Equidissections of Kite-Shaped Quadrilaterals

Charles H. Jepsen, Trevor Sedberry, and Rolf Hoyer

Abstract

Let $Q(a)$ be the convex kite-shaped quadrilateral with vertices $(0,0)$, $(1,0),(0,1),(a, a)$, where $a>1 / 2$. We wish to dissect $Q(a)$ into triangles of equal areas. What numbers of triangles are possible? Since $Q(a)$ is symmetric about the line $y=x, Q(a)$ admits such a dissection into any even number of triangles. In this article, we prove four results describing $Q(a)$ that can be dissected into certain odd numbers of triangles.

MSC2000: 52B45.
Keywords: equidissection, spectrum.

1 Introduction

We wish to dissect a convex polygon K into triangles of equal areas. A dissection of K into m triangles of equal areas is called an m-equidissection. The spectrum of K, denoted $S(K)$, is the set of integers m for which K has an m-equidissection. Note that if m is in $S(K)$, then so is $k m$ for all $k>0$. If $S(K)$ consists of precisely the positive multiples of m, we write $S(K)=\langle m\rangle$ and call $S(K)$ principal.

Quite a bit is known about the spectrum of the trapezoid $T(a)$ with vertices $(0,0),(1,0),(0,1),(a, 1), a>0$. For example, if a is rational, $a=r / s$ where r and s are relatively prime positive integers, then $S(T(a))=\langle r+s\rangle$; if a is transcendental, then $S(T(a))$ is the empty set. (See [3] or [6].) In addition, $S(T(a))$ is known for many irrational algebraic numbers a, particularly a satisfying a quadratic polynomial. (See [1], [2], and [5].) For instance, if $a=(2 r-1)+r \sqrt{3}$ where r is an integer ≥ 8, then $S(T(a))=\{4 r, 5 r, 6 r, \ldots\}$.

Less is known about the spectrum of the kite-shaped quadrilateral $Q(a)$ with vertices $(0,0),(1,0),(0,1),(a, a), a>1 / 2$. Here certainly $S(Q(a))$ contains 2
and hence all even positive integers. If $a=1, Q(a)$ is a square, and in this case $S(Q(a))=\langle 2\rangle$. (See [4].) For other values of a, the question is: What odd numbers, if any, are in $S(Q(a))$? In Section 2, we prove four theorems that answer this question for certain a. In Section 3, we pose some questions that remain open.

2 Main Results

As in the introduction, $Q(a)$ denotes the quadrilateral with vertices $(0,0),(1,0)$, $(0,1),(a, 1), a>1 / 2$. The following two results about $Q(a)$ are shown in [3] (pp. 290-1):

1. Let ϕ_{2} be an extension to \mathbf{R} of the 2-adic valuation on \mathbf{Q}. (See [6] for a discussion of valuations.) If $\phi_{2}(a)>-1$, then $S(Q(a))=\langle 2\rangle$. In particular, if a is transcendental, then $S(Q(a))=\langle 2\rangle$.
2. Let $a>1 / 2$ be a rational number such that $\phi_{2}(a) \leq-1$. That is, $a=$ $r /(2 s)$, where r and s are relatively prime positive integers, r is odd, and $r>s$. Then $S(Q(a))$ contains all odd integers of the form $r+2 s k$ for $k \geq 0$.

Two questions raised in [3] and [6] are:

- Are there rational numbers a with $\phi_{2}(a) \leq-1$ for which $S(Q(a))$ contains odd numbers less than r ?
- Are there irrational algebraic numbers a with $\phi_{2}(a) \leq-1$ for which $S(Q(a))$ contains odd numbers? In particular, does $S(Q(\sqrt{3} / 2))$ contain odd numbers?

We answer these questions in the affirmative. First we present a slight strengthening of statement 2 above.

Figure 1

Theorem 1: Let $a=r /(2 s)$, where r and s are relatively prime positive integers, r is odd, $r>s$. Then $S(Q(a))$ contains all integers of the form $r+2 k$ for $k \geq 0$.

Pf: Partition $Q(a)$ into three triangles as in Figure 1a). We want to find nonnegative integers t_{1}, t_{2}, t_{3} so that the areas A_{1}, A_{2}, A_{3} of the three triangles satisfy

$$
\begin{equation*}
A_{1} t=a t_{1}, \quad A_{2} t=a t_{2}, A_{3} t=a t_{3} \tag{1}
\end{equation*}
$$

where $t=t_{1}+t_{2}+t_{3}$. (Note that the area of $Q(a)$ is a.) Then $Q(a)$ can be further dissected into t triangles each of area a / t. Here $A_{1}=\frac{1}{2} b, A_{2}=\frac{1}{2} a(1-b)$, $A_{3}=\frac{1}{2}(a+a b-b)$. For $k \geq 0$, choose $t_{1}=s, t_{2}=k, t_{3}=r-s+k$, $b=r /(r+2 k)$. Then $t=r+2 k, b=r / t$, and equations (1) are satisfied. Thus $r+2 k \in S(Q(a))$.

Theorem 2: Let a be as in Theorem 1 and suppose r is not a prime number. Then $S(Q(a))$ contains odd numbers less than r.

Pf: We know that $S(Q(a))=S\left(Q\left(\frac{a}{2 a-1}\right)\right)$ for any a. (See [3], pp. 284-5.) If $a=r /(2 s)$, then $a /(2 a-1)=r /((2(r-s))$. So replacing s by $r-s$ if necessary, we may assume s is odd. Partition $Q(a)$ into five triangles as shown in Figure
$1 \mathrm{~b})$. We want the areas $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ of the triangles to satisfy

$$
\begin{equation*}
A_{1} t=a t_{1}, A_{2} t=a t_{2}, A_{3} t=a t_{3}, A_{4} t=a t_{4}, A_{5} t=a t_{5} \tag{2}
\end{equation*}
$$

where $t=t_{1}+t_{2}+t_{3}+t_{4}+t_{5}$. In this case, $A_{1}=\frac{1}{2} b d, A_{2}=\frac{1}{2} a(1-b), A_{5}=\frac{1}{2} c$, $A_{4}=\frac{1}{2}(c(a-1)-a(d-1)), A_{3}=\frac{1}{2}(d(a-b)-a(c-b))$. Since r is an odd composite number, we can write $r=r_{1} r_{2}$ where $3 \leq r_{1} \leq r_{2}$.

Case (i): $s>r_{2}$. Choose $t_{1}=1, t_{2}=\frac{1}{2}\left(s-r_{1}\right), t_{3}=\frac{1}{2}\left(r_{1}+r_{2}\right)-1$, $t_{4}=\frac{1}{2}\left(s-r_{2}\right), t_{5}=0, b=r_{1} / s, c=0, d=r^{2} / s$. Then $t=s$, and we check that equations (2) are satisfied. Then $s \in S(Q(a))$ and $s<r$.

Case (ii): $s<r_{2}$. Choose $t_{1}=\frac{1}{2}\left(r_{1}-1\right), t_{2}=\frac{1}{2}\left(r_{1} r_{2}-r_{1}-2 s\right), t_{3}=$ $\frac{1}{2}\left(r_{2}+1\right), t_{4}=0, t_{5}=\frac{1}{2}\left(r-r_{2}-2 s\right)$. The assumption on s implies that the t_{i} are nonnegative, and their sum t is $r-2 s$. Now let $b=\left(t-2 t_{2}\right) / t=r_{1} / t$, $c=\left(2 a t_{5}\right) / t, d=\left(2 a t_{1}\right) /(b t)=\left(2 a t_{1}\right) / r_{1}$. Then $s=t t_{1}-r_{1} t_{5}$, and again we check that equations (2) are satisfied. Thus $r-2 s \in S(Q(a))$ and $r-2 s<r$.

Theorem 3: Let $a=\sqrt{3} / 2$. Then 21 is in $S(Q(a))$.
Pf: Partition $Q(a)$ into five triangles shown in Figure 2a). The areas of the five triangles are in the proportion $\frac{3}{14 \sqrt{3}}: \frac{3}{14 \sqrt{3}}: \frac{1}{14 \sqrt{3}}: \frac{7}{14 \sqrt{3}}: \frac{7}{14 \sqrt{3}}$ or $3: 3: 1: 7: 7$. Hence we can further dissect $Q(a)$ into $t=3+3+1+7+7=21$ triangles each of area $\frac{1}{14 \sqrt{3}}=\frac{1}{21}\left(\frac{\sqrt{3}}{2}\right)$.

There are infinitely many radicals besides $\sqrt{3} / 2$ that have odd numbers in their spectra. For example, the next theorem says $11 \in S(Q(\sqrt{5} / 4)), 15 \in$ $S(Q(\sqrt{21} / 4), 17 \in S(Q(\sqrt{33} / 4), 21 \in S(Q(\sqrt{65} / 4)$, and so forth.

Theorem 4: For $k \geq 1$ let $a=\frac{\sqrt{(2 k+1)(2 k+3)}}{4 \sqrt{3}}$. Then $2 k+9$ lies in $S(Q(a))$.
Pf: Partition $Q(a)$ into five triangles as shown in Figure 2b). As before, we want the areas A_{i} of the triangles to satisfy equations (2) above. Here $A_{1}=\frac{1}{2} b, A_{3}=\frac{1}{2}(c-b) d, A_{5}=\frac{1}{2} a(1-c), A_{2}=\frac{1}{2}\left(\frac{d-1}{a-1}\right)(a+a b-b), A_{4}=$ $\frac{1}{2}\left(\frac{a-d}{a-1}\right)(a+a c-c)$. Choose $t_{1}=t_{2}=t_{3}=2, t_{5}=3, t_{4}=2 k$, so $t=2 k+9$ and

Figure 2
$48 a^{2}=(t-8)(t-6)$. Now let $b=(4 a) / t, c=(t-6) / t, d=(4 a) /(t-6-4 a)$. We show once again that equations (2) are satisfied. Thus $2 k+9 \in S(Q(a))$.

3 Open Questions

While we have answered a few questions about odd numbers in $S(Q(a))$, many others remain:

1. Is the converse of Theorem 2 true? That is, if a is as in Theorem 1 and r is a prime number, is r the smallest odd number in $S(Q(a))$?
2. Let a be as in Theorem 2. What is the smallest odd number in $S(Q(a))$? What are all the odd numbers in $S(Q(a))$?
3. Let a be an irrational algebraic number with $\phi_{2}(a) \leq-1$. Does $S(Q(a))$ always contain odd numbers?
4. Let a be arbitrary, m be an odd number. If m is in $S(Q(a))$, is $m+2$ in $S(Q(a)) ?$ (This is the same as: Is $S(Q(a))$ closed under addition?)

Acknowledgment

This article constitutes part of the output of an undergraduate research project by Trevor Sedberry and Rolf Hoyer under the direction of Charles Jepsen.

References

[1] C. H. Jepsen, Equidissections of trapezoids, Amer. Math. Monthly 103 (1996) 498-500.
[2] C. H. Jepsen and P. Monsky, Constructing equidissections for certain classes of trapezoids, to appear in Discrete Math.
[3] E. A. Kasimatis and S. K. Stein, Equidissections of polygons, Discrete Math. 85 (1990) 281-294.
[4] P. Monsky, On dividing a square into triangles, Amer. Math. Monthly 77 (1970) 161-164.
[5] P. Monsky, Calculating a trapezoid spectrum, Amer. Math. Monthly 103 (1996) 500-501.
[6] S. K. Stein and S. Szabó, Algebra and Tiling: Homomorphisms in the Service of Geometry, Mathematical Association of America, Washington, DC, 1994.
jepsen@math.grinnell.edu Department of Mathematics, Grinnell College
Grinnell, IA 50112
sedberry@grinnell.edu
Grinnell College, Grinnell, IA 50112
hoyerrol@grinnell.edu
Grinnell College, Grinnell, IA 50112

