
© 2009 Daniel J. Sorin from Roth and Lebeck 28ECE 152

This Unit: Caches and Memory Hierarchies

• Memory hierarchy

• Basic concepts

• SRAM technology

• Transistors and circuits

• Cache organization

• ABCs

• CAM (content associative memory)

• Classifying misses

• Two optimizations

• Writing into a cache

• Some example calculations

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU



© 2009 Daniel J. Sorin from Roth and Lebeck 29ECE 152

Basic Cache Structure

• Basic cache: array of block frames
• Example: 4KB cache made up of 1024 4B frames

• To find frame: decode part of address
• Which part?

• 32-bit address

• 4B blocks → 2 LS bits locate byte within block

• These are called offset bits

• 1024 frames → next 10 bits find frame

• These are the index bits

• Note: nothing says index must be these bits

• But these work best (think about why)

0
1

1021
1022
1023

2
3

[31:12]

data

[11:2] <<

CPUaddress

1024*32
SRAM

bitlines

w
or

dl
in

es



© 2009 Daniel J. Sorin from Roth and Lebeck 30ECE 152

Basic Cache Structure

• Each frame can hold one of 220 blocks

• All blocks with same index bit pattern

• How to know which if any is currently there?

• To each frame attach tag and valid bit

• Compare frame tag to address tag bits

• No need to match index bits (why?)

• Lookup algorithm

• Read frame indicated by index bits

• If (tag matches && valid bit set)

then Hit → data is good

Else Miss → data is no good, wait

0
1

1021
1022
1023

2
3

1:0[31:12]

data

[11:2] <<

CPU
address

==

hit/miss



© 2009 Daniel J. Sorin from Roth and Lebeck 31ECE 152

Calculating Tag Size

• “4KB cache” means cache holds 4KB of data

• Called capacity

• Tag storage is considered overhead (not included in capacity)

• Calculate tag overhead of 4KB cache with 1024 4B frames

• Not including valid bits

• 4B frames → 2-bit offset

• 1024 frames → 10-bit index

• 32-bit address – 2-bit offset – 10-bit index = 20-bit tag

• 20-bit tag * 1024 frames = 20Kb tags = 2.5KB tags

• 63% overhead



© 2009 Daniel J. Sorin from Roth and Lebeck 32ECE 152

Measuring Cache Performance

• Ultimate metric is tavg
• Cache capacity roughly determines thit
• Lower-level memory structures determine tmiss

• Measure %miss

• Hardware performance counters (Pentium, Sun, etc.) 

• Simulation (write a program that mimics behavior)

• Hand simulation (next slide)

• %miss depends on program that is running

• Why?



© 2009 Daniel J. Sorin from Roth and Lebeck 33ECE 152

Cache Performance Simulation

• Parameters: 8-bit addresses, 32B cache, 4B blocks

• Addresses initially in cache : 0, 4, 8, 12, 16, 20, 24, 28

• To find location in cache, do mod32 arithmetic (why 32?)

Miss2000, 4, 8, 12, 144, 20, 24, 28

Miss1440, 4, 8, 12, 16, 20, 24, 28

Miss160, 4, 8, 12, 144, 20, 24, 28

Hit

Miss

Miss

Hit

Miss

Miss

Miss

Outcome

200, 4, 8, 12, 144, 20, 24, 28

120, 4, 8, 204, 144, 20, 24, 28

80, 4, 200, 204, 144, 20, 24, 28

60, 4, 200, 204, 144, 20, 24, 28

144 (144%32=16)0, 4, 200, 204, 16, 20, 24, 28

204 (204%32=12)0, 4, 200, 12, 16, 20, 24, 28

200 (200%32=8)0, 4, 8, 12, 16, 20, 24, 28

AddressCache contents (prior to access)



© 2009 Daniel J. Sorin from Roth and Lebeck 34ECE 152

Block Size

• Given capacity, manipulate %miss by changing organization

• One option: increase block size

+ Exploit spatial locality

• Caveat: works only up to a point

+ Reduce tag overhead

• Notice tag/index/offset bits

0-1
2-3

1020-1021
1022-1023

4-5

[2:0][31:12]

data

[11:3] <<

CPU
address

==

hit/miss



© 2009 Daniel J. Sorin from Roth and Lebeck 35ECE 152

Calculating Tag Size

• Calculate tag overhead of 4KB cache with 512 8B frames

• Not including valid bits

• 8B frames → 3-bit offset

• 512 frames → 9-bit index

• 32-bit address – 3-bit offset – 9-bit index = 20-bit tag

• 20-bit tag * 512 frames = 10Kb tags = 1.25KB tags

+ 32% overhead

+Less tag overhead with larger blocks



© 2009 Daniel J. Sorin from Roth and Lebeck 36ECE 152

Cache Performance Simulation

• Parameters: 8-bit addresses, 32B cache, 8B blocks

• Addresses in base4 (“nibble”) notation

• Initial contents : 0000(0010), 0020(0030), 0100(0110), 0120(0130)

Miss30200000(0010), 0020(0030), 2100(2110), 0120(0130)

Miss21000000(0010), 0020(0030), 0100(0110), 0120(0130)

Hit (spatial locality)01000000(0010), 0020(0030), 0100(0110), 0120(0130)

Miss (conflict)

Hit (spatial locality)

Miss

Hit

Miss

Hit (spatial locality!)

Miss

Outcome

01100000(0010), 0020(0030), 2100(2110), 0120(0130)

00300000(0010), 0020(0030), 2100(2110), 0120(0130)

00200000(0010), 3020(3030), 2100(2110), 0120(0130)

00120000(0010), 3020(3030), 2100(2110), 0120(0130)

21000000(0010), 3020(3030), 0100(0110), 0120(0130)

30300000(0010), 3020(3030), 0100(0110), 0120(0130)

30200000(0010), 0020(0030), 0100(0110), 0120(0130)

AddressCache contents (prior to access)



© 2009 Daniel J. Sorin from Roth and Lebeck 37ECE 152

Effect of Block Size

• Increasing block size has two effects (one good, one bad)

+ Spatial prefetching

• For blocks with adjacent addresses

• Turns miss/miss pairs into miss/hit pairs

• Example from previous slide: 3020,3030

– Conflicts

• For blocks with non-adjacent addresses (but adjacent frames)

• Turns hits into misses by disallowing simultaneous residence

• Example: 2100,0110

• Both effects always present to some degree

• Spatial prefetching dominates initially (until 64–128B)

• Interference dominates afterwards

• Optimal block size is 32–128B (varies across programs)



© 2009 Daniel J. Sorin from Roth and Lebeck 38ECE 152

Conflicts

• What about pairs like 3030/0030, 0100/2100?

• These will conflict in any size cache (regardless of block size)

• Will keep generating misses

• Can we allow pairs like these to simultaneously reside?

• Yes, but we have to reorganize cache to do so

Hit

Miss

Miss

Hit

Miss

Miss

Miss

Outcome

01100000, 0010, 0020, 0030, 2100, 0110, 0120, 0130

00300000, 0010, 0020, 3030, 2100, 0110, 0120, 0130

00200000, 0010, 3020, 3030, 2100, 0110, 0120, 0130

00120000, 0010, 3020, 3030, 2100, 0110, 0120, 0130

21000000, 0010, 3020, 3030, 0100, 0110, 0120, 0130

30300000, 0010, 3020, 0030, 0100, 0110, 0120, 0130

30200000, 0010, 0020, 0030, 0100, 0110, 0120, 0130

AddressCache contents (prior to access)



© 2009 Daniel J. Sorin from Roth and Lebeck 39ECE 152

Set-Associativity

• Set-associativity

• Block can reside in one of few frames

• Frame groups called sets

• Each frame in set called a way

• This is 2-way set-associative (SA)

• 1-way → direct-mapped (DM)

• 1-set → fully-associative (FA)

+ Reduces conflicts

– Increases thit: additional mux

512
513

1022
1023

514

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0
1

510
511

2

==

ways

se
ts



© 2009 Daniel J. Sorin from Roth and Lebeck 40ECE 152

Set-Associativity

• Lookup algorithm

• Use index bits to find set

• Read data/tags in all frames in parallel

• Any (match && valid bit)?

• Then Hit 

• Else Miss

• Notice tag/index/offset bits

512
513

1022
1023

514

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0
1

510
511

2

==



© 2009 Daniel J. Sorin from Roth and Lebeck 41ECE 152

Cache Performance Simulation

• Parameters: 32B cache, 4B blocks, 2-way set-associative

• Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130

Hit (avoid conflict)3020[0100,2100], [0010,0110], [3020,0020], [3030,0030]

Hit (avoid conflict)2100[2100,0100], [0010,0110], [3020,0020], [3030,0030]

Hit (avoid conflict)0100[0100,2100], [0010,0110], [3020,0020], [3030,0030]

Hit

Miss

Miss

Hit

Miss

Miss

Miss

Outcome

0110[0100,2100], [0010,0110], [3020,0020], [3030,0030]

0030[0100,2100], [0010,0110], [3020,0020], [0130,3030]

0020[0100,2100], [0010,0110], [0120,3020], [0130,3030]

0012[0100,2100], [0010,0110], [0120,3020], [0130,3030]

2100[0000,0100], [0010,0110], [0120,3020], [0130,3030]

3030[0000,0100], [0010,0110], [0120,3020], [0030,0130]

3020[0000,0100], [0010,0110], [0020,0120], [0030,0130]

AddressCache contents



© 2009 Daniel J. Sorin from Roth and Lebeck 42ECE 152

Cache Replacement Policies

• Set-associative caches present a new design choice
• On cache miss, which block in set to replace (kick out)?

• Some options
• Random

• FIFO (first-in first-out)

• When is this a good idea?

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used) 

• An easier-to-implement approximation of LRU

• NMRU=LRU for 2-way set-associative caches

• Belady’s: replace block that will be used furthest in future

• Unachievable optimum (but good for comparisons)

• Which policy is simulated in previous slide?



© 2009 Daniel J. Sorin from Roth and Lebeck 43ECE 152

NMRU and Miss Handling

• Add MRU field to each set

• MRU data is encoded “way”

• Hit? update MRU

• Fill? write enable ~MRU
512
513

1023

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0
1

511

==

W
E

data from memory
~

W
E



© 2009 Daniel J. Sorin from Roth and Lebeck 44ECE 152

Physical Cache Layout

• Logical layout

• Data and tags mixed together

• Physical layout

• Data and tags in separate RAMs

• Often multiple sets per line

• As square as possible

• Not shown here

512
513

1022
1023

514

1:0[31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0
1

510
511

2

==



© 2009 Daniel J. Sorin from Roth and Lebeck 45ECE 152

Full-Associativity

• How to implement full (or at least high) associativity?

• Doing it this way is terribly inefficient

• 1K matches are unavoidable, but 1K data reads + 1K-to-1 mux?

1 1023

1:0[31:2] <<

CPU

==

0 1022

======


