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Abstract
We describe a new technique for the classification of motor imagery electroencephalogram
(EEG) recordings in a brain computer interface (BCI) task. The technique is based on an
adaptive time–frequency analysis of EEG signals computed using local discriminant bases
(LDB) derived from local cosine packets (LCP). In an offline step, the EEG data obtained from
the C3/C4 electrode locations of the standard 10/20 system is adaptively segmented in time,
over a non-dyadic grid by maximizing the probabilistic distances between expansion
coefficients corresponding to left and right hand movement imagery. This is followed by a
frequency domain clustering procedure in each adapted time segment to maximize the
discrimination power of the resulting time–frequency features. Then, the most discriminant
features from the resulting arbitrarily segmented time-frequency plane are sorted. A principal
component analysis (PCA) step is applied to reduce the dimensionality of the feature space.
This reduced feature set is finally fed to a linear discriminant for classification. The online step
simply computes the reduced dimensionality features determined by the offline step and feeds
them to the linear discriminant. We provide experimental data to show that the method can
adapt to physio-anatomical differences, subject-specific and hemisphere-specific motor
imagery patterns. The algorithm was applied to all nine subjects of the BCI Competition 2002.
The classification performance of the proposed algorithm varied between 70% and 92.6%
across subjects using just two electrodes. The average classification accuracy was 80.6%. For
comparison, we also implemented an adaptive autoregressive model based classification
procedure that achieved an average error rate of 76.3% on the same subjects, and higher error
rates than the proposed approach on each individual subject.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A brain computer interface (BCI) [1] is a system that
can translate the electrical activity of the brain for use in
communication and control. Such a translation can be achieved
invasively, e.g., by measuring single neuron activities [2],
or non-invasively, e.g., by recording electroencephalogram
(EEG) [3, 4]. Both methods have advantages and

disadvantages. The invasive methods provide higher spatial
resolution and signal-to-noise ratio (SNR). However, they
require implantation of an electrode grid into the cortex, an
operation that involves several risks. The long-term recording
of single neural activity is also difficult. The EEG, on the other
hand, has poor spatial resolution and low SNR. Further, high
frequency components such as gamma rhythms are difficult to
obtain with EEG. However, the EEG is advantageous because
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it is non-invasive, inexpensive and easily applied to human
beings. In addition, it provides long-term robust signals.

In an EEG-based BCI, the subject is usually asked to
execute a mental task in synchronization with a cue. Motor
imagery (MI) is used, in particular, in synchronous BCI
systems. It can induce short lasting amplitude decrease
and enhancement in corresponding cortical areas in the
rhythmic components of EEG. The resulting signals are called
event related desynchronization (ERD) and event related
synchronization (ERS), respectively [5, 6]. The underlying
basis of using MI as a BCI strategy is that unilateral
hand movement imagery produces contralateral hemisphere
dominant activities.

In this paper, we describe a novel procedure for the
adaptive time–frequency analysis and classification of EEG
signals recorded in MI-based BCI systems. In section 2, we
provide a brief summary of previous MI-related EEG signal
classification techniques. In section 3 we describe the motor
imagery dataset. Section 4 details our proposed approach.
We provide experimental results and comparisons against the
adaptive autoregressive method in section 5.

2. Background

Several methods have been used in the past to extract and
classify the ERD/ERS structures for a BCI task. In the earliest
research, band powers (BP) obtained from fixed windows were
used in combination with learning vector quantization [7]. The
BP method requires prior knowledge of the reactive bands. In
[8] distinction sensitive learning vector quantization (DSLVQ)
was proposed to select the reactive bands in an automated
manner in fixed windows. However, the ERD/ERS events
do not necessarily occur in fixed time segments. Besides,
there is strong evidence in the literature showing that the time
courses of ERD and ERS in the alpha and beta bands are
dissimilar. It has been reported that the alpha band takes
several seconds to attenuate and recover whereas the beta
band shows burst activity [5, 6]. The adaptive autoregressive
modeling (AAR) method of [9] overcomes differences in time
adaptation by defining the spectral information dynamically
using autoregressive (AR) parameters. The AAR is used
to find the best time point for classification. It has been
reported that the best time point is subject dependent. Both
DSLVQ and AR model based research indicates that time–
frequency domain features [8–10] can be used in BCI systems.
These features differ from person to person and may be
caused by physio-anatomical and motor imagery strategy
differences. As mentioned above, previous research, e.g.,
[8–10], indicates that a mental state classification algorithm
should simultaneously consider multiple heterogeneous time
and frequency features. However, none of the methods
listed above uses multiple heterogeneous time and frequency
features simultaneously for classification. Further, it is
clearly desirable to adapt to the time-ERD/ERS patterns
in an automated manner to account for subject-dependent
variability.

Recently, the authors established the advantages of using
an adaptive time–frequency analysis approach with dyadic

(a)

(b)

Figure 1. The time course of the experimental paradigm. (a) The
analysis window is indicated at the bottom and includes the
preparation stage. (b) The C3/C4 electrode locations used in this
study.

time segmentation to classify single trial EEG related to
real movements [11]. They also analyzed and visualized
the resulting most discriminant patterns [12]. Here, we
significantly enhance the classification performance of these
prior approaches by using non-dyadic time segmentations of
the underlying EEG signals and adaptively selecting the most
discriminant time–frequency features in each time segment.
We show below that the proposed approach is capable of
adapting to physio-anatomical differences and subject- and
hemisphere-dependent motor imagery patterns, resulting in a
much better classifier.

3. Materials

The dataset of BCI competition 2002 is used in this
investigation [13]. This dataset was provided by Dr Allen
Osman from University of Pennsylvania. The imagery EEG
data were collected from nine subjects. These subjects were
asked to execute an imagined left (L) or right (R) index finger
movement according to an experimental paradigm shown in
figure 1. First the subjects are told whether the action will
be explicit or imagined. Then a L/R cue appears on the
screen indicating whether the movement is left or right. One
second after the L/R cue, the letter ‘X’ appears on the screen
indicating it is the time to take the required action. The EEG
is recorded with a sampling frequency of 100 Hz from 59
electrodes at sites corresponding to the international 10/20
system and referenced to the left mastoid. In this study the
EEG data from the C3 and C4 electrodes only are analyzed.
These channels are converted to Hjort derivation in order to
get the local activity [14]. Specifically, let Ci

H be the Hjort
derivation corresponding to electrode Ci , i = 3 or 4. The
Hjort derivation Ci

H is calculated as

CH
i = sCi

− 1

4

∑
j∈Si

sCj
(1)

where sCi
is the reading of the center electrode Ci , with i =

3 or 4 and Si is the set of indices corresponding to the four
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Figure 2. Averaged time–frequency maps of right (top) and left (bottom) hand movement imagination of subject S2. Note the energy
difference in the interval 0–1.5 s on both channels according to the direction of the imagination. On both channels the ERD in this segment
is followed by a short lasting beta ERS around 20 Hz.

electrodes surrounding electrode Ci (cf figure 1(b)). The EEG
data are finally bandpass filtered and only information between
2 and 40 Hz was retained. We used all 90 trials available for
each task to test the classification approaches discussed below.
Figure 2 shows the short time Fourier transforms (STFTs)
of the C3 and C4 electrodes of one subject corresponding to
left and right hand movement imageries in the selected time
window. The STFTs shown are averages over several sweeps.
The maps shown are constructed using overlapping windows
and contain redundant information. Note that these time–
frequency maps support the findings of previous researchers
described in section 2. We will show below how to construct
non-redundant overlapping time–frequency tilings that are
optimized for discrimination between left and right imagery
movements.

4. Methods

The proposed EEG signal classification approach consists of
five steps (figure 3). The first four steps consist of off-line
data preprocessing and adaptive time–frequency segmentation
of the EEG signals. The last step is the online classification
procedure. The offline time–frequency adaptation step is
preceded by a spin cycle procedure to deal with the shift
variance of the local cosine packets. It begins with an
application of the merge/divide algorithm with local cosine
packets to adaptively segment the EEG along the time axis.
This is then followed by the frequency domain clustering
procedure. Finally, principal component analysis is performed
to reduce the dimensionality of the feature space. The on-
line step simply computes the reduced dimensionality features

Figure 3. Block diagram of the proposed approach.

selected by the off-line step and feeds them to a linear
discriminant.

4.1. Data pre-processing and adaptive time–frequency
segmentation

4.1.1. Spin cycle procedure. Since ERD and ERS are time
locked event related potentials, we selected cosine packets
(CP) representations to derive an adaptive partition of the time
axis [15, 16]. This should enable us to locate discriminant
ERD/ERS patterns that have different temporal behaviors.
We provide more details about the local cosine packet analysis
below. We note here however that CP do not satisfy the shift
invariance property. This means that a shift in the original
signal can cause major changes in the expansion coefficients.
This makes CP hard to use for pattern recognition [17]. To
overcome this problem we used the ‘spin cycle’ procedure of
[18, 19]. The procedure expands the training set by generating
its shifted versions in both directions in a circular manner.
If the desired number of shifts is τ then the training set is
expanded to include its shifts by (−τ,−τ + 1, . . . , τ ). All
shifted versions are then analyzed simultaneously as described
below.
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4.1.2. Local cosine packets. The short time Fourier
transform (STFT) is traditionally used to analyze the
local frequency content of a signal. This type of
block transform generates side-lobe artifacts when disjoint
rectangular windows are used. When smooth windows
are used, orthogonality is lost. It is possible to construct
orthogonal transforms with smooth and overlapping windows
via trigonometric bases. The construction can be obtained
from sine or cosine bases which are referred to as local sine
packets and local cosine packets (LCP), respectively. Such
transforms partition the time axis rather than the frequency
axis by using smooth bells [20]. The bells are constructed
using cutoff functions r(t) that satisfy

|r(t)2| + |r(−t)2| = 1 for all t ∈ R;

r(t) =
{

0, if t � −1
1, if t � 1,

(2)

in order to preserve the orthogonality. An example of such a
function r(t) is

r(t) =




0, if t � −1,

sin
[

π
4

(
1 + sin

(
πt
2

))]
, if −1 < t < 1,

1, if t � 1.

(3)

Now, consider the partitioning of the time axis that
produces a set of intervals [aj , aj+1]. Interval [aj , aj+1]
describes a partition of length lj , where lj = aj+1 − aj .
Let γ � li/2 be the length of the overlap between adjacent
intervals. As we explain below, LCP are used to calculate
a local discriminant basis (LDB) and adaptively segment the
EEG signals along the time dimension. To this end, we set
γ to half the length of the desired shortest time segment, i.e.,
the segment that corresponds to the deepest node in the tree
representation of the LDB to preserve orthogonality. The
smooth window function is then defined as

w(t) =




r
( t−aj

γ

)
, t ∈ [aj − γ, aj + γ ],

1, t ∈ [aj + γ, aj+1 − γ ],

r
( aj+1−t

γ

)
, t ∈ [aj+1 − γ, aj+1 + γ ].

(4)

Each window overlaps its neighboring windows and satisfies

w2
j−1(t) + w2

j (t) + w2
j+1(t) = 1 (5)

for t ∈ [aj − γ, aj+1 + γ ], as shown in figure 4.
It can be shown that the set of functions

ψ
j

k (t) = wj(t)

√
2√
lj

cos
π

lj

(
k +

1

2

)
(t − aj ) j ∈ Z, k ∈ N

(6)

are an orthonormal basis for L2(R). A signal s(t) ∈ L2(R)

can therefore be written in terms of the functions ψ
j

k (t) as

s(t) =
∑

j∈Z,k∈N

c
j

kψ
j

k (t), (7)

where c
j

k = 〈
s(t) ·ψj

k (t)
〉
. The coefficients c

j

k can be computed
with the fast discrete cosine transform (type IV) after a
preliminary folding step [20].

(a)

(b)

(c)

Figure 4. (a) The smooth local cosine. (b) The orthonormal smooth
windows which represent each subspace on the tree structure are
also marked in (c). (c) The dyadic tree that is used for discriminant
base search.

4.1.3. Local discriminant bases.

Dyadic local discriminant bases. Since the MI-related
ERD/ERS patterns appear as time locked transient
phenomena, it is crucial to focus on local properties of the EEG
signal. The best base (BB) algorithm was developed to extract
such local information [21]. The BB algorithm expands the
signal into orthonormal bases by using wavelet packets (WP)
or local trigonometric bases over a dyadic tree (see figure 4(c)).
This full tree is pruned to minimize a cost function, such as
entropy, by a divide and conquer algorithm. Traditionally, the
BB method has been used for signal representation. Since the
selected cost function is entropy, such an algorithm ends up
selecting the basis that provides good signal compression. For
classification, however, the discrimination power of the nodes
is what matters. Therefore, we replace the entropy criterion by
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a cost function that can measure the distance between matching
nodes in the trees derived from signals corresponding to left
or right imagery movements. By pruning the dyadic tree to
maximize the selected distance criterion, an LDB is extracted
[22]. In [19] several types of LDB were proposed over a dyadic
tree by using wavelets or local trigonometric bases. The LDB-I
procedure used the mean energy of the expansion coefficients
to capture the distance between classes. However, sometimes
the mean may not capture real discriminant information.
The LDB-II uses the distance between probability densities
(pdf ) or cumulative density functions (cdf ) of the expansion
coefficients corresponding to signals in different classes. It is
less affected by energy variations between the sub-bands of
EEG signals than the LDB-I method. The LDB-II algorithm
can be summarized as follows.

Step 1. Expand each training signal into a wavelet or cosine
packets representation over a dyadic tree.

Step 2. For each expansion coefficient (node in the tree),
calculate the distance between classes as the
distance between the pdf or cdf of the coefficient
obtained from signals corresponding to the two
different classes. Accumulate the distances of the
expansion coefficients in each subspace.

Step 3. Prune the tree from bottom to top by maximizing
the distance between the two classes.

Step 4. Order the expansion coefficients from the pruned
tree by using a class seperability criterion (CS).
Select the top k � n coefficients for classification,
where n is the number of samples in each training
signal.

Let p and q represent the probability distributions of each
expansion coefficient estimated via histogram. We have used
the Euclidean distance given by

D(p, q) = ‖pi − qi‖2 =
n∑

i=1

(pi − qi)
2 (8)

for pruning the tree. We considered the Fisher class
separability criterion

F = (µ1 − µ2)
2

σ 2
1 + σ 2

2

(9)

for ordering the features. In (2), µ and σ are the mean and the
standard deviation of the feature they correspond to.

Non-dyadic LDB—merge/divide. The original LDB uses a
dyadic tree structure as explained above. However, subject-
specific EEG patterns will not necessarily fall along the
dyadic segments produced by the original LDB method. We
therefore modify the time segmentation procedure by adopting
a merge/divide strategy that is used in geophysical waveform
compression [23]. We illustrate the algorithm with the
schematic diagram given in figure 5. Assume that the signals
shown at the top of the figure are recorded from the same
electrode location during task A and B. Instead of building
a tree structure as described above, the signal is analyzed
from left to right with three windows. The windows have
the traditional children and mother structure. That is, the
union of children windows covers the same time interval

Figure 5. A schematic illustration of the merge/divide algorithm to
locate the segments where classes A and B are well separated. Note
that the rectangular segments correspond to the smooth windows
given in (4).

covered by the mother window. The children windows that
match the nodes at the bottom of the tree correspond to a
LCP representation. The distance between the expansion
coefficients in the mother and children subspaces (M1, C1 and
C2) are then compared. Whenever the distance between the
coefficients corresponding to the left and right imagery signals
in the children subspaces is greater than the distance between
the coefficients corresponding to the left and right imagery
signals in the mother subspace, we retain the partitioning of
the time axis corresponding to the children windows, i.e., the
signal is divided at that point. Otherwise, we retain the time
interval corresponding to the mother window. If we retain the
mother window, the mother segment is used as the left child
in the next iteration (M2 in figure 5).

Note that, unlike the dyadic case, the children windows
are not necessarily half the length of the mother window. The
right child is always the time segment of smallest size used by
the procedure and will have a fixed length. The length of the
left child can grow to be multiples of that of the basic smallest
segment. Hence, unlike the dyadic case, there is no limitation
on the length of the resulting time segments.

This algorithm is iterated from left to right along the
time axis by implementing the above procedure to achieve
the desired time adaptation.

The algorithm can be summarized as follows.

Step 1. Select a time window (cell) and construct a children
mother decomposition structure.

Step 2. In each sub-space, expand the signal into
cosine packets. For each expansion coefficient,
calculate the distance between the two classes
and accumulate the distances of the expansion
coefficients in each subspace.

Step 3. Merge the children subspaces if their discrimination
power is less than that of the mother subspace. Else,
divide the signal at that point.
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Step 4. Order the expansion coefficients of the segmented
signal by using a class separability criterion. Select
the top k � n coefficients for classification, where
n is the number of samples in each training signal.

4.1.4. Frequency band adaptation. The LDB algorithm
produces a feature space with high dimensionality equal to
the dimension of the original space. A high dimension
feature space can decrease the generalization capability of
the classifier when a limited number of training samples
exist—this is the curse of dimensionality [24]. In addition,
during our studies we observed that the center frequency of
the oscillations differ from sweep to sweep. This increases
uncertainty along the frequency axis.

To deal with these issues, in our prior work, we grouped
the expansion coefficients in 4 Hz frequency bins between 0
and 40 Hz in each segment. Such an approach has direct
connections with the Mel-scale approach used in acoustic
signal processing and classification [25] and resulted in
significant classification performance improvement over the
case where individual expansion coefficients are used [11].
However, we have found experimentally that this approach
does not necessarily maximize the discrimination capability
of the retained time–frequency features. To deal with this
limitation, we elected in this study to use adaptive partitions
along the frequency axis. Specifically, within each time
segment, we merge coefficients that are adjacent in the
frequency domain only if their union has larger discrimination
power than the individual coefficients. Note that this is
basically a coefficient clustering approach obtained via cost
function maximization and results in an adaptive frequency
band adaptation for discrimination. Similar approaches were
utilized to select relevant bands in near infrared spectroscopy
[26].

The procedure can be summarized as follows.

Step 1. Construct adaptive time segmentation by using the
merge/divide procedure.

Step 2. In each time segment, calculate the distance
between the pdf of frequency coefficients
corresponding to the left and right MI when the
coefficients are considered individually and again
after they are merged.

Step 3. Merge coefficients when the merger leads to a larger
distance between the classes.

Step 4. Choose coefficients from the constructed arbitrary
time–frequency segmentation and order them
according to a given class separability criterion.
Select the top k � n coefficients for classification,
where n is the number of samples in each training
signal.

The resulting tilings obtained by combining the LDB
and clustering approaches result in an arbitrary segmented
time–frequency plane (cf figure 6(c)). The segmentation is
reminiscent of that of [27]. In [27] a double tree approach was
used. Unlike our procedure, the tree in [27] was also limited
to a dyadic grid.

(a)

(b) (c)

Figure 6. (a) Illustration of the frequency axis clustering that is
obtained by merging consecutive expansion coefficients in each
segment. (b) Example of a time frequency tiling constructed with a
dyadic tree. (c) Example of a non-dyadic/flexible segmentation
followed by frequency axis clustering. Note that the segmentation in
(c) cannot be obtained with the original LDB.

4.2. Dimension reduction and classification

The adaptive time–frequency coefficients selected by the
merge/divide and frequency domain clustering procedures
may be correlated. A correlated feature set may decrease the
generalization capability of the resulting classifier. Principal
component analysis (PCA) was used in [28] on wavelet packet
coefficients for dimension reduction in the classification of
electromyogram signals. Here we use PCA for dimensionality
and correlation reduction. We project the highest ranked set
of ordered features onto the eigenvectors computed using a
PCA analysis of the set. Specifically, let x be a feature vector,
λk and Wk the kth eigenvector of the covariance matrix of the
feature set and uk the projection of x onto Wk . We compute uk

as

uk = WT
k x. (10)

We then retain the projected features uk that correspond to the
largest N eigenvalues λk . In our work, we typically selected N
in the range of 32 to 48 because we observed that most of the
discrimination power is concentrated in this range. Finally,
the resulting reduced feature set is used for classification as an
input to a Fisher linear discriminant analysis (LDA). The LDA
is one of the most commonly used statistical classifiers due to
its ease of implementation and trainability. It can be viewed as
a method for identifying the best discriminating hyper plane in
an n-dimensional space. A detailed description can be found
in [29]. The weight vector used in the LDA is calculated as

v =
(∑

1

+
∑

2

)−1

(m1 − m2), (11)
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Table 1. The classification accuracy (%) of the different approaches discussed in section 5. The bottom row represent the average
classification accuracy.

AAR (p = 6)Dyadic LDB Merge/divide Merge/divide
Subjects 4 Hz Bin 4 Hz Bin clustered bands LMS, mu = 0.010 RLS, mu = 0.012

S1 82.4 81.8 83.6 81.5 77.6
S2 91.2 92.7 92.6 88.5 87.8
S3 65.4 70.2 70 67.5 70.2
S4 66.2 68.2 70.7 71 71.8
S5 77.1 77 77.8 71 70.2
S6 81.9 85.5 87.2 78.5 75.2
S7 87.5 88.3 89.7 80.5 80.8
S8 62 66.1 70 67 70.6
S9 80.3 84.4 83.7 81.4 78.4

Average 77.1 79.4 80.6 76.3 75.8

where �i and mi are the covariance matrix and mean of the
feature vector corresponding to class i respectively.

The distance of a feature vector to the discriminating
hyper-plane is calculated as

d = vT x − v0, (12)

where x is the feature vector, v the weight vector in (12), v0

the threshold and d the calculated distance.
We close this section by noting that further reduction

of the dimensionality of the feature space may be
possible. Preliminary results indicate that some PCA
reduced classification features may be further combined in
nearly all the subjects we investigated while preserving or
improving classification performance. Promising avenues for
investigating further reduction of the dimensionality of the
feature space include applying classifiers that select subsets
of features, e.g., stepwise discriminant analysis or logistic
regression and studying interactions between different cortical
locations and time–frequency patterns.

5. Results

In order to assess the efficiency of the developed algorithm, we
compared its performance against the adaptive autoregressive
(AAR) model based approach for feature extraction. We chose
the AAR approach because it is considered to be the golden
standard by many researchers in the field. An AAR model is
described by

y[n] = ai,ny[n − 1] + · · · + ap,ny[n − p] + w[n] (13)

where y[n] is the output sequence and p the model order.
The coefficients ai,n are time changing model parameters and
w[n] is a white noise process with zero mean and variance
σ 2

x . To capture three spectral peaks as is customarily done in
the literature, we selected p = 6. We calculated the model
parameters for every sample using both the least mean square
(LMS) and recursive least square (RLS) approaches for the C3

and C4 electrodes. A learning rate (mu) of 0.010 for LMS and
0.012 for RLS algorithms was used. The model parameters
obtained from the C3/C4 electrode locations resulted in a
feature vector of dimension 12. We noticed that, for the
datasets we used, the classification rate of the AAR approach

Table 2. The classification accuracy obtained by class seperability
sorting only (CS = F) and PCA applied on top sorted CS features.
NoF stands for the number of features used to achieve minimal
classification.

CS PCA

Subjects Accuracy (%) NoF Accuracy (%) NoF

S1 83.9 13 83.6 12
S2 92.3 20 92.6 19
S3 72.4 8 70 12
S4 69.7 51 70.7 25
S5 77.4 46 77.8 43
S6 86.4 30 87.2 9
S7 88.5 34 89.7 10
S8 69.4 47 70 43
S9 84 9 83.7 7

Average 80.4 29 80.6 20

was slightly better when the model parameters were computed
using the LMS algorithm.

For the dyadic and flexible LDB algorithms we select an
analysis window of 416 samples and a tree depth of 4. The
cell size is taken to be equal to the time length of the deepest
segment, which is 260 ms. We used ten times ten-fold cross
validation to estimate the classification accuracy.

In order to study the performance of each unit of the
proposed algorithm, we compared the classification results
obtained with the following procedures:

• dyadic LDB with fixed band features,
• merge/divide with fixed band features,
• merge/divide with frequency axis clustering,
• classification without PCA.

Tables 1 and 2 show the classification accuracy for all nine
subjects.

The flexible LDB that combines the merge/divide and
frequency domain clustering algorithms outperformed all
other methods. Performance improves as we move from the
dyadic to the merge/divide approach combined with frequency
domain clustering. This demonstrates the importance of
adaptation in time and frequency in a flexible manner. Also
the superior performance of the proposed approach over the
dyadic LDB and AAR techniques is further evidenced by
the results of the paired t-test (p = 0.0011, p = 0.0021,
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(a)

(c)

(b)

Subject S1 Subject S2

Subject S7

Figure 7. The discrimination power of the C3/C4 electrode locations of subjects S1 (a), S2 (b) and S7 (c). Note the differences between the
total distances at each location. This supports a hemispheric asymmetry.

respectively). Finally, observe that the performance of our
proposed approach is slightly better than that of Wang and
He [31] on the dataset used in this paper, despite the fact
that we use only 2 electrodes and Wang and He [31] use 20
electrodes.

We observed that our proposed algorithm constructs
different time–frequency segmentations for each subject.
Furthermore, it segments the EEG signals corresponding
to activities in different hemispheres of the same subject
differently. Figures 7 and 8 illustrate the discrimination power
of each electrode and the time–frequency features selected
for three representative subjects. It is well known that left
and right motor cerebral cortices control contralateral finger
movements. As mentioned earlier, this behavior is indeed the
reason that MI-related ERD/ERS changes are used in some
BCI systems. In the past, many articles assumed that the
ERD/ERS patterns in the two hemispheres corresponding to
left hand imagery are mirror images of those corresponding
to right hand imagery. However, our current findings, as
illustrated by figures 7 and 8, do not support this assumption.
Since an equal number of features from both channels are
included in the conventional AR and band power methods,
these techniques are unable to model hemispheric asymmetry.

Since we only used two electrodes in this study, we were
unable to expand our findings and investigate the effect of
different cortical areas.

Note also that figure 8 indicates that most of the time
wide bands are selected. For instance, although subject S7 has
a very strong alpha activity in the C3 electrode, the beta band
is selected as the most discriminant feature. It appears that all
oscillatory components do not have the same discrimination
power. Since AR based methods only model the peaks of the
spectrum, all energetic components are directly included in
the feature set.

Careful analysis of the ERD/ERS activities of the various
subjects and the time–frequency segmentations produced by
our procedure indicates that the arbitrary time segmentation
created by the merge/divide approach is responsible for the
significant improvement in classification accuracy on subjects
S3, S4, S6 and S8.

The LDB algorithm of course is not without shortcomings.
Both the dyadic and flexible methods suffer from the effects
of small expansion coefficients and noise mentioned in [19].
The same information is often repeated in the side lobes or in
high frequency coefficients. The clustering procedure partially
groups the correlated features. Unfortunately the effect of side
lobe artifacts is still present. This is the main reason for using
PCA prior to LDA. Principal components analysis can remove
correlations between features that might be repeated in side
lobes. Therefore, classification remains constant or improves
when using a smaller number of PCA features (see table 2). On
the other hand, PCA is very sensitive to outliers. In particular,
the lower components show significant energy changes from
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(a) (b)

(c) (d)

(e) (f)

Figure 8. The time–frequency features of three representative subjects obtained from the C3 (a), (c), (e) and C4 (b), (d), (f) electrode
locations. The darker locations have more discrimination power. Note the differences between the tilings and feature characteristics and
their discrimination power in each hemisphere.

sweep to sweep. This may eliminate the advantages of using
PCA.

Note also that one could apply a denoising procedure to the
EEG signals prior to classification. However, the imbalance
between the energy in the EEG bands makes it hard to select a
suitable denoising procedure. An inappropriate threshold can
remove a component which carries significant information.

The occurrence of ERD and ERS events on the
same electrode in different bands was previously reported
in [4]. Here we observe similar structures. Our
algorithm successfully adjusted the adaptive time–frequency
segmentation maps to the multi-component nature of the EEG.

(cf figure 8). We also visually observed that the temporal
variability of beta activity is less than that of the alpha
activity. We noted poor classification for subjects with only
alpha ERD/ERS. This may be due to our assumption that all
components exhibit time locked behavior. Algorithms which
are less sensitive to temporal variations, such as hidden Markov
models, may give better results with these subjects.

6. Conclusion

We introduced an adaptive arbitrary time–frequency
segmentation and feature selection approach for the
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classification of single trial MI-related EEG recordings. The
segmentations and feature characteristics calculated by our
procedure vary from subject to subject and depend on the
hemisphere in which activity occurs for each subject. Our
results therefore support a hemispheric asymmetric behavior.
This also agrees with the study in [30] where a hidden Markov
model and a genetic algorithm were combined to assess
hemispheric asymmetry in an MI task.

The online computational complexity of our procedure is
very low. The segmentation is implemented offline during the
learning stage. During the online phase, the algorithm simply
calculates and merges the smooth DCT-IV on the selected
intervals. The expansion coefficients are then classified with
a linear discriminant. Experimental results demonstrate the
ability of our procedure to adapt to inter-subject variability and
physio-anatomical differences, establish its low computational
cost and clearly indicate that heterogeneous time–frequency
features can improve classification results. Note however that
our procedure uses 2 to 3 seconds worth of data after the instant
at which movement is imagined to make its classification
decision. This latency may be excessive in certain BCI tasks
and future research should focus on reducing this delay.
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