
LL GRAMMARS

LL grammars are a subset of BNF (context-free) grammars. LL grammars
impose restrictions on BNF grammars to simplify parsing. LL grammars may be
implemented in top-down predictive parsing algorithms with complexity O(n),
where n is the length of the input string. This includes both recursive-descent and
table-driven algorithms based on syntax graphs. LL parsers operate by scanning
the input from Left to right and producing a Leftmost derivation of the input
string.

The conditions for an LL grammar are stated in terms of the FIRST and
FOLLOW sets applied to the grammar rules:

1. If <X> ⇒ <V1> | <V2> | L | <Vn>, then FIRST(Vi) ∩ FIRST(Vj) = φ, ∀ i≠j.

2. If <Z> ⇒ {X} (zero or more X’s), FIRST(X) ∩ FOLLOW(Z) = φ.
3. No left recursion is allowed.

Briefly, FIRST(X) is the set of all terminals which can appear at the start of a
string derived from X. FOLLOW(Z) is the union of FIRST(V) for all grammar
rules of the form: X ⇒ αZV. In case X ⇒ αZ, FOLLOW(Z) ⊃ FOLLOW(X).

Example 3.1: Modified for LL Grammar

The FIRST condition for an LL grammar is violated by the RHS rules in Example
3.1 for <stmt_list> and <expression>. An LL grammar can be obtained by left-
factoring these rules and converting the right recursion in <stmt_list> to repetition.
Using EBNF, the modified rules are:

<stmt_list> → <stmt> { ; <stmt> }
<expression> → <var> [(+ | -) <var>]

