
Moving Network Server Latency
Off the Disk Speed Curve

Yaoping Ruan and Vivek Pai
Department of Computer Science

Princeton University
{yruan,vivek}@cs.princeton.edu

Abstract

Using three generations of hardware and two server soft-
ware packages, we demonstrate that while network server
capacity has been improving, the server-induced latency is
not keeping pace with improvements in processor speed. We
trace the roots of this problem to head-of-line blocking within
filesystem-related kernel queues, which causes degradation of
existing service/fairness policies. The net result of thisprob-
lem is that requests that could have been served in memory,
with low latency, are forced to unnecessarily wait on disk-
bound requests. While this batching behavior has relatively
little impact on throughput, its effects on latency are severe.
This problem manifests itself in a phenomenon we callser-
vice inversion, which we show is responsible for most of the
latency increase under load.

We modify servers to avoid these problems, and using
them, we demonstrate a qualitatively different change in the
latency profiles, generating more than an order of magnitude
reduction in latency. In conjunction, we show that the result-
ing systems are able to serve most requests without being tied
to disk performance. We show that the results are not depen-
dent on server software architecture, and can be applied with
benefits to the Flash Web Server, a high-performance event-
driven Web server, as well as the widely-deployed multiple-
process Apache Web Server.

1 Introduction
Much of the performance-related research in network servers
has focused on improving throughput, with less attention paid
to latency [8, 9, 16]. In an environment with large num-
bers of users accessing the Web over slow links, the focus on
throughput was understandable since perceived latency was
dominated by wide area network (WAN) delays. Addition-
ally, early servers were often unable to handle high request
rates, so throughput research had an easily measurable effect
on service availability. The development of popular bench-
marks in this area, such as SpecWeb [21] and WebStone [14],
also focused on throughput, giving developers extra incentive

to improve throughput.

Several trends are reducing the non-server latencies,
thereby increasing the relative contribution of server-induced
latency. Improvements in server-side network connectivity
reduce server-side network delays, while growing broadband
usage reduces client-side network delays. Content distribu-
tion networks, which replicate content on geographically-
dispersed servers, reduce the distance between the client and
the desired data, reducing round-trip latency. Some recent
work has begun to address the issue of measuring end-user
latency [4, 18], with optimization approaches mostly focus-
ing on scheduling [7, 12, 22, 23].

However, little is understood about the trends in network
server latencies, or even how the system components affect
them. Current research generally makes the assumption that
server latency is largely caused by queuing delays, that it is
inherent to the system, and that scheduling techniques are
the preferred method to address the problem. Unfortunately,
these assumptions are not explicitly tested, complicatingat-
tempts to systematically address the origins of latency. Based
on these observations, we are interested in understanding the
causes of network server latency, so that the scalability of
server latency can be addressed. To obtain broadly-applicable
results, we compare two software packages, the event-driven
Flash Web Server [16] and the multiple-process Apache Web
Server [1], across three generations of processors.

We find that both servers scale well on in-memory work-
loads, but that their results on a workload involving disk ac-
cess show less impressive behavior. Though server through-
put improves with increases in processor speed, server latency
drops only slightly. These observation are troublesome, since
in-memory workloads will become less common as disk ca-
pacities continue to grow exponentially and greatly exceed
physical memory sizes.

By instrumenting the kernel, we find that these servers
waste much time blocking in filesystem-related system calls,
even when the needed data is in physical memory. As a result,
requests that could have been served from main memory are
forced to wait unnecessarily for disk-bound requests. While
this batching behavior has little impact on throughput, itsef-

1

fects on latency are severe. This head-of-line blocking causes
other problems, such as a degradation of the kernel’s service
policies that are designed to ensure fairness. By examining
individual request latencies, we find that this blocking gives
rise to a phenomenon we callservice inversion, where short
requests are often served with much higher latencies than
much larger requests. We also find that this phenomenon in-
creases with load, and that it is responsible for most of the
growth in server latency.

By addressing these issues both in the application and the
kernel, we demonstrate a qualitatively different change in
the latency profiles, exhibiting much lowerservice inversion
and generating more than an order of magnitude reduction
in server-induced latency. We also show that these latency
profiles generally scale with processor speed, where cached
requests are no longer bound by disk-related issues.

The rest of the paper is organized as follow: In Section 2,
we present the test environment, workloads, methodology,
and servers used throughout this paper. In Section 3, we
characterize server latency across a range of workloads. We
identify specific problems and their effects in Section 4, and
introduce a new metric to quantify the effects in Section 5.
We describe how we address these problems and the result-
ing servers in Section 6. We present the results of experiments
on the new servers in Section 7. We discuss related work in
Section 8 and conclude in Section 9.

2 Background
Since we begin our analysis by experimentally measuring the
observed latency characteristics of different servers, wefirst
provide some context explaining our methodology, experi-
mental setup, servers tested, and workloads. This experimen-
tal setup and workload are used through out this paper unless
otherwise noted.

Processor Pentium-II Pentium-III P4 Xeon
Speed 300 MHz 933 Mhz 3 GHz
Bcopy bandwidth 93 MB/s 265 MB/s 624 MB/s
Read bandwidth 213 MB/s 555 MB/s 1972 MB/s
Memory latency 245 ns 101 ns 116 ns

Table 1:Server hardware information

2.1 Testbed configuration
We use three hardware platforms to span three processor gen-
erations and an order of magnitude increase in raw clock
speed. To equalize as many factors as possible, all ma-
chines use the same hard drive (5600 RPM Maxtor IDE
2F030L0), network adaptor (Netgear GA621 Gigabit Ether-
net), and physical memory size (1 GB). The details of our
server machines are shown in Table 1, with measured values
provided by lmbench [13]. We use six 1.3 GHz AMD Duron
machines as clients, with 256 MB of memory per machine.

The network is a Netgear FS518 Gigabit Ethernet switch. All
machines are configured to use the default (1500 byte) MTU.
We use the FreeBSD 4.6 operating system, with all tunable
parameters set for high performance – 128K max sockets,
16K file descriptors per process, 64KB socket buffers, 80K
mbufs, 40K mbuf clusters, and 16K inode cache entries.

2.2 Server Software
To test the common scenario as well as a more aggressive
case, we use two different servers with different software
architectures and design goals. Our standard case uses the
multi-process Apache server [1], version 1.3.27, since it is
widely deployed and general purpose. To represent higher-
performance servers, we use the event-driven Flash Web
Server [16], a high-performance research system with ag-
gressive optimizations. It uses a single main process that
uses non-blocking sockets to multiplex all client connec-
tions. All disk-related operations are performed by a small
set of helper processes to avoid blocking the main process.
To increase performance, it aggressively caches open files,
memory-mapped data, and application-level metadata. In
contrast, Apache dedicates one process per connection, and
performs very little caching in order to reduce resource con-
sumption. Both servers are configured for maximum perfor-
mance. In Flash, the file cache size is set to 80% of phys-
ical memory, with remaining parameters automatically ad-
justed. We also aggressively configure Apache – periodic
process shutdown is disabled, reverse lookups are disabled,
and the maximum number of processes is raised to 2048
by recompiling with an increased HARDSERVERLIMIT.
Since Apache’s logging causes a noticeable performance loss,
we disable access logging in both servers.

2.3 Workloads
In order to use a widely-understood workload while still
maintaining tractability in the analysis, we focus on a
static content workload modeled on the SpecWeb96 and
SpecWeb99 [21] benchmarks. These workloads are modeled
after the access patterns of multiple Web sites, with file sizes
ranging from 100 bytes to 900 KB, and are thede factostan-
dards in industry, with more than 190 published results. File
popularity is explicitly modeled – half of all accesses are for
files in the 1KB-9KB range, with 35% in the 100-900 byte
range, 14% in the 10KB-90KB range, and 1% in the 100KB-
900KB range, yielding an average dynamic response size of
roughly 14 KB. Each directory in the system contains 36 files
(roughly 5 MB total), and the directories are chosen using a
Zipf distribution with an alpha value of 1.

SpecWeb99 normally self-scales, increasing both data set
size and number of simultaneous connections with the tar-
get throughput. However, this approach complicates com-
parisons between different servers, so we use fixed values
for both parameters. To facilitate comparisons with previous

2

work such as Haboob [23] and Knot [22], we use their pa-
rameters of a 3 GB data set and 1024 simultaneous connec-
tions. We also adopt the persistent connection model from
these tests, with clients issuing 5 requests per connection
before closing it. With these parameters, we maintain per-
client throughput levels comparable SpebWeb99’s quality-of-
service requirements.

2.4 Latency Measurement Methodology
To understand how load affects response latency, we measure
latencies at various requests rates. Each server’s maximum
capacity is determined by having all clients issue requests
in an infinite-demand model, and then relative rates are re-
ported as load fractionsrelative to the infinite demand capac-
ity of each server. This process simplifies comparisons across
servers, though it may bias toward servers with low capac-
ity. Latency is measured by recording the wall-clock time be-
tween the client starting the HTTP request and receiving the
last byte of the response. We normally report mean response
time, but we note that it can hide the details of the latency
profiles, especially under workloads with widely-varying re-
quest sizes. So, in addition to mean response time, we also
present the5th, 50th (median) and95th percentiles of the
latency. Where appropriate, we also provide the cumulative
distribution function (CDF) of the client-perceived latencies.

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5 4

Th
ro

ug
hp

ut
 (M

b/
s)

Dataset Size (GB)

P4, Flash
P4, Apache

PIII, Flash
PIII, Apache

PII, Flash
PII, Apache

Figure 1:Flash and Apache server capacities with various data set
sizes on the three processor generations

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

po
ns

e
Ti

m
e

(m
se

c)

Dataset Size (GB)

Apache mean
Flash mean

Apache median
Flash median

Figure 4: Median and mean latencies of Apache and Flash with
various data set sizes

3 Latency Characteristics

We begin our analysis by measuring the infinite-demand per-
formance of the various configurations while adjusting the
data set size. These results, shown in Figure 1, exhibit
several interesting properties. The in-memory performance
of both Apache and Flash scale well with processor speed
– the Pentium-III performance is roughly twice that of the
Pentium-II, and the Pentium 4 is twice as fast as the Pentium-
III. Flash shows noticeably higher performance on this por-
tion of the workload, largely due to its aggressive optimiza-
tions. Once the data set size exceeds physical memory,
performance degrades, especially for the two faster proces-
sors. In these cases, the performance is disk-limited, and
both machines have idle CPU, especially when used with the
Flash server. The Pentium-II Apache result shows less rela-
tive degradation, largely because its in-memory performance
worse than the disk-bound performance of most other config-
urations. The capacity results are not qualitatively surprising
since one would expect performance degradation as the data
set size exceeds physical memory.

To understand how latencies are affected by processor
speed, we conduct a more detailed look at server latency,
shown in Figures 2 and 3. These two graphs represent an in-
memory workload and a disk-bound workload, respectively,
and show the mean latencies for both server packages across
all three processors. Measurements are taken at various load
levels, and show a remarkable consistency – at the samerela-
tive load levels, both Apache and Flash exhibit similar laten-
cies, the in-memory latencies are much lower than the disk-
bound latencies, and the latencies show only minor improve-
ment with processor speed. These measurement shows that
processor improvements have resulted in improved server ca-
pacity, but have not significantly affected latency.

A deeper investigation of the effect of data set size on
server latency provides more insight into the underlying prob-
lems as well as a surprising result. Figures 4 shows mean
and median latencies as a function of data set size, where all
tests are run at a relative load level of 0.95 on the Pentium-4.
The mean latency remains relatively flat for the in-memory
workload, but begins to grow when the data set size exceeds
the physical memory of the machine, 1 GB. This increase in
mean latency is expected, since these filesystem cache misses
require disk access, and the disk latency will raise the mean.

The increase in median latencyis quite surprising for this
workload – the request popularity is such that most requests
should be comfortably served out of the filesystem cache.
SpecWeb strongly biases toward small files within each di-
rectory, and uses a Zipf distribution in selecting directories.
The net result of these factors is that the most popular files
consume very little aggregate space. Table 2 illustrates this
point well – even the top 95% of all requests would consume
less memory than the physical memories of our machines. If
we make the reasonable assumption that the OS is capable of

3

Figure 2: In-memory workload (0.5 GB) latency profiles of
Apache and Flash across three processor generations

Figure 3: Disk-bound workload (3.0 GB) latency profiles of
Apache and Flash across three processor generations

caching the most active 4.4 MB (the 50% working set size at
3 GB) of data on a system with 1 GB of memory, then we are
left to conclude that the small amount of cache miss activity
is interfering with the accesses for documents that should be
cache hits.

This observation is problematic, because it implies that, for
non-trivial workloads, server latency is tied to disk perfor-
mance, even for cached requests. Without server or operating
system modification, latency scalability is therefore tiedto
mechanical improvements, rather than faster improvementsin
electronic components. Theexpectedlatency behavior would
have been precisely the opposite – that as the number of disk
accesses increased, and the overall throughput decreased,the
median latency would actuallydecreasesince fewer requests
would be contending for the CPU at any time. Queuing de-
lays related to CPU scheduling would be mitigated, as would
any network contention effects.

Based on the above observation, we focus on server la-
tency characteristics on disk-bound workloads and the fastest
processor. We use a 3 GB data set for measurements in the
coming sections. Our initial latency measurements show the
two servers have seemingly similar mean response time pro-
files, despite their different software architectures. Using
the infinite-demand throughputs, we run these servers with
request rates of 20%, 40%, 60%, 80%, 90%, and 95% of
the infinite-demand rate, with the results shown in Figures 5
and 6. While the general shape of the mean response curves is
not surprising, some important differences emerge when ex-

Data Set Top 50% Top 90% Top 95% Top 99%
Size (GB) (MB) (MB) (MB) (MB)

1 2.1 39.5 64.6 138.3
2 3.0 72.9 123.6 262.8
3 4.4 101.8 181.2 385.7
4 4.9 131.8 235.0 505.0

Table 2: SpecWeb’s popularity distributions yield relatively small
working set for the most popular files. Sizes do not scale linearly
with data set size due to the Zipf-based popularity distribution of
directories

amining the others. Apache’s median latency curve is much
flatter, but rises slightly at the 0.95 load level. The mean la-
tency for Apache becomes noticeably worse at that level, with
a value comparable to that of Flash, while Apache’s latency
for the95th percentile grows sharply.

Given the different growth patterns for the different latency
percentiles, we would expect the complete latency CDF plots
to show different curves for the two servers, and this belief
is confirmed in Figures 7 and 8, where latency CDFs are
shown for three load levels in addition to infinite demand.
Both servers exhibit latency degradation as the server loadap-
proaches infinite demand, with the median value rising over
one hundred times.

Two features which appear to be related to the server ar-
chitecture are immediately apparent – the relative smoothness
of the Flash curves, and the seemingly lower degradation for
Apache at or below load levels of 0.90. By multiplexing all
client connections through a single process, the Flash server
introduces some batching effects, particularly through the use
of theselect() system call. This batching causes even the
fastest responses to be affected under load. As a result, Flash
returns very few responses in less than 10ms when the load
exceeds 90%, whereas Apache still delivers over 60% of its
responses within that time. We believe that this is because
Apache’s multiple processes operate independently, and in-
memory requests are often being serviced very quickly with-
out interference from other requests.

However, this portion of the CDF does not explain
Apache’s worse mean response times, for which the expla-
nation can be seen in the tail of the CDFs. Though Apache is
generally better in producing quick responses under load, la-
tencies beyond the95th percentile grow sharply, and these
values are responsible for Apache’s worse mean response
times. Given the slow speed of disk access, these tails seem
to be disk-related rather than purely queuing effects. Given
the high cost of disk access versus memory speeds, these tails
dominate the mean response time calculations.

4

0

100

200

300

400

500

600

700

800

900

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
Ti

m
e

(m
se

c)

Relative Load Level

95%
mean
50%

5%

Figure 5:Apache Latency Profile on the Pentium-4 and a 3.0 GB
data set. The relative load of 1.0 equals 241 Mb/s

0

100

200

300

400

500

600

700

800

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
Ti

m
e

(m
se

c)

Relative Load Level

95%
mean
50%

5%

Figure 6:Flash Latency Profile on the Pentium-4 and a 3.0 GB
data set. The relative load of 1.0 equals 336 Mb/s

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

Pr
ob

ab
ilit

y
[R

es
po

ns
e

tim
e

<=
 x

]

Response Time (msec)

0.2 (48Mb/s)
0.8 (192Mb/s)
0.95(228Mb/s)
1.0 (241Mb/s)

Figure 7: Apache latency CDFs for various load levels on the
Pentium-4 and a 3.0 GB data set

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

Pr
ob

ab
ilit

y
[R

es
po

ns
e

tim
e

<=
 x

]

Time (ms)

0.2 (67Mb/s)
0.8 (268Mb/s)
0.95(320Mb/s)
1.0 (336Mb/s)

Figure 8: Flash latency CDF for various load levels on the
Pentium-4 and a 3.0 GB data set

4 The Origins of High Latency

In this section we investigate the origins of the high latency
we saw on the earlier tests. By instrumenting the kernel, we
trace much of the root cause to blocking in filesystem-related
system calls. This blocking affects the queuing model for
the services, causing a policy degradation when head-of-line
blocking occurs. We present evidence that this behavior is
occurring in both Flash and Apache, although via different
mechanisms.

Using an infinite-demand workload on a 3 GB data set,
we find that even when we increase the number of clients,
only the Pentium-II processor becomes saturated, using either
Apache or Flash. Using the “top” tool, which shows process
activity, we find that the main Flash process is blocking inside
the kernel on operations other than theselect() system
call. We are not surprised that the faster processors are capa-
ble of saturating the disk, but we are surprised to see Flash’s
main process blocking, since it should be avoiding all block-
ing outside ofselect() via non-blocking network sockets
and disk-related helper processes. Directly observing simi-
lar slowdowns in Apache is more difficult, since its multiple-
process design exploits the fact that the operating system will
schedule another process when the current process blocks.

4.1 Observing Blocking in Flash

Further evidence that Flash is unexpectedly blocking can be
obtained by observing the return values of theselect()
system call. This call takes a list of file descriptors as input,
and returns a count of how many of them are ready for ac-
tivity. This call is known to not be work-conserving since
all descriptors are polled at each call invocation – when free
CPU cycles are scarce, each call will return with many ready
sockets, but at low load, the call will return as soon as a single
descriptor becomes ready [2]. For the disk-bound workload
on the Pentium 4, we show a CDF of the return values from
select() in Figure 9.

Clearly, most activity is being reported in batches – the
median number of ready descriptors is12, the mean is61and
the maximum length is more than600. More than 25% of
the invocations return over 100 ready descriptors. This kind
of behavior would be understandable if the CPU were taxed,
but this workload shows the CPU still has idle time. Given
the observation from “top” that the main process is blocking,
we can see that the blocking is causing both the CPU idle
time and the batching. Even though descriptors are ready for
servicing and idle CPU exists, the blocking system calls are
artificially limiting overall performance.

This measurement also shows whymedianlatency is be-

5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Pr
ob

ab
ilit

y
[#

 E
ve

nt
s

<=
 x

]

of Ready Events

Figure 9:CDF of number of ready events (the return values from
select()) in Flash

1−20 21−40 41−60 61−80 81−100
0

50

40

30

20

10

% of processes ready to run

%
 o

f s
am

pl
es

256 processes 1024 processes

0

Figure 10:Scheduler burstiness (via the instantaneous run queue
lengths) in Apache for 256 and 1024 processes

ing affected in Flash and why this trend hinders latency scal-
ability – since all connections are multiplexed and handled
within a single process, any disk blocking caused by a rel-
atively unpopular file can prevent the servicing of cache hits
during that time. With faster processors, this problem is likely
to getworse, since the extra capacity means that more simul-
taneous connections can be supported. When any of these
connections causes blocking, more connections are affected.

4.2 Inferring Blocking in Apache
While blocking in the Flash server is unexpected because it
utilizes non-blocking system calls, we expect blocking in the
multiple-process Apache server. Each process handles only
one connection, so if it blocks in the processing of a request,
conventional wisdom holds that such blocking is necessary
and affects only the request being handled. However, since
the Apache server also shows high latency for memory cache
hits, we suspect that it is similarly affected by some form of
head-of-line blocking.

Since Apache does not have easily-testable invariant re-
garding blocking such as Flash does, we must use another
mechanism to infer it. We can use the observation that block-
ing in Flash increases the burstiness of system activity to find
a similar behavior in Apache. In particular, we note that if
resource contention occurs in Apache, it would involve mul-
tiple processes, and the release of a resource would involve
several processes becoming runnable at the same time. We
would expect that the more processes involved, the higher the
burstiness, and the more variability in the behavior of the run
queue.

We instrument the OS scheduler to report the number of
runnable Apache processes each second, and we test Apache
in two configurations with a different number of simultane-
ous processes. In particular, we use 256 and 1024 server pro-
cesses, and we use an infinite-demand workload with 1024
clients. Both configurations show roughly the same capacity,
due to the infinite-demand model and local-area clients. We
note how many processes are runnable at any given time, and
report this as a percentage of the total number of processes in

Figure 10.
From this data, we can see evidence that the behavior of the

scheduler is very different in the 256 and 1024 process cases,
suggesting that unexpected blocking is affecting Apache ina
similar way. The 1024 process case exhibiting much more
bursty behavior than the 256 process case, in line with our
expectation. At this level, the scheduler is very bimodal – all
processes are blocked roughly one-third of the time, and over
80% of the processes are in the runnable queue over 40% of
the time. The 256 process case is more evenly distributed,
with the run queue generally containing 60-80% of the to-
tal processes. Note that all processes being blocked does not
imply the entire system is idle – disk and interrupt-driven net-
work activity is still being performed.

5 Service Inversion
The most significant effect of this blocking behavior is un-
necessary delays in serving queued requests. In particular,
cached requests that could have been served in memory and
with low latency are forced to wait on disk-bound requests.
We term this phenomenon “service inversion” since the re-
sulting latencies would be inverted compared to the ideal la-
tencies. In this section, we study this phenomenon using a
disk-bound workload and propose an approach to quantify
the service inversion value.

Due to the fact that certain request processing steps op-
erate independently of the main Flash process, any blocking
that occurs early in the processing of a request can affect the
fairness policies of the system. Specifically, the networking
code is split in the kernel, with the sockets-related operations
occurring in the “top half”, which is invoked by the appli-
cation. The “bottom half” code is driven by interrupts, and
performs the actual sending of data. So, when an application
is blocked, any data that has already been sent to the network-
ing code can still operate in the “bottom half” of the kernel.
Likewise, since the disk helpers in Flash operate as separate
processes, they can continue to operate on their current re-
quest even when the main process is blocked.

6

A

C B

interrupts

Flash

Network
Code

kernel
bottom
half

open() call
(blocked)

kernel
top half

user
space

Figure 11:Service inversion example – Assume three requests (A,
B, and C) arrive at the same time, and A is processed first. If itis
cached and is sent to the networking code in the kernel bottomhalf,
interrupt-based processing for it can continue even if the the process
gets blocked. In this case, even if A is large, it may get finished
before processing on C even starts.

To understand how this unfairness can lead to head-of-line
blocking, consider the scenario in Figure 11, where three re-
quests arrive at virtually the same time, with the middle re-
quest causing the process to block. For example, assume it
is blocked by anopen() call, which takes place relatively
early in the processing of an HTTP request, shown in Fig-
ure 12. Specifically, it occurs in the “find file” step, before
the data reads occurs (if needed) and before any data is sent to
the networking code. If the first and third requests are cached,
they would normally be served at nearly the same time. How-
ever, the first request may get sent to the networking code, and
the third request would then have to wait until the process is
unblocked. The net effect is that the third request suffers from
head-of-line blocking. The fairness policies of the system,
particularly the scheduling of network packets, is not given
a chance to operate since the three requests do not reach the
networking code at the same time.

Read
Request

Find
File

Read File
Send DataStart EndGet

Conn

Figure 12:HTTP request processing steps

If the requests before the blocked requests are large, and
the requests after the blocked request are small, we label the
resulting phenomenonservice inversion. The occurrence of
this behavior is relatively simple to detect at the client – the
latencies for small requests would be higher than the latencies
for larger requests.

5.1 Identifying Service Inversion
As a qualitative approach to understanding the prevalence of
service inversion, we take the latency CDFs discussed in sec-
tion 3 and split it by decile. Given the fact that more than
95% of the requests could fit into physical memory, as shown
in Table 2, then the ideal response time would be roughly
proportional to its transfer size. By examining the different
response sizes within each decile, we can estimate the extent
of reordering. Using all 36 file sizes present in the workload
would cause clutter and complicate interpretation, so we in-
stead group the responses into four series by size such that

their dynamic frequencies are roughly equal. These detailsof
this categorization are shown in Table 3.

series size range percentage
1 0.1 - 0.5 KB 25.06%
2 0.6 - 4 KB 28.05%
3 5 - 6 KB 23.55%
4 7 - 900KB 23.34%

Table 3:Workload categories for latency breakdowns

The graphs in Figures 13 and 14 show the composition of
responses by decile for the two servers, with the leftmost bar
corresponding to the fastest 10% of the responses and the
rightmost representing the slowest 10%. These graphs are
taken from the latency CDFs at a load level of 0.95 on the
Pentium-4.

In a perfect scenario with no service inversion, the first 2.5
bars would consist solely of responses in Series 1, followed
by 2.5 bars from Series 2, etc. However, as we can see, both
graphs show responses from the different series spread across
all deciles, suggesting that the service inversion problemis
common to both servers. One surprising aspect of these plots
is that the Series 1 values are spread fairly evenly across all
deciles, indicating that even the smallest files are often taking
as long as some of the largest files.

Some amount of inversion is to be expected from the
characteristics of the workload itself, since directoriesare
weighted according to a Zipf-1 distribution. With roughly
600 directories in our data set, the last directory receives600
times fewer requests than the first. So, even though files
100KB or greater account for only 1% of the requests (35
times fewer than the smallest files), the effect of the direc-
tory preference causes the largest files in the first directory
to be requested about 17 times as frequently as the smallest
files in the final directory. While the large files still require
much more space, an LRU-style replacement in the filesys-
tem cache could cause these large files to be in memory more
often. In practice, this effect seems to be relatively minor, as
we will show later in the paper.

5.2 Quantifying Service Inversion
While the latency breakdowns by decile provide a qualita-
tive feel of the unfairness of the system, a more quantitative
evaluation of service inversion can be derived from the CDF.
We construct the formula based on the following observation:
Given responsesA, B, C, D, E with sizesA < B < C <
D < E. If the observed response times have the same order
as the response sizes, we say that no service inversion has oc-
curred, and the corresponding value should be zero. On the
contrary, if the response times are in the reverse order of their
sizes, then we say that the server is completely inverted, and
give it a value of 1.

The insight into calculating the inversion is the following:
we want to determine how perturbed a measured order is,

7

Figure 13:Apache CDF breakdown by decile at load 0.95 on 3.0
GB data set

Figure 14:Flash CDF breakdown by decile at load 0.95 on 3.0
GB data set

compared with the order of the response sizes. The pertur-
bation is merely the difference in position of a response in
the ordered list of response times versus its position in a list
ordered by size, where this distance is calculated for each re-
sponse and summed for the entire list. We then normalize
this versus the maximum perturbation possible. A particular
service inversion value is given by:

n∑

i=1

Distance(i)/bn2/2c (1)

where distance is absolute value of how far the request is
from the ideal scenario, andbn2/2c is the total distance of
requests in the reverse order of their sizes, which is the maxi-
mum perturbation possible. In the above example, assume the
observed latency order isB, C, A, D, E. By comparing with
the ideal order,A, B, C, D, E, we see the distance of fileB
is 1, C is 1, A is 2, andD, E are 0. The inversion value is
4/12 = 0.33. Since this measurement requires only the re-
sponse sizes and latencies, as long as the distribution of sizes
is the same, it can be used to compare two different servers
or the same server at multiple load levels. To handle the case
of multiple requests with the same response size, we calcu-
late distance by comparing theN th observed position with
theN th ideal position for each response of the same size.

By measuring service inversion as a function of load level,
we discover that this effect is a major contributor to the la-
tency increase under load. Table 4 shows the quantified in-
version values for both servers, and demonstrates that while
inversion is relatively small at low loads, it exceeds half of the
worst-case value as the load level increases. The latenciesat
the higher load levels therefore not only suffer from queuing
delays, but also service inversion delays from blocking. We
will show in the next section that the delays stemming from
blocking and service inversion are in fact the dominant source
of delay.

6 The New Servers
In this section we describe how we modify both servers to
reduce blocking, and we analyze the effects on capacity, la-

Relative load level
0.20 0.40 0.60 0.80 0.90 0.95

Apache 0.14 0.23 0.28 0.51 0.54 0.58
Flash 0.25 0.35 0.45 0.52 0.56 0.58

Table 4:Service inversion versus load level for Apache and Flash
on a Pentium-III and 3.0 GB data set

tency, and service inversion. To the extent that space permits,
we repeat all previous experiments to demonstrate that the
modified servers overcome the latency and blocking problems
previously observed.

6.1 New-Flash
The previous experiments suggest that the source of the prob-
lem lies with the operating system, and is not tied to the
server’s software architecture. Diagnosing the source of
the problem is relatively easy using the Flash server, since
the main process should maintain the invariant that it never
blocks. By instrumenting the operating system to note where
the main process of Flash blocks, we can identify the associ-
ated system calls and call sites.

The primary source of blocking in Flash is theopen()
system call, which is used to get access to files on cache
misses. When the main process needs to open a new file,
it first invokes a helper process to open the file, in order to
bring the associated metadata into the filesystem cache. Then,
when the helper process is done, it notifies the main process
of its completion, and the main process opens the file, as-
suming that no blocking will occur because the metadata is
already cached. We find that the problem with this assump-
tion is directory-level inode locking, in which case lock con-
tention can occur between the main process and the helper.
One seemingly plausible candidate, filesystem access time
modification, does not seem to be responsible, because dis-
abling it has no effect on the blocking.

We address this issue by moving theopen() call en-
tirely out of the main process, and having the helper pro-
cesses return file descriptors to the main process using the
sendmsg() system call. We also take the opportunity to
address some of the other more CPU-intensive system calls.

8

In recent years, FreeBSD has added support for a zero-copy
data sending system call,sendfile(). We replace the use
of memory-mapped files with this system call, which not only
reduces memory bandwidth consumption, but also the num-
ber of mapped regions that the virtual memory manager han-
dles. Likewise, FreeBSD added a scalable, work-conserving
event notification facility,kevent(), and we use this in
place ofselect(). We refer to this server as New-Flash.

6.2 Flashpache
Due to the differences in software architecture, we cannot di-
rectly employ the same technique that we used in New-Flash
to improve Apache. However, if we can assume that the
filesystem-related calls are the likely culprits, we can lever-
age the lessons from Flash. Since Apache does not perform
file descriptor caching, each process callsopen() on every
request, and this behavior results in a much higher rate of
these calls.

We modify Apache to offload the URL-to-file translation
process, in which theopen() system call occurs. This step
is handled by a new “backend” process, to which all of the
Apache processes connect via persistent Unix-domain sock-
ets. The backend employs a Flash-like architecture, with a
main process and a small number of helpers. The main pro-
cess keeps a filename cache like the one in the Flash server,
and schedules helpers to perform cache miss operations. The
backend takes the responsibility of finding the requested file,
opening the file, and sending the file descriptor and metadata
information back to the Apache processes. Upon receiving
a valid open file descriptor from the backend, the Apache
process can return the associated data to the client. Since
the backend handles URL lookup for all Apache processes, it
is possible to combine duplicated requests and even preload
data blocks into the filesystem cache before passing the con-
trol back to Apache processes, thus reducing the chances of
more blocking. We call this new server Flashpache, to reflect
its hybrid architecture.

7 Results
We begin our analysis by repeating the infinite-demand mea-
surements for the 3 GB data set, with the results shown in Ta-
ble 5. Included are the figures for the original Flash, as well
as the intermediate steps of file descriptor passing (fd pass)
and removing memory-mapped files (no mmap). We can see
that the overall capacity of Flash has increased by 34% for
this workload, while Apache’s capacity increases by 13%.

The more impressive result, however, is the drastic re-
duction in latency, even when run at these higher through-
puts. Flash sees improvements of40x median, 6x mean, and
54x in 90th percentile latency. Apache sees improvements
of 6x median, 15x mean, and 72x in 90th percentile la-
tency. The one seemingly odd result, an increase in mean
latency from fd-pass to no-mmap, is due to an increase in

Latency (ms) Capacities
median mean 90% (Mb/s)

Flash 67.4 181.0 362.0 336.0
fd pass 11.5 50.0 71.2 395.0

no mmap 1.8 93.5 92.9 437.5
New-Flash 1.6 29.3 6.6 450.0

Apache 6.6 180.2 414.7 241.1
Flashpache 1.1 12.0 5.7 272.9

Table 5:Latencies & capacities for original and modified servers

blocking, since the removal ofmmap() also results in losing
themincore() function, which could precisely determine
memory residency of pages. The New-Flash server obtains
this residency information via a flag insendfile(), which
again eliminates blocking.

The burstiness induced by blocking has also been reduced
or eliminated in both servers, as seen in Figures 15 and 16. In
New-Flash, the mean number ofevents per call has dropped
from 61 to 1.6, and the median has dropped from 12 to 2.
Likewise, Flashpache no longer exhibits bimodal behavior at
the scheduler level, instead showing roughly 20% of all pro-
cesses ready at any given time. Figure 17 confirms our scal-
ability across processors – even with much lower Pentium-II
latencies,improvements in processor speed now reduce la-
tencyon both servers.

Not only do the new servers have lower latencies, but they
also showqualitativelydifferent latency characteristics. Fig-
ure 18 shows thatmedian latency no longer grows with
data set size, despite the increase in mean latencies. Mean
latency still increases due to cache misses, but the median
request is a cache hit in all cases. Figures 19 and 20 show
the latency CDFs for5th percentile, mean, median, and95th

percentile with varying load. Though the mean latency and
95th percentile increase, the95th percentile shows less than
a tripling versus its minimum values, which is much less
growth than the two orders of magnitude observed originally.
The other values are very flat, indicating that most of the re-
quests are served with the same quality at different load lev-
els. More importantly, the95th percentile CDF values are
lower than the mean latency. The reason for this is that the
time spent on the largest requests is much higher compared
to time spent on other requests. This result conforms to the
workload expectations stated in Section 3.

In summary, both new servers demonstrate lower initial
latencies, slower growth in latency, and better decrease of
latency with processor speed. These servers are no longer
dominated by disk access times, and should scale with im-
provements in processors. That these changes eliminate over
80% of the latency answers the question about latency origins
– these latencies were dominated by blocking, rather than
request ordering.

9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

P
ro

b
a

b
ili

ty
 [

#
 E

ve
n

ts
 <

=
 x

]

of Ready Events

New-Flash
no mmap

fdpass
Flash

Figure 15:CDFs of # of ready events for
Flash variants

1−20 21−40 41−60 61−80 81−100
0

% of processes ready to run

%
 o

f
s
a

m
p

le
s

256 processes 1024 processes
100

80

60

40

20

 0

Figure 16:Scheduler burstiness in Flash-
pache for 256 and 1024 processes

Figure 17:Latency profile of New-Flash
and Flashpache on three processor gener-
ations

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4

R
e

sp
o

n
se

 T
im

e
 (

m
se

c)

Dataset Size (GB)

Flashpache mean
New-Flash mean

Flashpache median
New-Flash median

Figure 18:Median and mean latency of
New-Flash and Flashpache with different
data set sizes

0

5

10

15

20

25

30

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

sp
o

n
se

 T
im

e
 (

m
se

c)

Relative Load Level

mean
95%
50%
5%

Figure 19:Latency profile of New-Flash

0

2

4

6

8

10

12

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

sp
o

n
se

 T
im

e
 (

m
se

c)

Relative Load Level

mean
95%
50%
5%

Figure 20:Latency profile of Flashpache

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
rv

ic
e

In
ve

rs
io

n

Relative Load Level

Flash
Apache

New-Flash
Flashpache

Figure 24:Service inversion of original and modified servers

7.1 Service Inversion Improvements

In order to verify the unfairness of the new servers, we fur-
ther examine the latency breakdown by decile for the 0.95
relative load level and the service inversion at different load
levels. Figure 21 shows the percentage of each file series
in each decile for New-Flash, and we observe some inter-
esting changes compared to the original server. The small-
est files (series 1) dominates the first two deciles, the largest
files (series 4) dominate the last two deciles, and the series
3 responses are clustered around the fifth decile. This be-
havior is much closer to the ideal than what had seen earlier.
Some small responses still appear in the last column, but these
may because these files have low popularity and incur cache

misses. Also complicating matters is that the absolute latency
value is still below 10ms for 98% of the requests, so the first
nine deciles only differ by a very small amount. This obser-
vation is verified by calculating the service inversion value.

Figure 24 shows the change of the inversion value with the
load level. Compared to the old system, we reduce the in-
version by over 40%, suggesting requests are treated more
fairly in the new system. The fact that the inversion value
still increases with the load is a matter for further investiga-
tion. However, this may be a limitation of our service inver-
sion calculation itself.

By comparing service inversion for this workload with that
of a completely in-memory workload, we can see how far we
are from a nearly “ideal” scenario. In particular, we are still
concerned whether filesystem cache misses are responsible
for the service inversion. In Figure 22, we see the latency
breakdown for a workload with a 500MB data set. The dif-
ference between it and the New-Flash breakdown are visible
only after careful examination. The numerical value for the
in-memory case is 0.33, while the New-Flash result is 0.35,
suggesting that if any inversion is due to cache misses, its
measured effects are minimal. The Flashpache breakdown,
shown in Figure 23, is similar. The values for the Flash-
pache server and its original counterpart are also shown in
Figure 24, and we can see that our modifications have almost
halved the inversion under high load.

10

Figure 21: CDF breakdown for New-
Flash on 3.0 GB data set, load 0.95

Figure 22: In-memory workload CDF
breakdown, New-Flash, load 0.95

Figure 23: CDF breakdown for Flash-
pache on 3.0 GB data set, load 0.95

8 Related Work

Performance optimization of network servers has been an
important research area, with much work focused on im-
proving throughput. Performance studies of the Harvest
Cache [5] established the suitability of event-driven designs
for high-performance network servers, and the Flash server
demonstrated how to avoid some disk-related blocking [16].
Schmidt and Hu [20] performed much of the early work in
studying various server architectures for improving server
performance. We have demonstrated that these servers can
benefit from latency-improving techniques designed to elim-
inate blocking within the operating system.

More recently, researchers have focused more attention to
latency measurement and improvement. Rajamony & El-
nozahy [18] measure the client-perceived response time by
instrumenting the documents being measured. Bent and
Voelker explore similar measurements, but focusing on how
optimization techniques affect download times [4]. Olshef-
ski et al. [15] propose a way of inferring client response time
by measuring server-side TCP behaviors. Improvement tech-
niques have been largely limited to connection scheduling,
with most of the attention focused on SRPT policy [6], in-
cluding server modification and kernel instrumentation for
network stack scheduling [7]. Cohort scheduling [12] focuses
on gaining performance by batching similar requests but does
not examine why queuing occurs. Our work examines the
root cause of the blocking, which yields the scheduling op-
portunities in these other studies. Our new servers rely on
the existing scheduling within the operating system, and the
results suggest that eliminating the existing obstacles yields
automatic improvement on current service/fairness policies.

The negative impact of locking and blocking has been a
major concern in parallel programming research. Rajwar et
al. [19] proposed a transactional lock-free support for multi-
threaded systems. While head-of-line blocking is a well-
known phenomenon in the network scheduling context, we
demonstrate that this phenomenon also exists in network
server applications and has severe effects on user-perceived
latency. Puente et al. [17] and Jurczyk et al. [11] have studied
various blocking issues in the networks.

Our approach of fairness evaluation may be more suitable

for network servers than the Jain fairness index [10] used in
other work [23], since we focus more on the latencies of in-
dividual requests rather than coarse-grained characteristics of
clients. Bansal & Harchol-Balter [3] investigate the unfair-
ness of SRPT scheduling policy under heavy tailed workloads
and draw the conclusion that the unfairness of their approach
barely noticeable. Our approach does not have this concern,
since we address the latency issues directly rather than tryto
schedule around them.

9 Conclusion
In this paper, we have examined server scalability of two
server software packages on three generations of hardware.
We find that faster processors improve server capacity, but
have little effect on latency. By experimenting with work-
loads of various sizes, we determine that when disk accesses
occur, both mean and median latencies increase, though the
median should be unaffected. We trace the roots of this prob-
lem to head-of-line blocking within filesystem-related kernel
queues. This behavior, in turn, causes batching and bursti-
ness, which has little impact on throughput, but severely de-
grades latency. By examining individual request latencies,
we find that this blocking gives rise to a phenomenon we call
service inversion, where requests are served unfairly.

By addressing the blocking issues both in the Apache and
the Flash server, we improve latency by more than an or-
der of magnitude, and demonstrate a qualitatively different
change in the latency profiles. The resulting servers also ex-
hibit higher capacity, lower burstiness, and more fair request
handling across a wide range of workloads. Their latency
values also scale well with improvements in processor speed,
making them better candidates for future improvements. Fi-
nally, our results show that most server-induced latency istied
to blocking effects, rather than queuing.

References
[1] Apache Software Foundation. The Apache Web server.

http://www. apache.org/.

[2] G. Banga, J. C. Mogul, and P. Druschel. A scalable and ex-
plicit event delivery mechanism for UNIX. InUSENIX 1999

11

Annual Technical Conference, pages 253–265, Monterey, CA,
June 1999.

[3] N. Bansal and M. Harchol-Balter. Analysis of srpt schedul-
ing: Investigating unfairness. InProc. of the SIGMETRICS
’01 Conference, Cambridge, MA, June 2001.

[4] L. Bent, Geoffrey, and M. Voelker. Whole page performance.
In In Proceedings of the Seventh International Workshop on
Web Content Caching and Distribution (WCW’02), Boulder,
CO, August 2002., 2002.

[5] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz. The Harvest information discovery and access
system.Computer Networks and ISDN Systems, 28(1–2):119–
125, 1995.

[6] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
scheduling in web servers. InProc. of the 2nd USENIX Symp.
on Internet Technologies and Systems (USITS’97), Boulder,
CO, Oct. 1999.

[7] M. Harchol-Balter, B. Schroeder, M. Agrawal, and N. Bansal.
Size-based scheduling to improve web performance.ACM
Transactions on Computer Systems, 21(2), May 2003.

[8] J. C. Hu, I. Pyrali, and D. C. Schmidt. Measuring the impact
of event dispatching and concurrency models on web server
performance over high-speed networks. InProceedings of the
2nd Global Internet Conference, Phoenix, AZ, Nov. 1997.

[9] Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis and per-
formance improvement of the apache web server. InProceed-
ings of the 18th IEEE International Performance, Computing
and Communications Conference (IPCCC’99), February 1999.

[10] R. Jain. Congestion control and traffic management in ATM
networks: Recent advances and A survey.Computer Networks
and ISDN Systems, 28(13):1723–1738, 1996.

[11] M. Jurczyk and T. Schwederski. Phenomenon of higher order
head-of-line blocking in multistage interconnection networks
under nonuniform traffic patterns. E79-D(8):1124–1129, Au-
gust 1996.

[12] J. Larus and M. Parkes. Using cohort-scheduling to enhance
server performance. InUSENIX 2002 Annual Technical Con-
ference, pages 103–114, Monterey, CA, June 2002.

[13] L. W. McVoy and C. Staelin. lmbench: Portable tools for per-
formance analysis. InUSENIX 1996 Annual Technical Con-
ference, pages 279–294, San Diego, CA, June 1996.

[14] Mindcraft, Inc. WebStone Benchmark.
http://www.mindcraft.com/webstone.

[15] D. Olshefski, J. Nieh, and D. Agrawal. Inferring clientre-
sponse time at the web server. InProc. of the SIGMETRICS
’02 Conference, Marina Del Rey, CA, June 2002.

[16] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient
and portable web server. InUSENIX 1999 Annual Technical
Conference, pages 199–212, Monterey, CA, June 1999.

[17] V. Puente, J. A. Gregorio, C. Izu, and R. Beivide. Impact
of the head-of-line blocking on parallel computer networks:
Hardware to applications. InEuropean Conference on Paral-
lel Processing, pages 1222–1230, 1999.

[18] R. Rajamony and M. Elnozahy. Measuring client-perceived re-
sponse times on the www. InProc. of the 3rd USENIX Symp.
on Internet Technologies and Systems (USITS’97), San Fran-
cisco, CA, March 2001.

[19] R. Rajwar and J. R. Goodman. Transactional lock-free execu-
tion of lock-based programs. InProc. of the 10th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, San Jose, CA, Oct. 2002.

[20] D. C. Schmidt and J. C. Hu. Developing flexible and high-
performance Web servers with frameworks and patterns.ACM
Computing Surveys, 32(1):39, 2000.

[21] Standard Performance Evaluation Corporation. SPEC Web
96 & 99 Benchmarks. http://www.spec.org/osg/ web96/ and
http://www.spec.org/osg/web99/.

[22] R. von Behren, J. Condit, F. Zhou, G. C. Necula, , and
E. Brewer. Capriccio: Scalable threads for internet services.
In Proc. of the 18th ACM Symp. on Operating System Princi-
ples, Bolton Landing, NY, Oct. 2003.

[23] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. InProc.
of the 19th ACM Symp. on Operating System Principles, pages
230–243, Chateau Lake Louise, Banff, Canada, Oct. 2001.

12

