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Abstract— Blind signal detection in multiuser CDMA system
is particularly attractive when only the desired user signature is
known to a given receiver. A problem common to several existing
blind multiuser CDMA detectors is that the detection perfor-
mance is very sensitive to the Signature Waveform Mismatch
(SWM) which may be caused by channel distortion. In this paper
we consider the design of a blind multiuser CDMA detector that
is robust to the SWM. We present a convex formulation for this
problem by using the Second Order Cone (SOC) programming.
The resulting SOC problem can be solved efficiently using the
recently developed interior point methods. Computer simulations
indicate that the performance of our new robust blind multiuser
detector is superior to those of many existing methods.

Index Terms— Blind multiuser detection, robust multiuser
detection, second order cone programming.

I. I NTRODUCTION

A commonly encountered problem in Code-Division
Multiple-Access (CDMA) systems is the so called the near-far
effect whereby weaker users are dominated by stronger users
(interferers). It is well known that in such circumstances the
traditional matched filter single-user detection is not effective,
and multiuser detection should be used [1], [8], [9]. While in
a standard multiuser detector all user signature and timing
information must be known [1] to the receiver, a recent
work [2] presented a simple blind near-far resistant “multiuser”
detector which requires only the desired users’ waveform.
Some further work along this line have been reported in [3],
[4], [6], [7].

A problem common to several existing blind multiuser
CDMA detectors is that their performance tend to be nega-
tively affected by the Signature Waveform Mismatch (SWM)
caused by channel distortion. Since channel distortion exists
in most environments where CDMA is deployed (e.g., cellular
mobile telephony), it is essential for the blind multiuser
receivers to mitigate the SWM effect when we design a
practical CDMA detector with near-far resistance [2], [10].
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One possible approach to deal with the SWM problem is to
allow the use of training sequences during transmission such
that the channel distortion can be periodically estimated by
the receiver. The identified channel response (distortion)can
be used to design compensating measures against signature
waveform mismatch. However, in a mobile communication
environment where channel distortion varies quickly, training
based approaches may consume too much channel capacity.
An alternative means of mitigating SWM is to design a
blind multiuser detector which has strong robustness to SWM.
In reference [2] (see also [5]), a particular mechanism was
presented for the design of robust blind multiuser CDMA
detectors which calls for the minimization of the detector’s
output energy. Moreover, two gradient descent algorithms (the
Stochastic Gradient (SG) algorithm and the Least Squares (LS)
algorithm) were proposed in [2] for achieving the Minimum
Output Energy (MOE) under the constraint that the so-called
“surplus energy” created by SWM is bounded. However, con-
straining the “surplus energy” is an indirect and heuristicway
to achieve receiver robustness. A more natural (and perhaps
also more desirable) formulation is to directly maximize the
worst case system performance given a specific bound of
SWM. Such is the approach taken in this paper. Another
drawback of the two iterative algorithms proposed in [2] is
that they require some data-dependent parameters that are not
easy to select, and a poor choice could lead to unacceptable
performance. The Constrained MOE method (CMOE) [6] first
estimates the channel blindly and then minimizes the channel
output energy subject to certain constraints aimed at protecting
the desired signal that has propagated through the estimated
channel. However, the channel identification phase of the
CMOE method requires large number of samples and high
SNR. Moreover, it requires special techniques to resolve an
intrinsic unitary ambiguity matrix.

In this correspondence we present a new formulation for
the design of robust blind multiuser CDMA detectors. Our
formulation is direct in the sense that it allows explicit
control of the amount of required robustness in the detector.
Moreover, our optimization formulation is convex since it
is based on the Second Order Cone programming (SOC).
As such, this new robust blind multiuser detector can be
obtained using the highly efficient interior point methods
recently developed in the optimization community. Computer
simulations indicate that the performance of our new robust
blind multiuser detector, when combined with a blind signal
separation method (e.g., the JADE algorithm [13]), is superior
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to those that exist in the literature for both non-dispersive
and dispersive propagation environment, while the number of
required samples is significantly smaller.

II. PROBLEM DESCRIPTION

Consider an antipodalK-user synchronous direct sequence
CDMA channel corrupted by some additive and white Gaus-
sian noisen(t). Our notation follows that of [2]:

• σ – the standard deviation of channeln(t);
• sk(t) – the normalized signature waveform for thek-th

user with‖sk(t)‖ = 1;
• {bk[i]} – the transmitted BPSK data bits;
• T – bit duration at the transmission rate of1/T ;

Given the above notations, the received signal can be written
as

y(t) =

K
∑

k=1

Akbksk(t) + n(t), t ∈ [0, T ] (1)

When we sample the received signal waveformy(t) at the
chip rate1/∆, where∆ > 0 is the chip interval, we obtain
the following discrete version of (1):

y =

K
∑

k=1

Akbksk + n, (2)

where
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with N being the code spreading factor. Note thatT = N∆
as a result.

Without loss of generality, suppose that the user one is our
desired user whose signature waveform is denoted ass1. Our
goal in receiver design is to select a vectorc1 which, upon
correlating with the received vectory and passing through a
hard limiter, will recover the data bits{b1[i]} sent by user one.
The Minimum Output Energy (MOE) based multiuser detector
introduced in [2] can be described as follows:

minimize E |〈y, c1〉|2 = cT
1 Rc1,

subject to cT
1 s1 = 1,

(3)

wherec1 is the vector to be determined, andR = E(yyT ) ∈
ℜN×N . In practice we have only finite number of snapshots
of the received data. Thus, we need to replaceR in (3) with
the sample covariance matrix

R̂ =
1

Nb

Nb
∑

n=1

y[n](y[n])T ,

where Nb is the number of transmitted data bits andy[n]
is the n-th received data vector. This leads to the following
implementable version of (3):

minimize cT
1 R̂c1,

subject to cT
1 s1 = 1.

(4)

It is well known that the MOE solution to (4) is highly
sensitive to SWM and often lead to poor BER performance. To
overcome this sensitivity to SWM, Honiget. al. [2] introduced
the following energy-constrained version of MOE detector:

minimize cT
1 R̂c1,

subject to cT
1 s1 = 1, ‖c1 − s1‖2 = χ,

(5)

whereχ is called the surplus energy and is chosen by the user
a priori so thatχI < χ < χS , with χI andχS being the user-
selected lower and upper bounds on the surplus energy. Also,a
stochastic gradient algorithm was proposed [2] to solve (5), but
rigorous convergence analysis was neither given nor known.
In some sense, the formulation (5) attempts to generate a
robust solution to (4) which is insensitive to SWM ins1. This
robustness is achieved indirectly by constraining the surplus
energy. The main weakness of the formulation (5) is its lack
of convexity.

III. SOC ALGORITHM DEVELOPMENT

We now describe a more direct (and arguably a more
natural) way to construct a robust solution for the minimum
output energy (MOE) formulation (4) under SWM. It turns
out that both the objective function and constraints in thisnew
formulation are convex so that a globally optimal solution can
be found efficiently.

We model the actual received signature waveform ass̄k =
Ak(sk + ek), whereek is the mismatch error vector andAk

is the channel gain. Notice thatAk can be easily estimated by
matching the channel output power with‖sk‖2. In this way,
we obtain the normalized received signature waveform:

ŝk = sk + ek. (6)

Clearly, ‖ek‖ is a measure of the magnitude of signal wave-
form mismatch. The distortion can be due to asynchronism or
multipath fading. For example, in the case of timing asynchro-
nism, we can use Taylor approximation to bounds(t+τ)−s(t),
whereτ is the timing offset. Hence, the SWM error is easily
bounded by‖e‖ = ‖ŝ − s‖ ≤ BNτ , where B is the
upper bound for the derivative of the continuous signature
waveforms(t), andN is the spreading factor. In a multipath
environment with anM -tap channel responseh, the actual
received signature waveform iŝsk = sk ⊗ h. Hence, we can
obtain the following bound on the mismatch error vector:

‖e‖ = ‖ŝk − sk‖ ≤ ‖sk ⊗ h − sk‖
≤ ‖sk ⊗ (h − hideal)‖
≤

√
M‖h − hideal‖

(7)

where hideal denotes the ideal channel response (i.e., delta
function). If the channel has a main line of sight component
and small multipath components, then‖h − hideal‖ will be
small.

We assume the distortion errore1 in the desired signal
waveform can be bounded by some constantδ > 0, that
is ‖e1‖ ≤ δ. The size of δ can be estimated using, for
example, (7). The actual received signal waveformŝ1 can be
described as a vector in the set

S1(δ) = {ŝ1 | ŝ1 = s1 + e1, ‖e1‖ ≤ δ} .
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Since ŝ1 can be any vector inS1(δ), we must ensure that
the detector gain for all signals inS1(δ) should be greater
than 1, that is,cT

1 ŝ1 ≥ 1 for all vectorsŝ1 ∈ S1(δ). Such a
constraint ensures that we can extract the data bits from user
one regardless how its signature waveform is distorted, as long
as the distortion is bounded byδ. Now suppose that this gain
constraint is enforced, then our goal remains to find a vectorc1

that minimizescT
1 R̂c1. Consequently, a robust version of (4)

can be described as follows:

minimize cT
1 R̂c1,

subject to cT
1 ŝ1 ≥ 1 for all ŝ1 ∈ S1(δ),

(8)

whereδ is an upper bound on the norm of the signal mismatch
error vector.

For each choice of̂s1 ∈ S1(δ), the conditioncT
1 ŝ1 ≥ 1

represents a linear constraint onc1. Since there are infinite
number of̂s1 in S1(δ), the constraints in (8) are semi-infinite
and linear. To facilitate the computation of optimalc1, we will
convert these semi-infinite linear constraints into a so called
second-order cone constraint. This is achieved by considering
the worst case performance as follows. Note that the optimal
solution of the minimization problem

min
ŝs∈S1(δ)

cT

1 ŝ1 or equivalently min
‖e1‖≤δ

cT

1 (s1 + e1)

is given by
e1 = −δc1/‖c1‖.

This can be easily verified by Cauchy-Schwartz inequality.
Therefore, the constraint

cT

1 ŝ1 ≥ 1 for all ŝ1 ∈ S1(δ)

can be equivalently described by

cT

1

(

s1 − δ
c1

‖c1‖

)

≥ 1, or cT

1 s1 − δ‖c1‖ ≥ 1. (9)

Substituting (9) into (8), we obtain a new problem formulation

minimize cT
1 R̂c1,

subject to cT
1 s1 − δ‖c1‖ ≥ 1

(10)

Notice that the constraint in (10) is of the form

‖Pc1‖ ≤ pT c1 + q,

for some givenP ∈ ℜN×N , p ∈ ℜN and q ∈ ℜ, which is
called a second-order cone constraint.

Next we convert the quadratic objective function of (10) into
a linear one. To do so, we first notice thatcT

1 Rc1 = ‖Lc1‖2,
where LT L = R is the Cholesky factorization. Obviously,
minimizing the quadratic norm‖Lc1‖2 is equivalent to min-
imizing ‖Lc1‖. Introducing a new variablet and a new
constraint‖Lc1‖ ≤ t, we can convert (10) into the following:

minimize t,

subject to ‖Lc1‖ ≤ t, ‖δc1‖ ≤ sT

1 c1 − 1.
(11)

The above formulation (11) is now in the standard form of a
second-order cone programming (SOCP) [11] problem. This is
because the objective function is linear and the two constraints
are both second-order cone constraints (which are convex).
Such optimization problem can be efficiently solved using

primal-dual potential reduction method SeDuMi [14]. The total
computational complexity for solving (11) isO(N3.5 log 1/ǫ).
This, plus the complexity of accumulating the sample correla-
tion matrixR̂ and performing its Cholesky factorization, gives
the SOC approach an overall complexity ofO(N3.5 log 1/ǫ+
NbN

2), whereNb is the total number of transmitted data bits.
The accuracy parameterǫ can be either fixed (say,ǫ = 10−4)
or chosen to vary inversely proportional to the signal to noise
ratio (SNR).

IV. SIMULATIONS

We now compare the simulation performance of our new
SOC method with those of the existing blind linear CDMA
receivers which include the classical Matched Filtering method
(MF), the standard (non-robust) MOE detector, the two ver-
sions of robust MOE methods proposed by [2] (one based on
Least Squares approach and the other based on Stochastic Gra-
dient approach), as well as the Constrained Minimum Output
Energy (CMOE) Method [6]. Although time synchronism was
assumed throughout the algorithm development, we first test
the performance of our algorithm on asynchronous CDMA
systems. Then we consider multipath propagation CDMA
systems.

A. SWM timing asynchronism model

Timing asynchronism is modelled through the presence of
Signature Waveform Mismatch (SWM) as in (6), whereek ∼
N (0, σ2). We consider CDMA systems using Gold codes of
lengthN = 31 with the number of usersK = 7 andK = 30.
For the system withK = 7 users the Interference to Signal
Ratio (ISR) is set to be

ISR = 20 log(Ak/A1) = 20 dB, k = 2, · · · ,K,

whereAk denotes the received signal amplitude of thek-th
user. For the other system withK = 30 ISR is taken to be

ISR = 20 log(Ak/A1) = 10 dB, k = 2, · · · ,K.

Both cases represent a severe near-far effect.
In our simulations, we test the systems with long sequences

of transmitted bits (Nb = 100 and Nb = 400) to ensure
adequate iterative convergence of both LS and SG methods
which we shall compare with our SOC method. It is also
needed to ensure that the sample covariance matrixR̂ is
a close approximation of the true covariance matrixR. At
the ℓ-th run, a random distortion with the norm no more
thanδ is added to every signature waveformsk to result in a
mismatched waveform̂sℓ

k
. In addition, new additive Gaussian

noise vectorsnℓ as well as a new data sequence{bℓ

k
} are

generated.
To solve (11) we have used a Matlab-based tool called

SeDuMi [14] which is an efficient implementation of a primal-
dual interior point method for solving SOC problems. For
the LS and the SG methods, we have experimented with
various different values ofχ (the “surplus energy” in (5))
and have chosen the one which gives the best Averaged BER
performance, even though such a luxury is not practically
affordable.
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(a) δ = 0.4 and δ̂ = 0.4.
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(b) δ = 0.4 and δ̂ = 0.6.
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Fig. 1. BER versus SNR, comparison of SOC, LS, SG, MOE and MF detectors.

The results forK = 7 users are shown in Fig. 1. We
test this system with mismatchδ = 0.4. Note thatδ is the
upper bound on the SWM realization at each random run.
We experimented with differentδ values and results seem to
be the same qualitatively. It can be seen from Fig. 1 that
the SOC method has the best BER performance, followed
by LS, SG, MOE and MF. Fig. 1(a) assumes the value ofδ
is known to the detector and we use this value (δ̂ = δ)
in the SOC formulation (11). Figs. 1(b) and 1(c) show the
performance of SOC method whenδ is over-estimated and
under-estimated respectively. It can be seen that the SOC
detector is robust to errors in estimating the SWM bound.
In all of above reported simulation results, we have chosen
the surplus energyχ optimally (by trial and error) and have
plotted only the best results. It comes as no surprise that

the MF detector has a poor BER performance since it does
not deal with the presence of strong co-channel interferences.
Notice that the BER for the MOE detector worsens when the
SNR increases. This is the case for a non-robust detector
like the MOE method because a part of the signal power
will be contributing towards the interference when SWM is
present, leading to larger interference power and worse BER
performance as the signal power increases.

Fig. 2 shows the results for heavily loaded system withK =
30 users and severe interference with ISR set to be10 dB.
Fig. 2(a) and Fig. 2(b) show the comparison of SOC for-
mulation, LS and SG for data blocks of100 and 400 bits
respectively. At each run a mismatch of normδ = 0.4 is
added to signature waveforms of all users andδ is assumed
to be known to the detector. Inaccuracy of estimating the
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Fig. 2. BER versus SNR, 30 users, ISR= 10 dB, mismatchδ = 0.4.

mismatch does not lead to the significant deterioration of the
performance of SOC method, thus, in practice an approximate
estimate ofδ will be enough. The simulations suggest that
the robust SOC formulation is superior to both LS and SG
methods.

B. Multipath Propagation

We now test the performance of our algorithm in a multipath
propagation scenario. In our simulation, the dispersive channel
is modelled as an FIR filter with a tap-spacing equal to the
chip rate [12]. The spreading codes are again chosen to be
Gold sequences of lengthN = 31. The input signal is a BPSK
i.i.d. sequence for every user. Each user’s chip sequence is
transmitted through a randomly generated multipath fading
channel of lengthq + 1 = 3 chip periods. The user of
interest is assumed to be the weak user: the channel gains are
scaled so that each interfering user is20 dB stronger than the
user of interest. This corresponds to a severe near-far situation.

Comparison of CMOE, SOC and JADE methods:

Under the above model, we compared the CMOE and SOC
on a CDMA system withK = 3 users. The other multiuser
detectors considered in the previous section showed a poor
performance under the given multipath propagation model.

Notice that an unitary ambiguity matrix exists in the blind
identification phase of the CMOE algorithm. Such ambiguity
is generic to the multiuser blind identification approaches
based on second order statistics, and cannot be resolved unless
additional information is available. In our simulation, we
have manually resolved this ambiguity using a (unrealistic)
training sequence prior to data transmission. Even with this
ambiguity removed, the CMOE algorithm still cannot recover
the desired (weak) user, regardless of the block size. The BER
results, averaged over4000 Monte Carlo runs, are shown in

Fig. 3, with a curve ‘cmoe’. At each run, new data sequences
of length 5, 000 bits (compared to1, 000 bits for the other
algorithms), new additive white Gaussian noise vectors, as
well as new channel realizations are generated. We have
experimented with longer data sequences (10, 000–20, 000
bits), but the results appear the same qualitatively. We also
tested the CMOE algorithm on a CDMA system in which all
users had the same power (ISR= 0 dB), and those results are
shown with a curve ‘cmoe0’. Our simulation results suggest
that the performance of the CMOE is seriously affected by
the presence of noise and other users in the system. It should
be also recognized that in scenarios when the channel length
is unknown and has to be estimated, the performance of the
CMOE would further degrade.

We have also compared our second-order cone method to
the JADE [13] algorithm. The curves ‘SOC6’ and ‘SOC7’
represent our method when̂δ parameter is set to bêδ = 0.6
and δ̂ = 0.7, respectively. The curve ‘jade’ represents the
JADE algorithm. For the SOC algorithm, we have used the
desired user’s Gold code sequence as the nominal signature
waveformŝ1 in the formulation (8). We can see from Fig. 3(a)
that this choice of nominal signature waveform is not appro-
priate, i.e., the actual received signature waveforms do not lie
in the δ̂ vicinity of the chosen nominal signature waveforms.
In other words, the norm bounded channel distortion model
is appropriate for communication systems with a strong line
of sight and small multipath components, as derived in (7).
For systems with severe presence of multipath components
we propose the following algorithm.

C. JADE-SOC Methods

It is possible to combine JADE and SOC methods to
achieve a better performance than what is possible by either
method individually. Indeed, when operating alone, JADE
method may not identify the channel accurately due to the
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Fig. 3. Comparison SOC, CMOE, JADE and JADE-SOC

combined effect of noise, multiuser interference and short
sample size, while SOC method may suffer from a poor choice
of nominal signature waveform. However, when operating in
tandem (JADE followed by SOC), the robustness of SOC
method can be used to mitigate the estimation error found
in the estimates of JADE method.

We have tested this combined approach: we first use the
JADE algorithm to estimate the received signature waveform
of the desired user, and then use it as the nominal signature
waveformŝ1 in our formulation (8) of SOC method. This com-
bined approach (named JADE-SOC algorithm) outperforms
the JADE, as shown by the curves ‘jade-soc015’ and ‘jade-
soc025’ (corresponding tôδ = 0.15 andδ̂ = 0.25 respectively)
in Fig. 3. This suggests that the robust SOC blind multiuser
detector is able to correct the estimation errors caused by the
JADE algorithm.

We can see from Fig. 3(b) that in most of the random runs
the received blocks in JADE-SOC algorithm had less than 25
corrupted bits per block. In particular, nearly 2,500 blocks
were successfully (error-free) decoded. This is not true for
the JADE algorithm. The given histogram Fig. 3(b) compares
the performance of JADE-SOC to the JADE when signal-to-
noise ratio is set to be SNR= 6 dB. Similar results have
been obtained for other SNR values. If we set signal-to-noise
ratio to be SNR= 24 dB, we can see from Fig. 4 that the
JADE-SOC algorithm is able to successfully decode even those
blocks for which the JADE algorithm has a BER up to 40%.
This clearly demonstrates of added value of our new robust
blind multiuser detector. In contrast, the CMOE algorithm has
a poor performance, see Fig. 4(a).

We point out that SOC method can be used in conjunction
with any channel identification method (not just the JADE
method), blind or nonblind. The extra robustness of SOC
method can be expected to partially mitigate the errors found
in the channel estimates, thus leading to improved bit error

rate performance.
Finally, we remark that, in our simulations, solving each

SOC problem (11) with the Matlab tool SeDuMi [14] takes
less than a second on a 600 MHz Pentium III PC.

V. CONCLUDING REMARKS

In this correspondence we have proposed a new robust
blind multiuser detector for synchronous CDMA in the pres-
ence of signature waveform mismatch (SWM). Our method
is based on a robust formulation of the Minimum Output
Energy (MOE) detector using the Second-Order-Cone (SOC)
programming technique. The SOC formulation (11) is convex
and can be efficiently solved by the recently developed interior
point methods. Computer simulations indicate that the new
SOC detector has a much better performance when compared
to the existing multiuser detectors (robust or otherwise).Sim-
ulation results also show that the SOC detector can be used
effectively in the dispersive propagation environment, provided
that a reasonable estimate of the received signature waveform
for the desired user is available.

Acknowledgement:The authors are grateful to Boris Maric̆ić
for generating several simulations curves in Section 4.
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