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ABSTRACT: In this paper we present a method to obtain a possible self-adjoint Hamiltonian operator so 
its energies satisfy (1/2+iEn)=0, which is an statement equivalent to Riemann Hypothesis, first we use 
the explicit formula for the Chebyshev function (x) and apply the change x=exp(u), after that we 
consider an Statistical partition function involving the Chebyshev function and its derivative so Z=Tr{e-

H), from the integral definition of the partition function Z we try to obtain the Hamiltonian operator 
assuming that H=p2+V(x) by proposing a Non-linear integral equation involving Z(β) and V(x), We also 
study the case of a Berry Potential with interactions up to first order H=xp+αW(x) , in this case the 
integral can be linearized to get a Numerical evaluation of W(x).

For the case of the Partition function involving primes 1( )nsp

n

e Z s   we apply a similar method to 

find the associated Hamiltonian Z1=Tr{e-sH
1} H1=p2+Q(x) , so “prime numbers” could be considered as 

the “Energy levels”  of H1

Through the paper we will use natural units, so the Planck,s constant and Boltzmann,s k will have the 
value KB=ћ=1

 Keywords: Chebyshev function, explicit formula, Statistical partition function Z, Hamiltonian 
operator, Prime Counting Function, Berry Potential.

1.Chebyshev function as a partition function of Statistical Mechanics:

The Chebyshev function has the definition:
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x n
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          Where Λ(n) is the Mangoldt function given by the  Dirichlet series   
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 Then if we define the function:
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0 ( )x x   (asymptotic result)

Where p is a prime and m a positive integer this function has the next integral 
representation:
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(Von Mangoldt formula for Chebyshev function) log here is the natural logarithm, and 

the sum 
x

   runs over all the Non-trivial zeros of the Riemann zeta function   

1

( )  Re(s) >1s

n

s n






   , a bound for the Chebyshev function using PNT is

  0 log( ) exp logx C x x x                                   (1.4)

Now if we derivate respect to x at both sides and make the change of variable x=exp(u) 
we have:
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       if RH is true then  
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2n nit  

so the equality (1.3) becomes:
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T
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we have called n nt E  and  /iu u i T     where “u” is a real parameter and T is 

the Temperature of a certain hypothetical system in Thermodynamic equilibrium, where 
we can consider the “imaginary” temperature T as a “Wick rotated” version    (angle 
θ=π/2) so the partition function has a finite “sum”, the partition function is related for 
example to the probability of “finding” a root with |tn|=a, which belongs to the case of 
finding a “microstate” of the system with energy a or energy –a in the form:

,

2
( )

( )a a a aP P P Cos au
Z u      Which is a real number.   u=u(T)

The main objective of our method is to get a Hamiltonian self-adjoint operator 

2ˆ ˆˆ ˆ( ) | |nH p V x H E       Where  
1

( ) 0
2 niE      (1.6)
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Note that the partition function is just the Trace of the exponential of certain 

Hamiltonian operator   ˆ ˆ ˆ( ) ( )       1HTr e Z Tr Û UU       and that the “Energies” 

of this Hamiltonian will satisfy:

ˆ | |nH E            and                      
/ 2

/ 2 / 2
0 3
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e
e Z iu e e e e

e e
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 



       
        (1.7)

Where ( )n x    are the “Eigenfunctions” of the Hamiltonian operator H.

In classical and semi-classical Physics if the variables p and x can vary continuously the 
partition function is defined via the integral (considering a mono-atomic and one 
dimensional theoretical gas interacting under a potential V(x) )

 2 ( )
( ) .

p V x
Z dx dp e


 

 

 

      (Partition function ) (1.8)

We could approximate the series defining Z(β) involving Chebyshev function by an 
improper integral, if we perform integration over the variable “p” we have the 
approximate Non-linear integral equation (Urysohn-Stieltjes Integral equation of first 
kind) for the potential V(x):

/ 2
/ 2 / 2
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u u u
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              (1.9)  u>0

Where the first 2 terms of  Z(u) : 0 ( )
1

u
u

u

e
e

e

 
 

 


 , making u=log(x) the term inside the 

parenthesis approaches 0 for big x since  0 1
d

dx


         (1.10)

If the potential V(x) is invertible so ( )( )V f x x , f is differentiable and  
( ) ( )   , V(- )=bV V a     , we could calculate the inverse of the potential V(x) in 

the form of a Fourier integral:

/ 41 ( )
( ) ( )

2
iu i b

c

Z u
du e W f

u
   

 

  
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       with    ( ) ( ) ( )a

bW b a             (1.11)

 “Window Function” and       
0

1
( ) lim

2

i xe
x d

i i






  




  

        (1.12)

The integral involving Z(u) must be understood as:
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lim

2
iu i

o

Z u
du e

u i
 

   

  

            (1.13)

(For the real case we would use the Fourier Cosine transform with a Kernel 

( )
4

Cos Cos u
  
 
 

 on the interval (0,∞)  ).

So using the inverse function theorem 
1

( )
( ( ))

V x
f V x




         (1.14)

Of course instead of summing over Energies giving the imaginary part of the roots of 
( ) 0    we could have made the sum over –En so /iu u i T      , getting the 

complex conjugate of (4) if combine both Integral equations we get:

0

4
( ) ( ( ))

Cos
Z u u dxCos uV x







 
 
         (1.15)  Since     ˆ

niuEiuH

m

Tr e e




  R

Or using the identity for Dirac delta  ( ) ( )  Nx x Sin Nx    then for big u  :

0

1
( ) ( ( ))   

2

u

u

du Z u u dx V x u 





               (1.16)

Then the operator that gives all the roots of (1/ 2 ) 0niE    is given by the linear 

differential equation (Sturm-Liouville operator) :

2
1

2
( ) n

d
f x E

dx


                    ˆ(1/ 2 ) | 0iH              (1.17)

Where the Z , partition function involves the derivative of Chebyshev function, this 

function has the Mellin-type transform:  1
00

( )
( ) ( )

( )
ss

s s dx x x
s




  
     

Using the delta function 
,

1
( )   >0

log( ) p p

d
x p

x dx 

 
    (sum over primes and prime 

powers)

An asymptotic evaluation of the Partition function approximating the sum by an 
integral, for big u so we can apply “Stationary Phase principle” .

1/ 22
[ ( ) / 2]

2

2

( )
niuE i V u

n

e e
V u

 



               ( ) 0   V   , | ( ) | 0   V        (1.18)
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As u  , depending on whether the potential V is Real or complex (so †ˆ ˆH H ) , the 
sum will diverge or tend to 0

If we define the function  ( )( ) iuV x iu x
uZ dxe 

 


  ,so F has first continous derivatives 

respect to the argument ‘tau’ and the position then we can find using integration by 
parts and differentiation respect to parameter ‘tau’ the differential expression :

( ) ( )( ) iuV x iu x iuV x iu
u

dV
Z dxe iu dxxe x

dx
  

  

 

     
           ( 1.19 )

( ) ( )
n

n iuV x iu x
u

i
dxx e Z

u
 


 



 
   

                                          (1.20)

ˆ
ˆ ( ) ( ) ( ) 0u u u

dV i
iux Z Z Z

dx u
  

 
  
      

                         (1.21)

Where, we have made the replacement     
i

x
u 


 


   to form the differential 

equation, to solve it we should expand ( )xx V x   into a truncated Taylor series .

If we impose  the ‘Trace condition’ (1.7) to our differential equation (1.21) , expanding 
the derivative of potential (operator) :

2

1 2 ........
dV i i i

x a a
dx u u u  

          
              

                  (1.22)

 Thus , we can obtain the value of the  ia  solving a certain system of equations since if 

V(x) satisfies a certain integral equation , setting     u 0
4u

    we have the initial 

value condition:

 
/ 2

ˆ / 2 / 2
0 3
( )

4
n

u
iuEiuH u u u

u u u
m

e
Z Tr e e e e e

u e e

 




          
          (1.23)

klog(p)    j=1, 2,3,.............ju u     , so solving (1.23) would allow us to compute an 

n=1,2,3,…… so integratin by parts we could get the solution (up to a certain constant):

1

( )
nN

n
i

x
V x C a

n

                         (1.24)
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                   2. The Berry Potential with interactions

Since the Von Mangoldt formula is correct, hence for every linear operator of Hilbert-
Polya type we must find that the trace of the Unitary operator must be equal to the 
expression (1.7) , then for a Berry potential with interactions of the form:

ˆ ˆˆ ˆ( )H xp W x                                   (2.1)

   ˆ 2e 1 ( ) ( ) ...iuH iuxpTr e dp dx iu W x O 
 

 
                   (2.2)

Where we have expanded the complex exponential inside the Semiclassical expression 
for the Trace upto first order on the coupling parameter obtaining a linearized integral 
equation for the interacting term W(x) of the form:

 ˆ 2
( )

| |
iuH

FTr e iu dpW up
u

 



         ( ) ( ) iuxp

FW up dxW x e



       (2.3)

So we could use Numerical Quadrature methods to obtain  
, 1,2,3,.....

( )F i j i j
W p u


from (2.3) 

Where the Trace of the Unitary operator involving H is given before in (1.7) . Note that 
since (2.3) is a linear integral equation there is only one solution at first order in   for 
the interaction W(x)=W(-x) ( its Fourier transform must be a pure imaginary number if 
we want (2.3) to be Real)

3.Possible application to prime numbers:

Now if we consider the next “Partition function” given by :

1( ) ( )nsp st

n

e s dt t e Z s
 


              with   

1
s

T
          ( ) ( ) 1

p p x

x x p 


            

(3.1)      

We can get the integral equality  considering primes to be some  “Energy” levels 

 3/ 2 3/ 2 ( )( ) ( )st sQ x
ts dt t e L D t dxe  

  

 
          2

1 ( )H p Q x         (3.2)

Solving to get the inverse of Potential Q(x)  ( ( )( )Q g x x ) we find, taking inverse 
Laplace (Bilateral) transforms to both sides:
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1/ 2 ( ) ( ) ( )a
bD W g         Where D1/2 can be considered the half-derivative operator:

 
 

[ ] 1

[ ] 1

1
( ) ( )( )

(1 )

r x rr
x r c

d
D f x dtf t x t

r dx




 
         (3.3)  [ ]x x x   setting  r=1/2    , [x] 

is the  “floor” function.

In that case the Hamiltonian H1 is bounded below , so its expectation value will satisfy 

1 2H   (there is a grounds state that belongs to the smallest prime number p=2)

Using Abel sum formula, and the definition of the half-derivative (differintegral) 
operator applied to the Prime counting function can be related (but some constants) to 
the series over all the primes up to x in the form :

 
 1 1/ 21

( )
1 1/ 2 p x

x p 




   and  ( )x  , Using Abel sum formula.         (3.4)

Unfortunately we can only obtain approximations for the potential in the form
(Ramanujan) involving Möbius function:

1/
1/ 2

1

1 1 ( )
( ) ( )

log
a n

b
n

n
W g

D n

   
 





 
  

 
               (3.5)

For the set of ‘Eigenfunctions’ of H1  and the prime counting function, we can write:

 2 ˆˆ ˆ ( ) np Q x n                                 (3.6)         

4.Conclusions and final remarks:

A possible connection between RH and Operator theory proposed by Hilbert and Polya 
was to find a Self-adjoint or Hermitian operator so:

1 1ˆ | |
2 2 niT n it n              [ ]n nt m          or 

1 ˆ 0
2

iT     
 

       (3.1)

In case this  †ˆ ˆT T   exists, then we would have proved RH, our purpose in this paper is 
to find this operator T, considering it’s a Hamiltonian of a certain Quantum system, 
using the explicit formula for the Chebyshev function and differentiating respect to x:

10
3

1
1

d
x

dx x x



  

   setting  1/ 2 niE    and x=exp(u)          (3.2)
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( defined for every positive x except the points   x p Z    , p=prime), the values of 

u that satisfy  ˆ
lim ( )

H

iuH

T T
Z u Tr e


   , with  |TH| =1/υlog(p) are related to the 

“Hagedorn Temperature” -(s) of the system, so the “Trace” Z(u) of the operator above 
diverges.

Then the explicit formula is just the partition function Z for a certain hypothetical 
system at an imaginary Temperature “T” in the Thermodynamic equilibrium, this Z is 

precisely the Trace of a certain operator involving the Hamiltonian 
ˆ

[ ]HZ Tr e  , where 
the Eigenvalues of this Hamiltonian are the imaginary parts of the Non-trivial roots of 
Riemann Zeta function, after that using the integral representation for the Z we have 
found a Non-linear integral equations for the V(x) in the form:

( ) ( , ( ))g u dxK u V x



     (3.5)   K(xu) is a Cosine, Sine or a complex exponential             

This integral equation is obtained considering that H=p2+V(x), a particle of mass ½ 
moving under the influence of a potential V, and integrating over variable p.

A commonly used Numerical method would be approximate the Integral equation by a 
set of equations:

( ) ( , ( )) ( )j i j i i
i

g u C K u V x w x       ( ) ( ) 0n i n jx u         
2

( ) xw x e    (3.6)

Where Hn are the Hermite Polynomials defined by 
2 2

( ) ( 1) ( )
n

n x x
n n

d
x e e

dx
  

And for the delta function we use the approximation: 
2 2

( ) n xn
x e


  (n>> 1)

From the Non-linear system of equations we get the values V(xi ) to calculate the 
“shape” of the potential.

Or introducing a Dirac delta function , using the property ( ) ( ) ( )g u dxg x x u



  , we 

can solve the Urysohn-Stieltjes Integral equation (5) by iterative methods:

1( ) ( ) ( , ( ))k kg u u dxF u x 


 
    (in general  0( ) ( )g x x )   

( , ( )) ( ( )) ( )F u V x K uV x x u    so      
2 2( )( ) n x un

x u e


           (3.7)

To calculate the approximate integral equation we have used the “Semi-classical 
approximation”  for the partition function Z (sum over energies)
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( ) exp( ( , ))nE

n

Z e dx dp H x p 
 

 
       

With  
/ 2

/ 2 / 2
0 3

( ) ( )
u

u u u
u u

e
Z u e e e

e e
   


  if u>0   ,   u i         (3.8)

So the “Eigenvalues” En of the Hamiltonian, for are precisely the roots 
1

2n nit  

using this  “Semi-classical” WKB approach for n “big” and a potential V(x) then:

1 1
( ) ( )     ( ) 0   and 

2 2n ndx E V x n iE n


        (3.9)     ( = closed path )

Then the “energies” and imaginary parts of the Non-trivial zeros satisfy 
( )

lim 1
( )n

t n

E n


From the “physical” point of view for the partition function Z(u) ,describing “|u|” the 
inverse of the Temperature of the gas, the approximation of a sum over “Energies” by 
an integral considering that (x, p) vary smoothly, it gets better as we approach to 0u 
(classical behavior), and for big “Energies”.

Also studying the case of a Berry potential with interaction at first order W(x) we can 
deduce certain symmetry properties of the potential so 2( ) ( ) ( )W x W x L R   in the 
WKB approach for the Trace of the Hamiltonian operator.

If we wish to impose the condition that our Kernel is on a L2 Space:

2

0 0
| ( ( )) |dx du Cos uV x

 
    Or equivalently 2

0
| ( ) |du Z u u


   ,  

2

0

1
log( ) 1

d
dx x

dx

 
           (3.10)

Then we could use the bound given in (1.4) for the expression x >1 0 1d  . Note that 

the condition above is not fulfilled if there are roots of the form n na it    , a≠1/2 

,which make real exponentials of the form  (1/ 2 ) (1/ 2 ),a u a ue e    to appear in the formula 

for Z(u), so it diverges in the limit  u→∞  (for u<0 the Z(u) is 0) .

If we take the inverse of the potential V(x) then the “complex version” of our integral 
equation (4) includes the term:

( ) 0           as u
b

iux

a

dx f x e       (“Riemann-Lebesgue” lemma )

In case V(x) and f(x) are real,  so we must have the limit,  lim ( ) 0
u

Z u



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For the case of “prime numbers” the “Temperature” ( s=1/T ) is Real , and the 

associated Partition function is  1
ˆ

1( )nsp sH

n

e Z s Tr e  

In Both cases we have used as pointed before the approximation:

2 ( )( ) exp( ( )) E n

n

Z dp dq p V x e   
  

 
       *      or   R       (3.11)

Although there are many examples of proporsed Hilbert-Polya operators involving
Riemann Hypothesis, from the Von Mangoldt formula for Chebyshev function, we have
deduced a condition that must be satisfied by every  linear operator of
Hilbert-Polya type , in the sense that the Trace of exp(iuH) must be equal to:

/ 2
/ 2 / 2

0 3
( ) ( )n n

u
E Eu u u

u u
n n

e
e Z iu e e e e

e e
 


 



       
    (3.12)

  

with singular values at the log of primes and prime powers, otherwise we could find the
next contradiction:

ˆ ˆ( ) 0                   (1/ 2 ) 0 a
a n na iH iH                            (3.13)

So, we have found 2 Hamiltonians mapping all the zeros with real part ‘a’ and real part
½ (Riemann Hypothesis) acting over a different space of functions with no common
Eigenvalues, However (4.11) does clearly not imply RH but the fact that Hilbert-Polya
Hypothesis can be true but that could be useless to prove RH unless you restrict your
possible operators to these with a Trace given at (3.12), this ‘constraint’ on the Trace is 
of vital importance and should always be taken into account when proposing any 
operator solution to “Riemann Hypothesis”.

Also the solution to the integral equation ,determined by function ( )uZ   , so for the 

value 1tan (1)   we recover again the Trace of  iuHe . Hence we can reformulate our 
problem of finding V(x) inside the Hamiltonian , either solving the integral equation 
(1.9) or a differential equation given at (1.21-23).

Considering “Stirling Approach” for the factorial, and supposing that Chebyshev gas is 
Mono-atomic, and Non-interacting so VTOTAL=V1+V2+ ………….+VN then the 
Partition function of the Whole system at T=T(u) is:

(log ( ) log 1)TOTALLog N Z u N        From this we can define every Thermodinamical 

quantity , related to the system for example: (in absolute value)

log TOTALF
u


  and   log LU

u 


 


 “Energy” and “Helmholtz function” 



11

The Semi-classical approach (in natural units and with a Normalization factor) reads:

1 2 1 2( , ,......, , , ,........., )1

!
N NH x x x p p p

TOTAL V
dPdXe

N
                  V=volume of phase space.
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