use of training sequences during transmissioh suc
that the channel distortion can be periodically estimatgd b
the receiver. The identified channel response (distortoam)

be used to design compensating measures against signature
waveform mismatch. However, in a mobile communication
environment where channel distortion varies quickly,rirzg
based approaches may consume too much channel capacity.
An alternative means of mitigating SWM is to design a
blind multiuser detector which has strong robustness to SWM.
In reference [2] (see also [5]), a particular mechanism was
presented for the design of robust blind multiuser CDMA
detectors which calls for the minimization of the detector’
output energy. Moreover, two gradient descent algorithims (
Stochastic Gradient (SG) algorithm and the Least Squai®)s (L
algorithm) were proposed in [2] for achieving the Minimum

in Code-DivisiorDutput Energy (MOE) under the constraint that the so-called

Multiple-Access (CDMA) systems is the so called the near-fasurplus energy” created by SWM is bounded. However, con-
effect whereby weaker users are dominated by stronger usgrsining the “surplus energy” is an indirect and heuristay
(interferers). It is well known that in such circumstancks t to achieve receiver robustness. A more natural (and perhaps

traditional matched filter single-user detection is noeetif/e,

also more desirable) formulation is to directly maximize th

and multiuser detection should be used [1], [8], [9]. While imorst case system performance given a specific bound of
a standard multiuser detector all user signature and timiB§VM. Such is the approach taken in this paper. Another
information must be known [1] to the receiver, a recertrawback of the two iterative algorithms proposed in [2] is

work [2] presented a simple blind near-far resistant “nuskir”

that they require some data-dependent parameters thabtare n

detector which requires only the desired users’ waveformasy to select, and a poor choice could lead to unacceptable
Some further work along this line have been reported in [3)erformance. The Constrained MOE method (CMOE) [6] first

[4]. [6], [7].

estimates the channel blindly and then minimizes the cHanne

A problem common to several existing blind multiuseputput energy subject to certain constraints aimed at gtiotg

CDMA detectors is that their performance tend to be negtie desired signal that has propagated through the estmate
tively affected by the Signature Waveform Mismatch (SWMghannel. However, the channel identification phase of the
caused by channel distortion. Since channel distortiostexi CMOE method requires large number of samples and high
in most environments where CDMA is deployed (e.g., cellul&NR. Moreover, it requires special techniques to resolve an
mobile telephony), it is essential for the blind multiuseintrinsic unitary ambiguity matrix.

receivers to mitigate the SWM effect when we design a In this correspondence we present a new formulation for

practical CDMA detector with near-far resistance [2], [10]the design of robust blind multiuser CDMA detectors. Our

The work of the first three authors is supported by the NatS8aénces
and Engineering Research Council of Canada, Grant No. O8@=38Q, and
by the Canada Research Chair Program. The research of tle athihor
is supported in part by NSF under grants CCR-0196364, EQ3489 and
DMS-0312416.

Shuguang Cui is with the Department of Electrical Enginegribtanford
University, Stanford, CA 94305-9505, U.S.A.

Mikalai Kisialiou and Zhi-Quan Luo is with the Department ofeEtri-
cal and Computer Engineering, University of Minnesota, Mapolis, MN
55455, U.S.A.

Zhi Ding is with the Department of Electrical and Computer Erwegiring,
University of California at Davis, Davis, CA 95616, U.S.A.

formulation is direct in the sense that it allows explicit
control of the amount of required robustness in the detector
Moreover, our optimization formulation is convex since it
is based on the Second Order Cone programming (SOC).
As such, this new robust blind multiuser detector can be
obtained using the highly efficient interior point methods
recently developed in the optimization community. Compute
simulations indicate that the performance of our new robust
blind multiuser detector, when combined with a blind signal
separation method (e.g., the JADE algorithm [13]), is sigper



to those that exist in the literature for both non-dispersiMt is well known that the MOE solution to (4) is highly
and dispersive propagation environment, while the number gensitive to SWM and often lead to poor BER performance. To

required samples is significantly smaller. overcome this sensitivity to SWM, Hond. al. [2] introduced
the following energy-constrained version of MOE detector:
[I. PROBLEM DESCRIPTION minimize cle{cl
. . . . ’ 5
Consider an antipodak’-user synchronous direct sequence subjectto cfs; =1, |[e;1 —s1]? =¥, ©)

C.DMA phannel(;:orrupteq byf sI?me ar(]jditi\?e 2ar1d white GauWhereX is called the surplus energy and is chosen by the user
sian noisen(t). Our notation follows that of [2]: apriori so thaty; < x < xs, with x; andxs being the user-

+ o — the standard deviation of channet); selected lower and upper bounds on the surplus energy. &lso,
» sk(t) — the normalized signature waveform for theh  stochastic gradient algorithm was proposed [2] to solveh)
user with||s(¢)[| = 1; rigorous convergence analysis was neither given nor known.
o {bx[i]} — the transmitted BPSK data bits; In some sense, the formulation (5) attempts to generate a
« T — bit duration at the transmission rate of7’; robust solution to (4) which is insensitive to SWMshp. This
Given the above notations, the received signal can be writtebustness is achieved indirectly by constraining the laarp
as energy. The main weakness of the formulation (5) is its lack
K of convexity.
y(t) = Agbesp(t) +n(t), te[0,7] @)
k=1 1. SOC ALGORITHM DEVELOPMENT

When we sample the received signal wavefay(h) at the We now describe a more direct (and arguably a more
chip rate1/A, where A > 0 is the chip interval, we obtain natural) way to construct a robust solution for the minimum

the following discrete version of (1): output energy (MOE) formulation (4) under SWM. It turns
K out that both the objective function and constraints in tiag/
y = Z Apbisy + 1, @) formulation are convex so that a globally optimal soluti@m c

be found efficiently.

=t We model the actual received signature waveforns;as-
where Api(si, + er), wheree,, is the mismatch error vector andl,
y(A) s(A) n(A) is the channel gain. Notice thal; can be easily estimated by
y(2A) s(2A) n(2A) matching the channel output power wifls,||?. In this way,
y= : » Sk = : » M= : we obtain the normalized received signature waveform:
y(NA) s(NA) n(NA) Sk = sk + eg. (6)

with IV being the code spreading factor. Note tat= NA  Clearly, [lex|| is a measure of the magnitude of signal wave-

as a result. form mismatch. The distortion can be due to asynchronism or
Without loss of generality, suppose that the user one is dtitltipath fading. For example, in the case of timing asyoehr

desired user whose signature waveform is denoted a®ur nism, we can use Taylor approximation to bouth-7)—s(t),

goal in receiver design is to select a vectgr which, upon wherer is the tlmlng offset. Hence, the SWM error is eaSin

correlating with the received vectgr and passing through abounded by|le[| = [|8 —s|| < BN, where B is the

hard limiter, will recover the data bit&, [i]} sent by user one. upper bound for the derivative of the continuous signature

The Minimum Output Energy (MOE) based multiuser detectdyaveforms(t), and NV is the spreading factor. In a multipath
introduced in [2] can be described as follows: environment with anM-tap channel responske, the actual

received signature waveform §s = s; ® h. Hence, we can

inimi 2_ T . . .
minimize  E[(y,c1)|” = ¢; Rey, (3) obtain the following bound on the mismatch error vector:

subject to cfs; =1,

, _ lell = 118k — skl < sk @ h — sl
wherec; is the vector to be determined, aRl= E(yy?) € < |lsk @ (h — higear) || @)
RN*N _In practice we have only finite number of snapshots < vV M|/h — higea ||

of the received data. Thus, we need to replRcén (3) with

the sample covariance matrix where h;4.,1 denotes the ideal channel response (i.e., delta

function). If the channel has a main line of sight component
. 1 X and small multipath components, th@¢h — h;qea|| Will be
R = ﬁb ZY[”KY[”DTa small. 4 I
n=1 We assume the distortion errer; in the desired signal
where N, is the number of transmitted data bits agfh] waveform can be bounded by some constant- 0, that
is the n-th received data vector. This leads to the followings ||e1| < J. The size ofd can be estimated using, for
implementable version of (3): example, (7). The actual received signal wavef@inrcan be
L T described as a vector in the set
minimize c; Re;y, (4)
subject to cT's; = 1. S1(0) ={81 |81 =s1+e1, |le1] <}



Since §; can be any vector ir51(d), we must ensure that primal-dual potential reduction method SeDuMi [14]. Theto
the detector gain for all signals if;(5) should be greater computational complexity for solving (11) (N3 log1/e).
than 1, that isc{ 8; > 1 for all vectorss; € S;(0). Such a This, plus the complexity of accumulating the sample carrel
constraint ensures that we can extract the data bits from ugen matrix R and performing its Cholesky factorization, gives
one regardless how its signature waveform is distortechregs | the SOC approach an overall complexity@fN3-5 log 1 /e +
as the distortion is bounded dy Now suppose that this gain N, N?), whereN;, is the total number of transmitted data bits.
constraint is enforced, then our goal remains to find a vegtor The accuracy parametercan be either fixed (say,= 10~4)
that minimize5c1TRc1. Consequently, a robust version of (4pr chosen to vary inversely proportional to the signal tcsaoi
can be described as follows: ratio (SNR).

minimize cTRe;,

subject to cl's; > 1 for all 8, € S1(4), (8) IV. SIMULATIONS

. . . We now compare the simulation performance of our new
whered is an upper bound on the norm of the signal mlsmatCé]OC method with those of the existing blind linear CDMA
error vector.

For each choice of; € Si(5), the conditioncTs; > 1 receivers which include the classical Matched Filteringhod

. . . .—. . (MF), the standard (non-robust) MOE detector, the two ver-
represents a linear constraint en. Since there are infinite .
. S .. ... sions of robust MOE methods proposed by [2] (one based on
number of§; in S1(¢), the constraints in (8) are semi-infinite .
; S ) . . Least Squares approach and the other based on Stochastic Gra
and linear. To facilitate the computation of optinagl we will . . S
A L dient approach), as well as the Constrained Minimum Output
convert these semi-infinite linear constraints into a sdedal Energy (CMOE) Method [6]. Although time synchronism was
second-order cone constraint. This is achieved by corisgler 9y ’ 9 y

. aﬁsumed throughout the algorithm development, we first test
the worst case performance as follows. Note that the optln%ﬁe performance of our algorithm on asynchronous CDMA
solution of the minimization problem

systems. Then we consider multipath propagation CDMA

min c8§,  orequivalenty  min cf(s; +e;)  Systems.
5.€51(6) lexl|<6
is given by A. SWM timing asynchronism model
e = —6C1/||C1 ||

Timing asynchronism is modelled through the presence of
This can be easily verified by Cauchy-Schwartz inequalit§ignature Waveform Mismatch (SWM) as in (6), whete~
Therefore, the constraint N(0,02%). We consider CDMA systems using Gold codes of
length N = 31 with the number of user& = 7 and K = 30.

For the system withk' = 7 users the Interference to Signal

can be equivalently described by Ratio (ISR) is set to be
ISR = 20log(Ax /A1) = 20 dB, k=2, K,

C{@l > 1 for all S1 € 51(5)

cl <s1 - 6Cl> >1, or cl's;—dlci||>1. (9)
leal| where A;, denotes the received signal amplitude of théh
Substituting (9) into (8), we obtain a new problem formuati user. For the other system witki = 30 ISR is taken to be

minimize c’Re;, ISR = 20log(Ay, /A1) = 10 dB, k=2 K.

subject to cl's; —dfjcy|| > 1 (10)

Both cases represent a severe near-far effect.
Notice that the constraint in (10) is of the form In our simulations, we test the systems with long sequences
of transmitted bits §, = 100 and N, = 400) to ensure
adequate iterative convergence of both LS and SG methods
for some givenP € RV*N p € RN andq € R, which is which we shall compare with our SOC method. It is also
called a second-order cone constraint. needed to ensure that the sample covariance mariis
Next we convert the quadratic objective function of (10pinta close approximation of the true covariance malRix At
a linear one. To do so, we first notice thgtRc; = ||Lc,||?, the ¢-th run, a random distortion with the norm no more
where LT = R is the Cholesky factorization. Obviously,thand is added to every signature waveform to result in a
minimizing the quadratic nornjLc;, ||? is equivalent to min- mismatched waveforra;. In addition, new additive Gaussian
imizing ||Lc,|. Introducing a new variable¢ and a new noise vectorsn’ as well as a new data sequenflg } are
constraint/|Le; || < ¢, we can convert (10) into the following: generated.
To solve (11) we have used a Matlab-based tool called

(11) SeDuMi [14] which is an efficient implementation of a primal-

dual interior point method for solving SOC problems. For
The above formulation (11) is now in the standard form of the LS and the SG methods, we have experimented with
second-order cone programming (SOCP) [11] problem. Thisvarious different values ofy (the “surplus energy” in (5))
because the objective function is linear and the two coimésra and have chosen the one which gives the best Averaged BER
are both second-order cone constraints (which are convepgrformance, even though such a luxury is not practically
Such optimization problem can be efficiently solved usingffordable.

[Pci|| < pler +4q,

minimize ¢,
subject to [|Lei|| < ¢, [|dcq| <sfeqp —1.



10°

o
w10’k E
)
Dash dotted line: MF receiver
107°F E
—+—+ line: MOE algorithm
Dotted line: SG algorithm
0k E
1 Dashed line: LS algorithm
Solid line: SOC algorithm
10’6 I I I I I I I I
0 2 4 6 8 10 12 14 16 18
SNRin dB
(@6 =04andd =0.4.
10° 10°

Dash dotted line: MF receiver
Dash dotted line: MF receiver

—+—+ line: MOE algorithm -

—+—+ line: MOE algorithm
Dotted line: SG algorithm
Dotted line: SG algorithm
Dashed line: LS algorithm . §
Dashed line: LS algorithm
Solid line: SOD algorithm
1073 Solid line: SOD algorithm

4 I I I I I I
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

I I I 4 I I I I

SNRin dB SNRindB
(b) 6 =0.4 and§ = 0.6. (c) 6 =0.4 andb = 0.2.

Fig. 1. BER versus SNR, comparison of SOC, LS, SG, MOE and MEctets.

The results forK = 7 users are shown in Fig. 1. Wethe MF detector has a poor BER performance since it does
test this system with mismatch = 0.4. Note thato is the not deal with the presence of strong co-channel interfeagnc
upper bound on the SWM realization at each random ruNotice that the BER for the MOE detector worsens when the
We experimented with different values and results seem toSNR increases. This is the case for a non-robust detector
be the same qualitatively. It can be seen from Fig. 1 thhite the MOE method because a part of the signal power
the SOC method has the best BER performance, followadll be contributing towards the interference when SWM is
by LS, SG, MOE and MF. Fig. 1(a) assumes the valué of present, leading to larger interference power and worse BER
is known to the detector and we use this valde £ §) performance as the signal power increases.

in the SOC formulation (11). Figs. 1(b) and 1(c) show the rijg 5 shows the results for heavily loaded system iith=
performance of SOC method whenis over-estimated and s34 sers and severe interference with ISR set tolbelB.

under-estimated respectively. It can be seen that the SQB_ 2(a) and Fig. 2(b) show the comparison of SOC for-

detector is robust to errors in estimating the SWM boung, iation. LS and SG for data blocks ab0 and 400 bits
In all of above reported simulation results, we have Chos?@specti\;ely. At each run a mismatch of nodn= 04 is

the surplus energy optimally (by trial and error) and have yqqed to signature waveforms of all users anis assumed
plotted only the best results. It comes as no surprise gt pe known to the detector. Inaccuracy of estimating the
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Fig. 2. BER versus SNR, 30 users, ISR10 dB, mismatchs = 0.4.

mismatch does not lead to the significant deterioration ef tlrig. 3, with a curve ‘cmoe’. At each run, new data sequences
performance of SOC method, thus, in practice an approximatkelength 5,000 bits (compared tol, 000 bits for the other

estimate ofo will be enough. The simulations suggest thaalgorithms), new additive white Gaussian noise vectors, as
the robust SOC formulation is superior to both LS and S®ell as new channel realizations are generated. We have

methods. experimented with longer data sequencés, (00—20,000
bits), but the results appear the same qualitatively. We als
B. Multipath Propagation tested the CMOE algorithm on a CDMA system in which all

We now test the performance of our algorithm in a multipatSers had the same power (ISR) dB), and those results are
propagation scenario. In our simulation, the dispersianael Shown with a curve ‘cmoe0’. Our simulation results suggest
is modelled as an FIR filter with a tap-spacing equal to t{Bat the performance of the CMOE is seriously affected by
chip rate [12]. The spreading codes are again chosen to tpg presence of noise an_d other users in the system. It should
Gold sequences of lengfli = 31. The input signal is a BPSK be also recognized that in scenarios when the channel length
ii.d. sequence for every user. Each users chip sequencdSignknown and has to be estimated, the performance of the
transmitted through a randomly generated multipath fadifigVOE would further degrade.
channel of lengthg + 1 = 3 chip periods. The user of We have also compared our second-order cone method to
interest is assumed to be the weak user: the channel gainst3fe JADE [13] algorithm. The curves ‘SOC6’ and ‘SOC7’
scaled so that each interfering useeisdB stronger than the "ePresent our method whenparameter is set to bé = 0.6

user of interest. This corresponds to a severe near-fatiitu  and 9 = 0.7, respectively. The curve ‘jade’ represents the
JADE algorithm. For the SOC algorithm, we have used the

Comparison of CMOE, SOC and JADE methods: desired user's Gold code sequence as the nominal signature
waveforms; in the formulation (8). We can see from Fig. 3(a)
Under the above model, we compared the CMOE and sdieat this choice of nominal signature waveform is not appro-
on a CDMA system withK = 3 users. The other multiuser Priate, i.e., the actual received signature waveforms ddi@o
detectors considered in the previous section showed a pdbthe d vicinity of the chosen nominal signature waveforms.
performance under the given multipath propagation model.!n other words, the norm bounded channel distortion model
Notice that an unitary ambiguity matrix exists in the blindS @ppropriate for communication systems with a strong line
identification phase of the CMOE algorithm. Such ambiguitg Sight and small multipath components, as derived in (7).
is generic to the multiuser blind identification approachd<°" Systems with severe presence of multipath components
based on second order statistics, and cannot be resolvessuri'® Propose the following algorithm.
additional information is available. In our simulation, we
have manually resolved this ambiguity using a (unrea)isti€ JADE-SOC Methods
training sequence prior to data transmission. Even with thi It is possible to combine JADE and SOC methods to
ambiguity removed, the CMOE algorithm still cannot recoveachieve a better performance than what is possible by either
the desired (weak) user, regardless of the block size. THe BEethod individually. Indeed, when operating alone, JADE
results, averaged ovel000 Monte Carlo runs, are shown inmethod may not identify the channel accurately due to the
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combined effect of noise, multiuser interference and shadte performance.

sample size, while SOC method may suffer from a poor choiceFinally, we remark that, in our simulations, solving each
of nominal signature waveform. However, when operating BOC problem (11) with the Matlab tool SeDuMi [14] takes
tandem (JADE followed by SOC), the robustness of SOIEss than a second on a 600 MHz Pentium Il PC.

method can be used to mitigate the estimation error found
in the estimates of JADE method.

We have tested this combined approach: we first use the )
JADE algorithm to estimate the received signature waveform!n this correspondence we have proposed a new robust
of the desired user, and then use it as the nominal signat@fd multiuser detector for synchronous CDMA in the pres-
waveforms; in our formulation (8) of SOC method. This com-€nce of signature waveform mismatch (SWM). Our method
bined approach (named JADE-SOC algorithm) outperforn based on a robust forr_nulatmn of the Minimum Output
the JADE, as shown by the curves ‘jade-soc015’ and ‘jadenergy (MOE) detector using the Second-Order-Cone (SOC)
s0c025’ (corresponding h= 0.15 ands = 0.25 respectively) Programming Fe.chnlque. The SOC formulation (11) is convex
in Fig. 3. This suggests that the robust SOC blind multius8Pd can be efficiently solved by the recently developedimter
detector is able to correct the estimation errors causedndy POINt methods. Computer simulations indicate that the new
JADE algorithm. SOC detector has a much better performance when compared

We can see from Fig. 3(b) that in most of the random rute the existing multiuser detectors (robust or otherwiSan-
the received blocks in JADE-SOC algorithm had less than 24ation results also show that the SOC detector can be used
corrupted bits per block. In particular, nearly 2,500 bickeffectively in the dispersive propagation environmenoyjuted
were successfully (error-free) decoded. This is not true f1at & reasonable estimate of the received signature wavefo
the JADE algorithm. The given histogram Fig. 3(b) compard@' the desired user is available.
the performance of JADE-SOC to the JADE when signal-téxcknowledgement: The authors are grateful to Boris Mait
noise ratio is set to be SNR- 6 dB. Similar results have for generating several simulations curves in Section 4.
been obtained for other SNR values. If we set signal-toenois
ratio to be SNR= 24 dB, we can see from Fig. 4 that the
JADE-SOC algorithm is able to successfully decode everethos
blocks for which the JADE algorithm has a BER up to 40%41] R.Lupas and S. Ved “Linear multiuser detector for synchronous code-
This clearly demonstrates of added value of our new robust f!'r\_'\'o,séon mUIt'pI_e_access O agels: IREE Trans. Inform. Theory, vol.

, pp. 123-136, Jan. 1989.
blind multiuser detector. In contrast, the CMOE algorithash [2] M. L. Honig, U. Madhow, and S. Veig“Blind adaptive multiuser
a poor performance, see Fig. 4(a). clig;esction,” inlEEE Trans. Inform. Theory, vol. IT-41, pp. 944-960, July

We point out that SOC method can be used in conjuncti®f) . madhow, “Adaptive signal processing for direct-seqae spread-
with any channel identification method (not just the JADE spectrum CDMA, Proc. Int. Conf. Acoustics, Speech, and Signal Pro-
method), blind or nonblind. The extra robustness of SOC cessng pp. 1065-1068, Atlanta, GA, 1996. -
method can be expected to partially mitigate the errorsdouﬁ"] H. V. Poor, “Adaptive suppression of narrowband digitaterferers from
in the channel estimates, thus leading to improved bit error Processing, pp. 1061-1064, Atlanta, GA, 1996.

V. CONCLUDING REMARKS
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