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Abstract� THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. We consider the transmission of a Gaussian
source over a single-input multiple-output (SIMO) quasi-static
fading channel. The goal is to minimize the expected distortion
of the reconstructed signal at the receiver. We consider a delay-
limited scenario where channel coding is restricted to a single
realization of the channel. Channel state information (CSI) is
assumed to be known perfectly at the receiver, and a zero-delay,
noiseless, �xed-rate feedback link provides a quantized version of
the CSI to the transmitter. An upper bound on the performance
is derived and it is shown that for practical values of the channel
signal to noise ratio (SNR), this bound can be achieved with a very
limited knowledge of the channel quality. We show that unlike
the rate maximization problems, temporal power adaptation at
the transmitter provides signi�cant gains, and the amount of
the gain heavily depends on the bandwidth expansion ratio. For
asymptotically high SNRs, we derive the distortion exponent of
the system, de�ned as the slope of the expected distortion with
respect to the channel SNR. We show that the distortion exponent
of limited feedback is equivalent to that of superposition coding
without feedback, so long as the number of quantization levels
in the feedback scheme is equal to the number of the layers in
the superposition coding scheme. For the �nite-SNR regime, we
propose an optimal and ef�cient numerical technique to design
the feedback scheme. Numerical results for a Rayleigh fading
channel are also presented.

I. INTRODUCTION

A Multimedia source, such as an image or a video sequence,
usually produces an analog output and the objective in a
multimedia communication system is to reproduce the source
output at the receiver with minimum distortion. In this con-
text, Shannon's separation theorem states that the source and
channel coding tasks can be done separately. The separation
theorem is valid for an ergodic channel where the channel
codewords extend across a large number of different channel
realizations. The ergodicity assumption is easily violated in a
slowly varying fading channel with a delay-sensitive applica-
tion that limits channel coding to a single realization of the
channel. In this case, the end-to-end system should be designed
using a joint source-channel coding approach.

The joint source-channel coding problem for quasi-static
fading channel has been an active research area in recent years
[1]�[3]. Most of the existing literature is based on the distor-
tion exponent metric that characterizes the high signal to noise
ratio (SNR) behavior of the optimal expected distortion [1].

The distortion exponent provides a useful tool for comparing
various transmission strategies, but its asymptotic nature limits
its applicability for practical values of the SNR. As a result, a
different approach to the joint source-channel coding problem
deals directly with the �nite-SNR regime [4]�[6].

For slowly fading channels, estimating the channel state
information (CSI) at the receiver is relatively simple and
incurs a negligible loss in the transmission rate. Assuming
a known channel at the receiver only (CSIR), a multiple-
input single-output (MISO) or a single-input multiple-output
(SIMO) quasi-static fading channel can be modeled as a de-
graded broadcast channel, and the optimal transmission strat-
egy is multi-layer superposition coding [7]. The joint source-
channel coding literature cited in the preceding paragraph
falls into the category of CSIR-only problems. On the other
hand, if the CSI is also available at the transmitter (CSIT),
then the fading channel becomes a memoryless channel and
the source-channel separation holds. In this paper, we are
considering an intermediate case between the perfect CSIT
and no-CSIT scenarios, and assume that the transmitter has
access to quantized CSI through a feedback channel.

Transmission over fading channels with partial CSIT has
been widely studied in recent years [8]�[10] (and the refer-
ences therein). The main objective in the existing work is
to maximize the transmission rate, and the partial CSIT is
usually in the form of quantized or noisy CSI. In particular,
Kim et. al [8] present a comprehensive study of the rate
maximization problem using a noiseless quantized feedback.
In this paper, we use the framework of [8] and apply it
to the joint source-channel coding problem in the presence
of partial CSIT. We derive an upper bound on the system
performance and show that for practical values the SNR, a
low-rate feedback scheme can achieve this bound. We show
that unlike the rate maximization problems, temporal power
adaptation at the transmitter provides signi�cant gains, and
the amount of the gain heavily depends on the bandwidth
expansion ratio. We also derive the distortion exponent of
the feedback scheme without power adaptation, and show its
equivalence to the distortion exponent of superposition coding
without feedback when the number of quantization levels in
the feedback scheme is equal to the number of the layers in the
superposition coding scheme. For the �nite-SNR regime, we



propose an optimal and ef�cient numerical technique to design
the feedback scheme. Finally, we present numerical results
for a Rayleigh fading channel. Our discussion will be limited
to SIMO channels. The case of multiple transmit antennas is
more involved due to the problem of spatial power allocation
between the antennas [10], a topic that is considered for future
work.

Notations: In the sequel, ‖ · ‖ is the Euclidean norm of a
complex vector. P(e) represents the probability of event e.
F(x) and f(x) represent the cumulative distribution function
(CDF) and the probability density function (PDF) of a given
random variable. log and ln represent base 2 and natural
logarithms, respectively. R is the set of real numbers. f ′(·)
denotes the derivative of f(·). f(x) .= g(x) is the exponential
equality, that is limx→∞

f(x)
g(x) = 1.

II. SYSTEM MODEL

We consider a discrete-time, complex Gaussian source with
independent real and imaginary components of variance 0.5,
and the mean square error (MSE) distortion measure. In
this case, the distortion-rate (D-R) function of the source
is given as D(R) = 2−R, where R is the source coding
rate in bits per symbol. We further assume that the length
of the encoded sequence of source symbols is large enough
so that the source can be considered ergodic. The design
of the source coder is not considered in our work, and we
assume the availability of a source coder capable of achieving
the distortion-rate bound. The number of channel symbols
transmitted per source symbol is denoted by the bandwidth
expansion factor b. The bandwidth expansion factor quanti�es
the compression or expansion of the source with respect to the
available transmission bandwidth.

The discrete-time, baseband model of a slowly fading,
single-input multiple-output channel with M receive antennas
is given as rt = hst + nt, t = 1, · · · , T , where h, nt

and rt are M × 1 complex vectors and t is the index of the
channel use. The channel coef�cient vector h is assumed to
be random but constant over a sequence of T channel uses.
The elements of h are independent and identically distributed
(i.i.d) according to some known distribution and γ , ‖h‖2.
st and rt represent the transmitted symbol and the received
vector, respectively, in the tth channel use and nt is a complex
Gaussian noise vector with independent real and imaginary
parts of zero mean and variance 0.5. We assume that each
codeword is limited to a single fading block, and the block
length T is large enough such that the ergodic capacity of
the forward channel can be achieved when h is known. For
a transmit power constraint of P , the ergodic capacity in the
case of perfect CSIT is given as [11]:

C = log(1 + γP) bits/channel use (1)

Throughout the paper, we assume that the receiver has perfect
knowledge of h and employs maximum ratio combining.
Outage-free transmission is possible if γ is known at the
transmitter. Thus, the feedback link is solely used to transmit
information about γ.

The feedback transmission scheme operates as follows. The
channel realization γ is quantized using a K-level scaler
quantizer de�ned by the encoder and decoder mappings Γe :
R → I and Γd : I → {γi}, respectively. I = {0, · · · , K −
1} represents the index set of the quantizer. The encoding
operation is performed at the receiver. The Voronoi regions
of the encoder are speci�ed by the partition boundaries γb

0 =
0 < γb

1 ≤ · · · ≤ γb
K−1 < γb

K = ∞, and the encoder mapping
is de�ned as Γe(γ) = i, if γ ∈ [

γb
i , γ

b
i+1

)
. The encoder

index i ∈ I is sent to the transmitter through the zero-delay,
noiseless feedback link. The decoding operation is performed
at the transmitter as Γd(i) = γi, where {γi} represents the
quantizer codebook with γi ∈ [γb

i , γ
b
i+1). Upon receiving index

i, the transmitter allocates power Pi to a capacity achieving
codeword and transmits at rate Ri = log(1 + γiPi). The
transmission is then successful if γ ≥ γi, otherwise outage
occurs. The source coding rate at the transmitter is bRi and
the corresponding distortion at the receiver is D(bRi), if the
transmission is successful. In the case of outage, the resulting
distortion is D0 = D(0) = 1. Note that unlike the layered
transmission schemes [2]�[6], we do not require the source to
be successively re�nable.

In [8], it is shown that when the goal is to maximize the
expected rate, the optimal quantizer satis�es γb

i = γi for 1 ≤
i ≤ K − 1. The same logic can be applied to the distortion
minimization problem and as a result, the expected distortion
cost function is given as

ED =

KX
i=0

[F(γi)− F(γi−1)] D(bRi−1) (2)

where γ−1 = R−1 = 0 and γK = ∞.
We consider two types of transmission power control strate-

gies. Under the short-term power constraint, every codeword
is allocated a power budget of Pi = P , regardless of the
transmitter feedback index i. The more relaxed long-term
power constraint allows the transmitter to choose a transmit
power Pi for index i, while limiting the average transmit
power to P . The long-term power constraint is given as

EP = F(γ1)P0 +

K−1X
i=1

[F (γi+1)− F (γi)]Pi ≤ P (3)

The long-term power constraint may result in practically
unacceptable large values of Pi for certain indices. In this
case, one may also consider a maximum power constraint in
the form of Pi ≤ Pm.

III. PERFORMANCE BOUND

In this section, we derive a performance bound for our
proposed transmission scheme. Assuming that perfect CSIT
is available, separation theorem applies and outage-free trans-
mission at a rate equal to the ergodic capacity is optimal. For
a given power allocation P(γ), the expected distortion is then

ED =

Z ∞

0

D (b log (1 + γP (γ))) f(γ) dγ (4)

subject to the constraints



EP =

Z ∞

0

P(γ) f(γ) dγ ≤ P and P(γ) ≥ 0 (5)

The expected distortion lower bound, ĒD, is achieved for some
power allocation function P̄(γ). Using the Lagrange multiplier
technique, P̄(γ) can be written as the solution to the following
variational problem:

P̄(γ) = arg min
P(γ)

Z ∞

0

L (γ,P (γ)) dγ (6)

where L (γ,P (γ)) =
{
D (b log (1 + γP (γ))) +

λP (γ)
}
f(γ), and λ ≥ 0 is the Lagrange multiplier.

Since D(·) is a convex and decreasing function and log(·)
is concave, it is easy to see that the functional L is convex.
The Euler-Lagrange optimality condition [12] requires
− d

dγ
∂L
∂P′ + ∂L

∂P to vanish at the optimal solution, or

bγ D′ `b log
`
1 + γP̄ (γ)

´´

ln(2)
`
1 + γP̄ (γ)

´ + λ = 0 (7)

For a given λ, (7) can be numerically solved to obtain P̄(γ).
A search over λ is then needed to �nd a P̄(γ) that satis�es (5).
For a complex Gaussian source, (7) can be solved analytically:

P̄(γ) =

"
1

γ

„
bγ

λ

« 1
b+1

− 1

γ

#+

(8)

where [x]+ = max(x, 0). The power allocation (8) is strongly
in�uenced by the bandwidth expansion ratio, b. As b → 0, the
�rst term inside the brackets becomes independent of γ and
as γ is increased, the power allocation becomes approximately
uniform. In this regime, the behavior is similar to the classical
water-�lling solution for rate maximization problems where
temporal power adaptation does not introduce much gain [8],
[13]. From a joint source-channel coding point of view, a
small b indicates that a small bandwidth is available per source
symbol. Thus, the power adaptation policy allocates the power
generously, and equally, to all reasonably large values of γ in
order to cancel out the effect of the small bandwidth. On the
other extreme, as b → ∞, P̄(γ) approaches the Dirac delta
function δ(γ). In this regime, the large value of b translates the
transmission rates supported by even small values of γ into
a good source coding rate. As a result, the power is mostly
allocated to poor channel realizations.

In what follows, we present a numerical example of the
performance bound. In the case of a Rayleigh SIMO fading
channel with M receive antennas, γ = χ

2 where χ is a Chi-
square random variable with 2M degrees of freedom. The PDF
and CDF of γ are given as f(x) = xM−1e−x

(M−1)! and F(x) =
ΓI(x,M)
(M−1)! , respectively, where ΓI(x, M) =

∫ x

0
tM−1e−tdt is

the incomplete Gamma function. In the plots, SNR represents
the average signal to noise ratio at each receive antenna, which
is equivalent to the power constraint P .

The effect of the bandwidth expansion factor on the optimal
power allocation for a SISO channel is shown in Figure 1.
Figure 1(a) shows the absolute gain, de�ned as the reduction in
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Fig. 1. Power adaptation results for a SISO channel with perfect CSIT (a)
Absolute gain (b) Power allocation at P = 10 dB

the expected distortion when temporal power adaptation (long-
term) is used compared to when there is no such adaptation
(short-term). We note that temporal power adaptation provides
signi�cant gains (up to 18 dB), and the amount of gain grows
quickly with b. Fig. 1(b) shows the optimal power allocation,
P̄(γ), at P = 10 dB. It is seen that the optimal power
allocation becomes more non-uniform as b is increased. The
results of this section shows that the effect of temporal power
adaptation is more pronounced in a joint source-channel cod-
ing context when compared to the rate maximization problems.

IV. DISTORTION EXPONENT

The distortion exponent, ∆, is de�ned as ∆ =
− limP→∞

log ED

logP . The distortion exponent of the proposed
feedback scheme in the case of short-term power constraint is
derived in the following theorem.

Theorem 1: Assuming a short-term power constraint, the
distortion exponent of the proposed scheme is given as

∆ = M

 
1− 1− b

M

1− ` b
M

´K+1

!
(9)

that is the same as the distortion exponent of a system with
no CSIT that employs K-layer superposition coding.
Proof: We assume that in the high-SNR regime, Ri =
ri logP , where ri is the multiplexing gain of layer i. The
corresponding outage probability is given as

F(γi) = Pout(ri logP)
.
= P−d∗(ri) (10)

where d∗(r) = M(1 − r) is the optimal diversity at the
multiplexing gain of r for the SIMO system [14]. Since ri−1 ≤
ri, d∗(ri−1) ≥ d∗(ri) and F(γi) − F(γi−1)

.= F(γi). Also,
D(bRi−1) = 2−bri−1 logP = P−bri−1 , using (2) we have

ED
.
=

KX
i=0

P−{M(1−ri)+bri−1} (11)

To �nd the optimal distortion exponent, we need to solve the
following optimization problem



max
0≤r0≤···≤rK−1

min


M(1− r0), M(1− r1) + br0, · · · ,

M(1− rK−1) + brK−2, brK−1

ff
(12)

Each term inside the brackets in (12) is non-negative and
represents a hyper-plane in (ri−1, ri). The inter-section of all
hyper-planes is then the maximum value that is smaller than
all the terms. As a result, the solution is obtained by equating
all the terms in (12). The corresponding system of equations
is solved in [2], and the resulting distortion exponent is given
by (9).1

Single-layer superposition coding is the same as a system
with no feedback (K = 1). On the other hand, in�nite-layer
superposition coding has the same distortion exponent as the
feedback scheme with full CSIT [2]. Theorem 1 shows that
for any K, K-layer superposition coding and K-level feedback
are equivalent in the distortion exponent sense.

V. QUANTIZER DESIGN

A. Short-Term Power Constraint
Under the short-term power constraint Pi = P , and the

expected distortion minimization problem is stated as
min

{γi, 0≤i≤K−1}
ED (13)

s.t. γi+1 − γi ≥ 0

The rate maximization problem for noiseless feedback chan-
nels has been numerically solved in [8] assuming that the
Karush-Kuhn-Tucker (KKT) conditions hold. Due to the lack
of convexity, the KKT solution may not be a global optimum.
In what follows, we propose an ef�cient and globally optimal
dynamic programming solution to (13).

We assume that each γi is optimized over the interval
[0, γmax] with the step size δ, where γmax = Nγδ for
some integer Nγ . Thus, {jδ}, 0 ≤ j ≤ Nγ , de�nes the set
of values that can be assumed by γi. Let ∆i

D(n, j) denote
the contribution of {γi−1 = nδ, γi = jδ} to the expected
distortion and ∆i

P (n, j) be the power cost associated with the
pair, then

∆i
D(n, j) = [F(jδ)− F(nδ)] D (b log (1 + nδPi−1)) (14)

for 1 ≤ i ≤ K − 1, and
∆K

D(n, j) = [1− F(nδ)] D (b log (1 + nδPK−1)) (15)

∆i
P (n, j) =

8
<
:

F(jδ) P0, i = 1
[F(jδ)− F(nδ)] Pi, 2 ≤ i ≤ K − 1
[1− F(nδ)] PK−1, i = K

(16)

for 0 ≤ n, j ≤ Nγ . For γi = jδ, let the optimal value
of γi−1 be sijδ. Also for γi = jδ, let E ij

D be the minimum
expected distortion contributed by {γ0, · · · , γi}. The dynamic
programming principle then implies that

Eij
D = E(i−1)sij

D + ∆i
D(sij , j) (17)

1In the superposition coding scheme of [2], the rates are de�ned incremen-
tally. That is, if γ ≥ γi, then

Pi
n=0 Rn is recovered. However, the resulting

system of equations is algebraically equivalent to our formulation.

for 1 ≤ i ≤ K, 0 ≤ j ≤ Nγ and the initial value E0n
D =

F(nδ)D0. The accumulated power cost for (17) is

Eij
P = E(i−1)sij

P + ∆i
P (sij , j) (18)

for 1 ≤ i ≤ K, 0 ≤ j ≤ Nγ and the initial value E0n
P = 0.

For 1 ≤ i ≤ K and 0 ≤ j ≤ Nγ , the survivor index, sij , is

sij = arg min
0≤n≤j

n
E(i−1)n

D + ∆i
D(n, j)

o
(19)

s.t. E(i−1)n
P + ∆i

P (n, j) ≤ P (20)

The γi−1 ≤ γi constraint is implicitly enforced by the search
space 0 ≤ n ≤ j in (19). If for certain i and j, no solution for
sij can be found, then γi = jδ is excluded from the search in
the next step of the algorithm. In other words, a trellis path
that violates the power constraint is pruned. In the last step
of the algorithm, i = K and γK assumes only one value, that
is γK = ∞ and j = ∞. The minimum distortion EK∞

D is
then the optimal value of the cost function, E?

D. The optimal
solution {γ?

i } is recovered using the survivors {sij} and the
backward pass of the Viterbi algorithm.

B. Long-term Power Constraint
Under a long-term power constraint, the distortion mini-

mization problem is formally stated as
min

{γi,Pi, 0≤i≤K−1}
ED (21)

s.t. γi+1 − γi ≥ 0

EP ≤ P, Pi ≥ 0

We solve this constrained optimization problem using the
Lagrange multiplier technique. De�ne the Lagrangian L =
ED + λEP , where λ ≥ 0 is the Lagrange multiplier. Mini-
mization of L is performed iteratively by alternating between
the optimization over {γi} given {Pi}, and vice versa. Note
that the dynamic programming technique of Section V-A is
formulated for any given power allocation, and as a result, it
can be used to optimize {γi} when {Pi} is given.

For a given {γi}, the optimization over {Pi} is done by
setting the derivatives ∂L

∂Pi
to zero, that results in

bωiγi

ln(2)(1 + γiPi)
D′ (b log (1 + γiPi))+λνi = 0, 0 ≤ i ≤ K−1

(22)
where ν0 = F(γ1) and νi = ωi = F(γi+1)− F(γi) for i > 0.
For a given λ, (22) can be numerically solved to obtain Pi

and then a search over λ ensures that the power constraint is
satis�ed. For a Gaussian source, (22) simpli�es to

Pi =

"
1

γi

„
bωiγi

λνi

« 1
b+1

− 1

γi

#+

(23)

As K →∞, γ0 → 0 and ωi

νi
→ 1 for all i. In this case, (23)

becomes a discrete version of (8).
Finally, when the power allocation is additionally con-

strained by a maximum power constraint Pi ≤ Pm, the water-
�lling operation is performed up to the maximum power, and
the solution is given as [8]
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Fig. 2. Expected distortion for a SISO channel with b = 1 (a) Short-term
power constraint (b) Long-term power constraint

Pi =

"
min

 
1

γi

„
bωiγi

λνi

« 1
b+1

− 1

γi
,Pm

!#+

(24)

VI. NUMERICAL RESULTS

In this section, we provide the numerical results of this
paper. Throughout this section, we assume a SISO Rayleigh
fading channel. The case of a SIMO channel is similar and
does not introduce additional insight. Performance results
without feedback are based on superposition coding with N
layers [6]. Note that the feedback scheme with K = 1 is
equivalent to superposition coding with N = 1, and there
is only one threshold (γ0) to be optimized in both systems.
Beyond 5 layers, the performance improvement offered by
additional layers in the superposition scheme is negligible
[6]. As a result, in our numerical experiments we consider
the no-CSIT scenario with N = 5 practically equivalent to a
system with an in�nite number of layers, or an optimal no-
CSIT scheme.

Figure 2 shows the performance results for b = 1. The
performance bounds with perfect CSIT are also shown. We
note that even one bit of feedback provides gains of 5 dB
and 7 dB, respectively, with the short-term and long-term
power constraints. It can be seen from the �gure that 5 bits
of feedback (K = 32) performs very close to a system with
perfect CSIT over a wide range of signal to noise ratios. This
is expected because according to Theorem 1, the distortion
exponent of a system with 5-bits of feedback is the same as 5-
layer superposition coding. The 5-layer superposition coding,
in turn, almost achieves the in�nite-layer performance that has
the same exponent as the full CSIT system. Also, at very large
SNRs, a system with 1-bit feedback underperforms 5-layer
superposition coding. This is again a direct result of Theorem
1, since the distortion exponent of 1-bit feedback is equivalent
to that of two-layer superposition coding. Despite its asymp-
totic limitations, the results of this experiment nevertheless
show the effectiveness of low-rate feedback for practical values
of the SNR. Moreover, the results motivate the combination
of quantized feedback and superposition coding, originally

suggested in [8], to overcome the asymptotic limitations of
quantized feedback.

VII. CONCLUSION

In this paper, the problem of transmitting a Gaussian source
over a single-input multiple-output quasi-static fading channel
with a delay constraint was considered. An upper bound
on the performance was derived assuming perfect channel
knowledge at the transmitter, and it was shown that for
practical values of the channel signal to noise ratio, this bound
can be achieved with a very limited knowledge of the channel
quality. The performance bound also indicated that unlike the
rate maximization problems, temporal power adaptation at
the transmitter is very effective in minimizing the distortion,
especially for large bandwidth expansion ratios. The distortion
exponent of a system with a K-level feedback and no power
adaptation was derived and shown to be the same as the
distortion exponent of a system without feedback that em-
ploys K-layer superposition coding. An ef�cient and optimal
numerical algorithm for feedback design was presented and
the effectiveness of feedback was shown numerically for a
Rayleigh fading channel.
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