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Abstract

Hidden Markov models (HMMs) have been extensively used in biological sequence
analysis. In this paper, we give a tutorial review of HMMs and their applications to a variety
of problems in molecular biology. We especially focus on three types of HMMs: the profile-
HMMs, pair-HMMs, and context-sensitive HMMs. We show how these HMMs can be used to
solve various sequence analysis problems, such as pairwise and multiple sequence alignments,
gene annotation, classification, similarity search, and many others.
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I. INTRODUCTION

The successful completion of many genome sequencing projects has left us with

an enormous amount of sequence data. The sequenced genomes contain a wealth

of invaluable information that can help us better understand the underlying mech-

anisms of various biological functions in cells. However, considering the huge size

of the available data, it is virtually impossible to analyze them without the help of

computational methods. In order to extract meaningful information from the data, we

need computational techniques that can efficiently analyze the data according to sound

mathematical principles. Given the expanding list of newly sequenced genomes and the

increasing demand for genome re-sequencing in various comparative genomics projects,

the importance of computational tools in biological sequence analysis is expected to

grow only further.

Until now, various signal processing models and algorithms have been used in

biological sequence analysis, among which the hidden Markov models (HMMs) have

been especially popular. HMMs are well-known for their effectiveness in modeling

the correlations between adjacent symbols, domains, or events, and they have been



extensively used in various fields, especially in speech recognition [46] and digital

communication. Considering the remarkable success of HMMs in engineering, it is

no surprise that a wide range of problems in biological sequence analysis have also

benefited from them. For example, HMMs and their variants have been used in gene

prediction [43], pairwise and multiple sequence alignment [15], [44], base-calling [35],

modeling DNA sequencing errors [36], protein secondary structure prediction [66],

ncRNA identification [74], RNA structural alignment [72], acceleration of RNA folding

and alignment [25], fast noncoding RNA annotation [63], and many others.

In this paper, we give a tutorial review of HMMs and their applications in biological

sequence analysis. The organization of the paper is as follows. In Sec. II, we begin

with a brief review of HMMs and the basic problems that must be addressed to

use HMMs in practical applications. Algorithms for solving these problems are also

introduced. After reviewing the basic concept of HMMs, we introduce three types

of HMM variants, namely, profile-HMMs, pair-HMMs, and context-sensitive HMMs,

that have been useful in various sequence analysis problems. Section III provides an

overview of profile hidden Markov models and their applications. We also introduce

publicly available profile-HMM software packages and libraries of pre-built profile-

HMMs for known sequence families. In Sec. IV, we focus on pair-HMMs and their

applications in pairwise alignment, multiple sequence alignment, and gene prediction.

Section V reviews context-sensitive HMMs (csHMMs) and profile context-sensitive

HMMs (profile-csHMMs), which are especially useful for representing RNA families. We

show how these models and other types of HMMs can be employed in RNA sequence

analysis.

II. HIDDEN MARKOV MODELS

A hidden Markov model (HMM) is a statistical model that can be used to describe the

evolution of observable events that depend on internal factors, which are not directly

observable. We call the observed event a ‘symbol’ and the invisible factor underlying the

observation a ‘state’. An HMM consists of two stochastic processes, namely, an invisible

process of hidden states and a visible process of observable symbols. The hidden states



form a Markov chain, and the probability distribution of the observed symbol depends

on the underlying state. For this reason, an HMM is also called a doubly-embedded

stochastic process [46].

Modeling observations in these two layers, one visible and the other invisible, is very

useful, since many real world problems deal with classifying raw observations into a

number of categories, or class labels, that are more meaningful to us. For example, let

us consider the speech recognition problem, for which HMMs have been extensively

used for several decades [46]. In speech recognition, we are interested in predicting the

uttered word from a recorded speech signal. For this purpose, the speech recognizer

tries to find the sequence of phonemes (states) that gave rise to the actual uttered

sound (observations). Since there can be a large variation in the actual pronunciation,

the original phonemes (and ultimately, the uttered word) cannot be directly observed,

and need to be predicted.

This approach is also useful in modeling biological sequences, such as proteins and

DNA sequences. Typically, a biological sequence consists of smaller substructures with

different functions, and different functional regions often display distinct statistical

properties. For example, it is well-known that proteins generally consist of multiple

domains. Given a new protein, it would be interesting to predict the constituting

domains (corresponding to one or more states in an HMM) and their locations in

the amino acid sequence (observations). Furthermore, we may also want to find the

protein family to which this new protein sequence belongs. In fact, HMMs have been

shown to be very effective in representing biological sequences [15], as they have

been successfully used for modeling speech signals. As a result, HMMs have become

increasingly popular in computational molecular biology, and many state-of-the-art

sequence analysis algorithms have been built on HMMs.

A. Definition

Let us now formally define an HMM. We denote the observed symbol sequence as

x = x1x2 . . . xL and the underlying state sequence as y = y1y2 . . . yL, where yn is the

underlying state of the nth observation xn. Each symbol xn takes on a finite number



of possible values from the set of observations O = {O1, O2, . . . , ON}, and each state

yn takes one of the values from the set of states S = {1, 2, . . . ,M}, where N and M

denote the number of distinct observations and the number of distinct states in the

model, respectively. We assume that the hidden state sequence is a time-homogeneous

first-order Markov chain. This implies that the probability of entering state j in the next

time point depends only on the current state i, and that this probability does not change

over time. Therefore, we have

P{yn+1 = j|yn = i, yn−1 = in−1, . . . , y1 = i1} = P{yn+1 = j|yn = i} = t(i, j) (1)

for all states i, j ∈ S and for all n ≥ 1. The fixed probability for making a transition

from state i to state j is called the transition probability, and we denote it by t(i, j). For

the initial state y1, we denote the initial state probability as π(i) = P{y1 = i}, for all i ∈ S.

The probability that the nth observation will be xn = x depends only on the underlying

state yn, hence

P{xn = x|yn = i, yn−1, xn−1, . . .} = P{xn = x|yn = i) = e(x|i) (2)

for all possible observations x ∈ O, all state i ∈ S, and all n ≥ 1. This is called the emission

probability of x at state i, and we denote it by e(x|i). The three probability measures t(i, j),

π(i), and e(x|i) completely specify an HMM. For convenience, we denote the set of these

parameters as Θ.

Based on these parameters, we can now compute the probability that the HMM will

generate the observation sequence x = x1x2 . . . xL with the underlying state sequence

y = y1y2 . . . yL. This joint probability P{x,y|Θ} can be computed by

P{x,y|Θ} = P{x|y,Θ}P{y|Θ}, (3)

where

P{x|y,Θ} = e(x1|y1) e(x2|y2) e(x3|y3) · · · e(xL|yL) (4)

P{y|Θ} = π(y1) t(y1, y2) t(y2, y3) · · · t(yL−1, yL). (5)

As we can see, computing the observation probability is straightforward when we know

the underlying state sequence.
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Fig. 1. A simple HMM for modeling eukaryotic genes.

B. A Simple HMM for Modeling Eukaryotic Genes

As we mentioned earlier, HMMs can be effectively used for representing biological

sequences. As a simple example, let us consider an HMM that models protein-coding

genes in eukaryotes. It is well known that many protein-coding regions display codon

bias. The nonuniform usage of codons results in different symbol statistics for different

codon positions [7], and it is also a source of the period-3 property in the coding

regions [59]. These properties are not observed in introns, which are not translated

into amino acids. Therefore, it is important to incorporate these codon statistics when

modeling protein-coding genes and building a gene-finder. Figure 1 shows a toy HMM

for modeling eukaryotic genes. The given HMM tries to capture the statistical differences

in exons and introns. The HMM has four states, where E1, E2, and E3 are used to model

the base statistics in exons. Each Ek uses a different set of emission probabilities to reflect

the symbol statistics at the kth position of a codon. The state I is used to model the base

statistics in introns. Note that this HMM can represent genes with multiple exons, where

the respective exons can have variable number of codons, and the introns can also have

variable lengths. This example shows that if we know the structure and the important

characteristics of the biological sequences of interest, building the corresponding HMM

is relatively simple and it can be done in an intuitive manner.

The constructed HMM can now be used to analyze new observation sequences.



For example, let us assume that we have a new DNA sequence x = x1 · · ·x19 =

ATGCGACTGCATAGCACTT. How can we find out whether this DNA sequence is a

coding gene or not? Or, if we assume that x is a protein-coding gene, how can we

predict the locations of the exons and introns in the given sequence? We can answer

the first question by computing the observation probability of x based on the given

HMM that models coding genes. If this probability is high, it implies that this DNA

sequence is likely to be a coding gene. Otherwise, we may conclude that x is unlikely

to be a coding gene, since it does not contain the statistical properties that are typically

observed in protein-coding genes. The second question is about predicting the internal

structure of the sequence, as it cannot be directly observed. To answer this question,

we may first predict the state sequence y in the HMM that best describes x. Once we

have inferred the best y, it is straightforward to predict the locations of the exons and

introns. For example, assume that the optimal state sequence y is as shown in Fig. 1.

This implies that the first nine bases x1 · · ·x9 belong to the first exon, the following four

bases x10 · · ·x13 belong to an intron, and the last six bases x14 · · · x19 belong to another

exon. As these examples show, HMMs provide a formal probabilistic framework for

analyzing biological sequences.

C. Basic Problems and Algorithms for HMMs

There are three basic problems that have to be addressed in order to use HMMs

in practical applications. Suppose we have a new symbol sequence x = x1x2 . . . xL.

How can we compute the observation probability P{x|Θ} based on a given HMM?

This problem is sometimes called the scoring problem, since computing the probability

P{x|Θ} is a natural way of ‘scoring’ a new observation sequence x based on the model

at hand. Note that for a given x, its underlying state sequence is not directly observable

and there can be many state sequences that yield x. Therefore, one way to compute the

observation probability is to consider all possible state sequences y for the given x and

sum up the probabilities as follows

P{x|Θ} =
∑
y

P{x,y|Θ}. (6)



However, this is computationally very expensive, since there are ML possible state

sequences. For this reason, we definitely need a more efficient method for computing

P{x|Θ}. There exist a dynamic programming algorithm, called the forward algorithm, that

can compute P{x|Θ} in an efficient manner [46]. Instead of enumerating all possible

state sequences, this algorithm defines the following forward variable

α(n, i) = P{x1 · · ·xn, yn = i|Θ}. (7)

This variable can be recursively computed using the following formula

α(n, i) =
∑

k

[
α(n− 1, k)t(k, i)e(xn|i)

]
, (8)

for n = 2, . . . , L. At the end of the recursions, we can compute P{x|Θ} =
∑

k α(L, k). This

algorithm computes the observation probability of x with only O(LM2) computations.

Therefore, the amount of time required for computing the probability increases only

linearly with the sequence length L, instead of increasing exponentially.

Another practically important problem is to find the optimal state sequence, or the

optimal path, in the HMM that maximizes the observation probability of the given

symbol sequence x. Among all possible state sequences y, we want to find the state

sequence that best explains the observed symbol sequence. This can be viewed as finding

the best alignment between the symbol sequence and the HMM, hence it is sometimes

called the optimal alignment problem. Formally, we want to find the optimal path y∗ that

satisfies the following

y∗ = arg max
y

P{y|x,Θ}. (9)

Note that this is identical to finding the state sequence that maximizes P{x,y|Θ}, since

we have

P{y|x,Θ} =
P{x,y|Θ}
P{x|Θ}

. (10)

Finding the optimal state sequence y∗ by comparing all ML possible state sequences

is computationally infeasible. However, we can use another dynamic programming

algorithm, well-known as the Viterbi algorithm, to find the optimal path y∗ efficiently [21],

[60]. The Viterbi algorithm defines the variable

γ(n, i) = max
y1,...,yn−1

P{x1 · · ·xn, y1 · · · yn−1yn = i|Θ}, (11)



and computes it recursively using the following formula

γ(n, i) = max
k

[
γ(n− 1, k)t(k, i)e(xn|i)

]
. (12)

At the end, we can obtain the maximum observation probability as follows

P ∗ = max
y

P{x,y|Θ} = max
k
γ(L, k). (13)

The optimal path y∗ can be easily found by tracing back the recursions that led to

the maximum probability P ∗ = P{x,y∗|Θ}. Like the forward algorithm, the Viterbi

algorithm finds the optimal state sequence in O(LM2) time.

As we have seen, the Viterbi algorithm finds the optimal path that maximizes the

observation probability of the entire symbol sequence. In some cases, it may be more

useful to find the optimal states individually for each symbol position. In this case,

we can find the optimal state yn that is most likely to be the underlying state of xn as

follows

ŷn = arg max
i

P{yn = i|x,Θ}, (14)

based on the given x and Θ. The posterior probability P{yn = i|x,Θ} can be computed

from

P{yn = i|x,Θ} =
P{x1 · · ·xn, yn = i|Θ}P{xn+1 · · ·xL|yn = i,Θ}

P{x|Θ}

=
α(n, i)β(n, i)∑
k α(n, k)β(n, k)

, (15)

where β(n, i) is defined as

β(n, i) = P{xn+1 · · ·xL|yn = i,Θ}. (16)

This backward variable β(n, i) can be recursively computed using the backward algorithm

as follows

β(n, i) =
∑

k

[
t(i, k)e(xn+1|k)β(n+ 1, k)

]
, (17)

for n = L− 1, L− 2, . . . , 1. The advantage of predicting the optimal states individually

is that this approach will maximize the expected number of correctly predicted states.

However, the overall state sequence ŷ = ŷ1ŷ2 · · · ŷL will be generally suboptimal, hence

P{x, ŷ|Θ} ≤ P{x,y∗|Θ}. In some cases, the predicted path ŷ may not be even a



legitimate path in the given HMM, in which case we will have P{x, ŷ|Θ} = 0. For

this reason, the Viterbi algorithm is often preferred when we are interested in inferring

the optimal state sequence for the entire observation x, while the posterior-decoding

approach in (14) is preferred when our interest is mainly in predicting the optimal state

at a specific position. The posterior probability in (15) can also be useful for estimating

the reliability of a state prediction. For example, we may first predict the optimal path

y∗ = y∗1 · · · y∗L as in (9) using the Viterbi algorithm, and then estimate the reliability of the

individual state prediction y∗n by computing the posterior probability P{yn = y∗n|x,Θ}

as in (15).

The scoring problem and the alignment problem are concerned about analyzing a

new observation sequence x based on the given HMM. However, the solutions to

these problems are meaningful only if the HMM can properly represent the sequences

of our interest. Let us assume that we have a set of related observation sequences

X = {x1,x2, . . . ,xT} that we want to represent by an HMM. For example, they may be

different speech recordings of the same word or protein sequences that belong to the

same functional family. Now, the important question is how we can reasonably choose

the HMM parameters based on these observations. This is typically called the training

problem. Although there is no optimal way of estimating the parameters from a limited

number of finite observation sequences, there are ways to find the HMM parameters

that locally maximize the observation probability [5], [8], [34], [46]. For example, we

can use the Baum-Welch algorithm [5] to train the HMM. The Baum-Welch algorithm

is an expectation-maximization (EM) algorithm that iteratively estimates and updates

Θ based on the forward-backward procedure [5], [46]. Since the estimation of the HMM

parameters is essentially an optimization problem, we can also use standard gradient-

based techniques to find the optimal parameters of the HMM [8], [34]. It has been

demonstrated that the gradient-based method can yield good estimation results that are

comparable to those of the popular EM-based method [34]. When the precise evaluation

of the probability (or likelihood) of an observation is practically intractable for the HMM

at hand, we may use simulation-based techniques to evaluate it approximately [8], [57].



These techniques allow us to handle a much broader class of HMMs. In such cases,

we can train the HMM using the Monte Carlo EM (MCEM) algorithm, which adopts

the Monte Carlo approach to approximate the so-called E-step (expectation step) in the

EM algorithm [57]. There are also training methods based on stochastic optimization

algorithms, such as simulated annealing, that try to improve the optimization results by

avoiding local maxima [13], [22]. Currently, there exists a vast literature on estimating

the parameters of hidden Markov models, and the reader is referred to [8], [23], [46],

[48], [57] for further discussions.

D. Variants of HMMs

There exist a large number of HMM variants that modify and extend the basic model

to meet the needs of various applications. For example, we can add silent states (i.e.,

states that do not emit any symbol) to the model in order to represent the absence of

certain symbols that are expected to be present at specific locations [17], [33]. We can

also make the states emit two aligned symbols, instead of a single symbol, so that the

resulting HMM simultaneously generates two related symbol sequences [15], [31], [44].

It is also possible to make the probabilities at certain states dependent on part of the

previous emissions [68], [72], so that we can describe more complex symbol correlations.

In the following sections, we review a number of HMM variants that have been used

in various biological sequence analysis problems.

III. PROFILE HIDDEN MARKOV MODELS

Let us assume that we have a multiple sequence alignment of proteins or DNA

sequences that belong to the same functional family. How can we build an HMM that

can effectively represent the common patterns, motifs, and other statistical properties

in the given alignment? One model that is especially useful for representing the profile

of a multiple sequence alignment is the profile hidden Markov model (profile-HMM) [17],

[33]. Profile-HMMs are HMMs with a specific architecture that is suitable for modeling

sequence profiles. Unlike general HMMs, profile-HMMs have a strictly linear left-to-

right structure that does not contain any cycles. A profile-HMM repetitively uses three

types of hidden states, namely, match states Mk, insert states Ik, and delete states Dk, to
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Fig. 2. Profile hidden Markov model. (a) Multiple sequence alignment for constructing the profile-HMM. (b) The
ungapped HMM that represents the consensus sequence of the alignment. (c) The final profile-HMM that allows
insertions and deletions.

describe position-specific symbol frequencies, symbol insertions, and symbol deletions,

respectively.

A. Constructing a Profile-HMM

To see how profile-HMMs work, let us consider the following example. Suppose we

want to construct a profile-HMM based on the multiple alignment shown in Fig. 2(a).

As we can see, the given alignment has five columns, where the base frequencies in the

respective columns are different from each other. The kth match state Mk in the profile-

HMM is used to describe the symbol frequencies in the kth column of the alignment. It

is called a ‘match’ state, since it is used to represent the case when a symbol in a new

observation sequence matches the kth symbol in the consensus sequence of the original

alignment. As a result, the number of match states in the resulting profile-HMM is

identical to the length of the consensus sequence. The emission probability e(x|Mk) at

the kth match state Mk reflects the observed symbol frequencies in the kth consensus



column. By interconnecting the match states M1,M2, . . . ,M5, we obtain an ungapped

HMM as shown in Fig. 2(b). This ungapped HMM can represent DNA sequences that

match the consensus sequence of the alignment without any gap, and it serves as the

backbone of the final profile-HMM that is to be constructed.

Once we have constructed the ungapped HMM, we add insert states Ik and delete

states Dk to the model so that we can account for insertions and deletions in new

observation sequences. Let us first consider the case when the observed DNA sequence

is longer than the consensus sequence of the original alignment. In this case, if we align

these sequences, there will be one or more bases in the observed DNA sequence that are

not present in the consensus sequence. These additional symbols are modeled by the

insert states. The insert state Ik is used to handle the symbols that are inserted between

the kth and the (k+ 1)th positions in the consensus sequence. Now, let us consider the

case when the new observed sequence is shorter than the consensus sequence. In this

case, there will be one or more bases in the consensus sequence that are not present in

the observed DNA sequence. The kth delete state Dk is used to handle the deletion of

the kth symbol in the original consensus sequence. As delete states represent symbols

that are missing, Dk is a non-emitting state, or a silent state, which is simply used as a

place-holder that interconnects the neighboring states. After adding the insert states and

the delete states to the ungapped HMM in Fig. 2(b), we obtain the final profile-HMM

that is shown in Fig. 2(c).

Estimating the parameters of a profile-HMM based on a given multiple sequence

alignment is relatively simple. We first have to decide which columns should be

represented by match states and which columns should be modeled by insert states.

Suppose we have a column that contains one or more gaps. Should we regard the

symbols in the column as ‘insertions’, or should we rather view the gaps in the column

as ‘deletions’? One simple rule would be to compare the number of symbols and the

number of gaps. If the column has more symbols than gaps, we treat the gaps as symbol

deletions. Therefore, we model the column using a match state Mk (for the symbols in

the given column) and a delete state Dk (for the gaps in the same column). On the



contrary, if we have more gaps than symbols, it would make more sense to view the

symbols as insertions, hence we use an insert state Ik to represent the column. Once

we have decided which columns should be represented by match states and which

ones should be represented by insert states, we know the underlying state sequence

for each symbol sequence in the alignment. Therefore, we can estimate the transition

probabilities and the emission probabilities of the profile-HMM by counting the number

of each state transition or symbol emission and computing their relative frequencies. To

allow small probability for state transitions or symbol emissions that are not observed in

the original alignment, we can add the so-called pseudocounts to the actual counts [15].

We can also use more sophisticated methods for parameterizing the profile-HMMs. In

fact, there have been considerable research efforts for optimal construction and param-

eterization of profile-HMMs to improve their overall performance. More discussions on

this topic can be found in [1], [6], [15], [56], [64], [65].

B. Applications of Profile-HMMs

Due to the convenience and effectiveness in representing sequence profiles, profile-

HMMs have been widely used for modeling and analyzing biological sequences.

When profile-HMMs were first proposed, they were quickly adopted for modeling the

characteristics of a number of protein families, such as globins, immunoglobulins, and

kinases [4]. They have been shown to be useful for various tasks, including protein

classification, motif detection, and finding multiple sequence alignments. Nowadays,

there exist publicly available software packages, such as HMMER [15] and SAM [27],

[29], that can be readily used to build and train profile-HMMs. These packages provide

convenient tools for applying profile-HMMs to various sequence analysis problem. A

comparison between these two popular HMM packages and an assessment of their

critical features can be found in [65].

It would be also very convenient to have a library of ready-made profile-HMMs for

known sequence families. Currently, we have two such libraries that have compiled a

large number of profile-HMMs for various protein families: the PROSITE database [28],

[53] and the Pfam database [20], [55]. Given a profile-HMM that represents a biological



sequence family, we can use it to search a sequence database to find additional

homologues that belong to the same family. In a similar manner, if we have a database

of pre-built profile-HMMs, we can use a single query sequence to search through the

database to look for matching profiles. This strategy can be used for classification and

annotation of the given sequence. For example, by querying a new protein sequence

against Pfam or PROSITE, we can find out whether the sequence contains any of the

known protein domains.

Sometimes, we may want to compare two multiple sequence alignments or sequence

profiles, instead of comparing a single sequence against a multiple alignment or a

profile. Comparing sequence profiles can be beneficial for detecting remote homologues,

and profile-HMMs have also been used for this purpose [18], [39], [54]. For example,

COACH [18] allows us to compare sequence alignments, by building a profile-HMM

from one alignment and aligning the other alignment to the constructed profile-HMM.

HHsearch [54] generalizes the traditional pairwise sequence alignment algorithm for

finding the alignment of two profile-HMMs. Another program, called PRC (profile

comparer) [39], provides a tool for scoring and aligning profile-HMMs produced by

popular software tools, including HMMER [15] and SAM [27], [29].

Although profile-HMMs have been widely used for representing sequence profiles,

their application is by no means limited to modeling amino acid or nucleotide sequences.

For example, Di Francesco et al. [10], [11] used profile-HMMs to model sequences

of protein secondary structure symbols: helix (H), strand (E), and coil (C). Therefore,

the model emits only three types of symbols instead of twenty different amino acids.

It has been demonstrated that this profile-HMM can be used for recognizing the

three-dimensional fold of new protein sequences based on their secondary structure

predictions. Another interesting example is the feature-based profile-HMM that was

proposed to improve the performance of remote protein homology detection [45].

Instead of emitting amino acids, emissions of these HMMs are based on ‘features’

that capture the biochemical properties of the protein family of interest. These features

are extracted by performing a spectral analysis of a number of selected ‘amino acid



indices’ [30] and using principal component analysis (PCA) to reduce the redundancy

in the resulting signal.

There are also variants of the basic profile-HMM, where the jumping profile-HMM

(jpHMM) [52] is one such example. The jumping profile-HMM is a probabilistic gener-

alization of the so-called jumping-alignment approach. The jumping-alignment approach

is a strategy for comparing a sequence with a multiple alignment, where the sequence

is not aligned to the alignment as a whole, but it can ‘jump’ between the sequences that

constitute the alignment. In this way, different parts of the sequence can be aligned to

different sequences in the given alignment. A jpHMM uses multiple match states for

each column to represent different sequence subtypes. The HMM is allowed to jump

between these match states based on the local similarity of the sequence and the different

sequence subtypes in the model. This approach has been shown to be especially useful

for detecting recombination breakpoints [52].

IV. PAIR HIDDEN MARKOV MODELS

In biological sequence analysis, it is often important to compare two sequences to find

out whether these sequences are functionally related. Sequence similarity is often a good

indicator of their functional relevance, and for this reason, methods for quantitatively

measuring the similarity of two proteins or DNA sequences have been of interest to

many researchers. A typical approach for comparing two biological sequences is to

align them based on their similarity, compute their alignment score, and evaluate the

statistical significance of the predicted alignment. To find the best alignment between

the sequences, we first have to define a reasonable scoring scheme for ranking different

alignments. Based on this scoring scheme, we can choose the alignment that maximizes

the alignment score.

A. Pair-HMMs for Modeling Aligned Sequence Pairs

The pair hidden Markov model (pair-HMM) [15] is a variant of the basic HMM that is

especially useful for finding sequence alignments and evaluating the significance of the

aligned symbols. Unlike the original HMM, which generates only a single sequence, a



Pair HMM 

IX IZ 

A 

 x (seq 1)  :  T  T  C  C  G  -  -     
 z (seq 2)  :  -  -  C  C  G  T  T    

 y (states) :  IX IX A  A  A  IZ IZ 

IX:  insertion in x (seq 1) 

IZ:  insertion in z (seq 2) 

A:  aligned symbols in x and z 

Fig. 3. Example of a pair hidden Markov model. A pair-HMM generates an aligned pair of sequences. In this
example, two DNA sequences x and z are simultaneously generated by the pair-HMM, where the underlying state
sequence is y. Note that the state sequence y uniquely determines the pairwise alignment between x and z.

pair-HMM generates an aligned pair of sequences. For example, let us consider the pair-

HMM shown in Fig. 3. This simple pair-HMM traverses between the states IX , IZ , and

A, to simultaneously generate two aligned DNA sequences x = x1 · · ·xLx (sequence 1)

and z = z1 · · · zLz (sequence 2). The state IX emits a single unaligned symbol xi in

the first sequence x. Similarly, the state IZ emits an unaligned symbol zj only in the

second sequence z. Finally, the state A generates an aligned pair of two symbols xi and

zj , where xi is inserted in x and zj is inserted in z. For example, let us consider the

alignment between x = x1x2x3x4x5 = TTCCG and z = z1z2z3z4z5 = CCGTT illustrated in

Fig. 3. We assume that the underlying state sequence is y = IXIXAAAIZIZ as shown in

the figure. As we can see, x1 and x2 are individually emitted at IX , hence they are not

aligned to any bases in z. The pairs (x3, z1), (x4, z2), and (x5, z3) are jointly emitted at

A, and therefore the bases in the respective pairs are aligned to each other. Finally, z4

and z5 are individually emitted at Iz as unaligned bases.

As we can see from this example, there is a one-to-one relationship between the

hidden state sequence y and the alignment between the two observed sequences x

and z. Therefore, based on the pair-HMM framework, the problem of finding the best

alignment between x and z reduces to the problem of finding the following optimal

state sequence

y∗ = arg max
y

P{y|x, z,Θ}. (18)



Note that this is identical to finding the optimal path that maximizes P{x, z,y|Θ}, since

we have

P{y|x, z,Θ} =
P{x, z,y|Θ}
P{x, z|Θ}

. (19)

The optimal state sequence y∗ can be found using dynamic programming, by a simple

modification of the Viterbi algorithm [15]. The computational complexity of the resulting

alignment algorithm is only O(LxLz), where Lx and Lz are the lengths of x and z,

respectively.

An important advantage of the pair-HMM based approach over traditional alignment

algorithms is that we can use the pair-HMM to compute the alignment probability of

a sequence pair. When the given sequences do not display strong similarities, it is

difficult to find the correct alignment that is biologically meaningful. In such cases, it

would be more useful to compute the probability that the sequences are related, instead

of focusing only on their best alignment. The joint observation probability P{x, z|Θ} of

sequences x and z can be computed by summing over all possible state sequences

P{x, z|Θ} =
∑
y

P{x, z,y|Θ}. (20)

Instead of enumerating all possible state sequences, we can modify the original forward

algorithm to compute P{x, z|Θ} in an efficient manner [15]. It is also possible to compute

the alignment probability for individual symbol pairs. For example, the probability that

xi will be aligned to zj is P (yk = A|x, z,Θ), where yk denotes the underlying state for

the aligned pair (xi, zj). This probability can be computed as follows

P{yk = A|x, z,Θ} =
P{x1 · · ·xi, z1 · · · zj, yk = A|Θ}P{xi+1 · · ·xLx , zj+1 · · · zLz |yk = A,Θ}

P{x, z|Θ}
(21)

using a modified forward-backward algorithm [15].

B. Applications of Pair-HMMs

As pair-HMMs provide a full probabilistic framework for handling pairwise align-

ments, they have been extensively used for finding pairwise alignment of proteins

and DNA sequences [15]. For example, the pair-HMM was used to approximate an



explicit model for symbol insertions and deletions (indels) in [32]. The constructed

pair-HMM was then used to find the optimal sequence alignment, compute the overall

alignment probability, and estimate the reliability of the individual alignment regions.

It was demonstrated that using geometrically distributed indel lengths based on pair-

HMMs has many potential advantages [32]. More recently, another method called

MCALIGN2 [61] also adopted pair-HMMs with a slightly different structure, for global

pairwise alignment of noncoding DNA segements. Using pair-HMMs to describe

specific indel length distributions has been shown to be very useful for finding accurate

alignments of non-coding DNA sequences.

Many multiple sequence alignment (MSA) algorithms also make use of pair-

HMMs [12], [37], [38]. The most widely adopted strategy for constructing a multiple

alignment is the progressive alignment approach, where sequences are assembled into

one large multiple alignment through consecutive pairwise alignment steps according

to a guide tree [19], [58]. The algorithms proposed in [12], [37], [38] combine pair-HMMs

with the progressive alignment approach to construct multiple sequence alignments. For

example, the MSA algorithm in [37] uses a pair-HMM to find pairwise alignments and to

estimate their alignment reliability. In addition to predicting the best multiple alignment,

this method computes the minimum posterior probability for each column, which has

been shown to correlate well with the correctness of the prediction. These posterior

probabilities can be used to filter out the columns that are unreliably aligned. Another

state-of-the-art MSA algorithm called ProbCons [12] also uses a pair-HMM to compute

the posterior alignment probabilities. Instead of directly using the optimal alignment

predicted by the Viterbi algorithm, ProbCons tries to find the pairwise alignment

that maximizes the expected number of correctly aligned pairs based on the posterior

probabilities. Furthermore, the algorithm incorporates multiple sequence conservation

information when finding the pairwise alignments. This is achieved by using the

match quality scores that are obtained from probabilistic consistency transformation of

the posterior probabilities, when finding the alignments. It was demonstrated that

this probabilistic consistency based approach can achieve significant improvement over



traditional progressive alignment algorithms [12].

Pair-HMMs have also been used for gene prediction [2], [3], [40], [42], [44]. For

example, a method called Pairagon+N-SCAN EST provides a convenient pipeline for

gene annotation by combining a pair-HMM with a de novo gene prediction algorithm [3].

In this method, a pair-HMM is first used to find accurate alignments of cDNA sequences

to a given genome, and these alignments are combined with a gene prediction algorithm

for accurate genome annotation. A number of gene-finders adopt a comparative

approach for gene prediction [2], [40], [42], [44]. The generalized pair hidden Markov

model (GPHMM) [44] provides a convenient probabilistic framework for comparative

gene prediction by combining the pair-HMM (widely used for sequence alignment and

comparison) and the generalized HMM (used by many gene finders). Comparative gene-

finders such as SLAM [2] and TWAIN [40] are implemented based on the GPHMM

framework. A similar model has been also proposed in [42] to compare two DNA

sequences and jointly analyze their gene structures.

Although the pair-HMM is originally defined on the pairwise alignment of linear

symbol sequences, we can use it for aligning more complex structures, such as trees.

For example, the PHMMTSs (pair hidden Markov models on tree structures) extend

the pair-HMMs so that we can use them for aligning trees [50]. As most RNA sec-

ondary structures can be represented by trees, PHMMTSs provide a useful probabilistic

framework for aligning RNA sequences. In [50], PHMMTSs have been used to find the

structural alignment of RNAs, where an RNA with an unknown structure is aligned to

an RNA with a known secondary structure. This structural alignment is distinct from a

sequence-based alignment, in the sense that we consider both the structural similarity

and the sequence similarity when finding the optimal alignment between the RNAs.

Pair stochastic tree adjoining grammars (PSTAGs) extend the PHMMTSs further, so that

we can use them to align TAG (tree adjoining grammar) trees [41]. This extension allows

us to align RNAs with more complicated secondary structures, including pseudoknots.



V. CONTEXT-SENSITIVE HMMS AND PROFILE-CSHMMS

Despite their usefulness in various sequence analysis problems, especially, those

dealing with proteins and DNA sequences, traditional HMMs have inherent limitations

that make them not suitable for handling RNA sequences. Many non-coding RNAs

(ncRNAs) conserve base-paired secondary structures that induce pairwise correlations

between non-adjacent bases [70]. However, traditional HMMs assume that the emission

probability of each symbol depends solely on the underlying state, and since each state

depends only on its previous state, they cannot effectively describe correlations between

distant symbols. For this reason, more complex models such as the stochastic context-free

grammars (SCFGs) have been employed in RNA sequence analysis [16], [49]. Although

HMMs cannot be directly used for modeling RNAs, we can extend the original model

to handle pairwise base correlations. The context-sensitive HMM (csHMM) is a variant

of HMM that can be used for this purpose [67], [68].

A. Context-Sensitive Hidden Markov Models

The main difference between a context-sensitive HMM and a traditional HMM is

that a csHMM can use part of the past emissions (called the ‘context’) to adjust

the probabilities at certain future states. The use of such contextual information is

very useful in describing long-range correlations between symbols, and this context-

dependency increases the descriptive capability of the HMM considerably [68]. Unlike

traditional HMMs, csHMMs use three different types of hidden states: single-emission

states Sn, pairwise-emission states Pn, and context-sensitive states Cn. The single-emission

states are similar to the regular states in traditional HMMs. They have fixed emission

probabilities and do not make use of any contextual information. In addition to the

single-emission states, two new types of states, the pairwise-emission states and the

context-sensitive states, are introduced in csHMMs. These states cooperate to describe

pairwise symbol correlations. Like single-emission states, pairwise-emission states also

have fixed emission probabilities. However, the symbols emitted at a pairwise-emission

state Pn are stored in the memory1 that is associated with the state Pn. These symbols
1Although different types of memories (stacks, queues, etc.) can be used with csHMMs, it is convenient to use

stacks for modeling RNAs.



are used later on as the ‘contextual information’ for adjusting the probabilities at the

corresponding context-sensitive state Cn. When we enter the context-sensitive state Cn,

we first access the associated memory to retrieve the symbol xi that was previously

emitted at the corresponding pairwise-emission state yi = Pn. The emission probability

at yj = Cn (j > i) is adjusted based on the retrieved symbol xi (the ‘context’). We can

denote this context-sensitive emission probability as

e(xj|xi, yi, yj) = P{xj is emitted at yj = Cn, given that xi was emitted at yi = Pn}.

(22)

Note that by combining the emission probability e(xi|yi) at a pairwise-emission state

yi = Pn and the emission probability e(xj|xi, yi, yj) at the corresponding context-sensitive

state yj = Cn, we obtain the joint emission probability of xi and xj

P{xi, xj|yi, yj} = P{xi|yi}P{xj|xi, yi, yj}

= e(xi|yj)e(xj|xi, yi, yj), (23)

where we used the fact that xi is independent of yj . This clearly shows that we can

describe long-range pairwise symbol correlations by using a pair of Pn and Cn, and

then specifying their emission probabilities. Since a given pairwise-emission state Pn

and its corresponding context-sensitive state Cn work together to describe the symbol

correlations, these states always exist in pairs, and a separate memory is allocated to

each state pair (Pn, Cn). As we need the contextual information to adjust the emission

probabilities at a context-sensitive state, the transition probabilities in the model are

adjusted such that we never enter a context-sensitive state if the associated memory is

empty [68].

Using context-sensitive HMMs, we can easily describe any kind pairwise symbol

correlations by arranging the pairwise emission states Pn and the corresponding context-

sensitive states Cn accordingly. As a simple example, let us consider a csHMM that

generates only symmetric sequences, or palindromes. Such an example is shown in Fig. 4.

The model has three states, a pair of pairwise-emission state P1 and context-sensitive

state C1, and one single-emission state S1. In this example, the state pair (P1, C1) uses

a stack, and the two states work together to model the symbol correlations that are



P1 C1 

Stack 1 

X1 

X2 

X3 

Start End 

push pop 

S1 

Fig. 4. A context-sensitive HMM that generates only symmetric sequences, or palindromes.

induced by the symmetry of the sequence. Initially, the csHMM enters the pairwise-

emission state P1 and emits one or more symbols. The symbols emitted at P1 are stored

in the stack. When we enter C1, we first retrieve a symbol from the top of the stack.

Based on this symbol, the emission probabilities of C1 are adjusted such that it emits an

identical symbol with probability 1. Transition probabilities of C1 are adjusted such that

it makes a transition to itself until the stack becomes empty. Once the stack becomes

empty, the csHMM terminates. In this way, the csHMM shown in Fig. 4 generates only

palindromes that take one of the following forms

xe = x1x2 . . . xNxN . . . x2x1 (even length)

xo = x1x2 . . . xNxN+1xN . . . x2x1 (odd length).

The underlying state sequences for xe and xo will be

ye = P1 . . . P1︸ ︷︷ ︸
N states

C1 . . . C1︸ ︷︷ ︸
N states

and yo = P1 . . . P1︸ ︷︷ ︸
N states

S1 C1 . . . C1︸ ︷︷ ︸
N states

,

respectively. Note that the single-emission state S1 is only used to generate the symbol

located in the center of a palindrome with odd length, since this symbol is not correlated

to any other symbols.

This example clearly shows how we can represent pairwise correlations using a

csHMM. When modeling RNAs with conserved base-pairs, we can arrange Pn and

Cn based on the positions of the base-pairs, and adjust the emission probabilities at

Cn such that they emit the bases that are complementary to the bases emitted at the



corresponding Pn. By adjusting the context-sensitive emission probabilities e(xj|xi, yi =

Pn, yj = Cn), we can model any kind of base-pairs including non-canonical pairs.

Considering that the widely used stochastic context-free grammars can model only

nested base-pairs, hence no pseudoknots, the increased modeling capability and the

ease of representing any kind of base-paired structures are important advantages of

context-sensitive HMMs [70], [72].

B. Profile Context-Sensitive HMMs

Suppose we have a multiple alignment of relevant RNA sequences. How can we build

a probabilistic model to represent the RNA profile, or the important features in the

given RNA alignment? Due to the conservation of secondary structure, multiple RNA

alignments often display column-wise correlations. When modeling an RNA profile, it is

important to reflect these correlations in the model, along with the conserved sequence

information. The profile context-sensitive HMM (profile-csHMM) provides a convenient

probabilistic framework that can be used for this purpose [69], [72]. Profile-csHMMs

are a subclass of context-sensitive HMMs, whose structure is similar to that of profile-

HMMs. As it is relatively simple to construct a profile-HMM from a protein or DNA

sequence alignment, it is rather straightforward to build a profile-csHMM based on a

multiple RNA alignment with structural annotation.

Like conventional profile-HMMs, profile-csHMMs also repetitively use match states

Mk, insert states Ik, and delete states Dk to model symbol matches, symbol insertions,

and symbol deletions, respectively. The main difference between a profile-HMM and

a profile-csHMM is that the profile-csHMM can have three different types of match

states. As we have seen in Sec. V-A, context-sensitive HMMs use three different types

of states, where the single-emission states Sn are used to represent the symbols that are

not directly correlated to other symbols, while the pairwise-emission states Pn and the

context-sensitive states Cn are used together to describe pairwise symbol correlations.

In a profile-csHMM, each Mk can choose from these three types of states. Therefore, we

can have single-emission match states, pairwise-emission match states, and context-sensitive

match states. Single-emission match states are used to represent the columns that are
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Fig. 5. Constructing a profile-csHMM from a multiple RNA sequence alignment. (a) Example of an RNA sequence
alignment. The consensus RNA structure has two base-pairs. (b) An ungapped csHMM constructed from the given
alignment. (c) The final profile-csHMM that can handle symbol matches, insertions, and deletions.

not involved in base-pairing. The pairwise correlations between columns, induced by

conserved base-pairs, can be represented by using pairwise-emission match states and

the corresponding context-sensitive match states.

As an example, let us assume that we want to construct a profile-csHMM for the

alignment shown in Fig. 5(a). Since the alignment has five columns, we need five match

states to represent the sequence profile. There exist two base-pairs in the consensus RNA

structure, where the bases in the first column form base-pairs with those in the fourth

column, and the bases in the second column form base-pairs with those in the fifth

column. In order to describe the correlation between the first and the fourth columns, we

use a pairwise-emission state for the first match state M1 and the corresponding context-

sensitive state for the fourth match state M4. Similarly, we use a pairwise-emission state



for M2 and the corresponding context-sensitive state for M5. We use a single-emission

state for the third match state M3, since the third column is not involved in base-pairing.

By interconnecting the five match states M1,M2, . . . ,M5, we obtain an ungapped csHMM

for the given alignment, as shown in Fig. 5(b). Finally, we add insert states Ik and delete

states Dk to the ungapped model to obtain the final profile-csHMM. Since the inserted

bases are not correlated to other bases, we use a single-emission state for each Ik. As in

profile-HMMs, the delete states Dk are non-emitting states, and they are simply used

to interconnect the neighboring states.

As illustrated in this example, profile-csHMMs provide a convenient tool of modeling

RNA profiles. Profile-csHMMs can represent any kind of base-pairs by appropriately

arranging the pairwise-emission match states and the context-sensitive match states.

Due to the increased descriptive capability, algorithms for traditional HMMs (e.g.,

the Viterbi algorithm) cannot be directly used for profile-csHMMs. However, we can

generalize these algorithms so that they can be used with profile-csHMMs. For example,

the sequential component adjoining (SCA) algorithm [72], which is a generalization of the

Viterbi algorithm, provides a systematic way of finding the optimal state sequence in a

profile-csHMM.

C. Hidden Markov Models in RNA Sequence Analysis

Profile-csHMMs can be used for finding structural alignment of RNAs and performing

RNA similarity searches [72], [73]. In [72], the profile-csHMM has been used to find

the optimal alignment between a folded RNA (and RNA with a known secondary

structure) and an unfolded RNA (an RNA whose folding structure is not known).

To find the structural alignment between the two RNAs, we first construct a profile-

csHMM to represent the folded RNA. The parameters of the profile-csHMM is chosen

according to the scoring scheme proposed in [24]. Based on this model, we use the SCA

algorithm to find the optimal state sequence that maximizes the observation probability

of the unfolded RNA sequence. The optimal alignment between the two RNAs can

be unambiguously determined from the predicted state sequence. Furthermore, we can

infer the secondary structure of the unfolded RNA based on the alignment. Theoretically,



the profile-csHMM based RNA structural alignment method can handle any kind of

pseudoknots. The current implementation of the algorithm [72] can align any RNAs in

the Rivas&Eddy class [47] that includes most of the known RNAs [9]. We may use this

structural alignment approach for building RNA similarity search tools.

One practical problem that frequently arises in RNA sequence analysis is the high

computational complexity. As RNA alignment algorithms have to deal with compli-

cated base-pair correlations, they require significantly more computations compared

to sequence-based alignment algorithms. For example, the Cocke-Younger-Kasami (CYK)

algorithm [15], which is the SCFG analogue of the Viterbi algorithm for HMMs, has

a complexity of O(L3), where L is the length of the RNA to be aligned. Considering

that the computational complexity of the Viterbi algorithm increases only linearly with

the sequence length, this is a significant increase. The complexity of a simultaneous

RNA folding (structure prediction) and alignment algorithm [51] is even higher, and

they need O(L3N) computations for aligning N RNAs of length L. These algorithms do

not consider pseudoknots, and if we allow pseudoknots, the complexity will increase

further. The high computational cost often limits the utility of many RNA sequence

analysis algorithms, especially when the RNA of interest is long.

To overcome this problem, various heuristics have been developed to expedite RNA

alignment and RNA search algorithms. For example, profile-HMM based prescreening

filters [62], [63] have been proposed to improve the speed of RNA searches based on

covariance models (CMs). Covariance models can be viewed as profile-SCFGs that have

a special structure useful for modeling RNA families [15], [16]. In this prescreening

approach [62], [63], we first construct a profile-HMM based on the CM that is to be

used in the homology search. Note that the resulting profile-HMM conveys only the

consensus sequence information of the RNA family represented by the given CM. This

profile-HMM is then used to prescreen the genome database to filter out the sequences

that are not likely to be annotated as homologues by this CM. The complex CM is run

only on the remaining sequences, thereby reducing the average computational cost. It

has been demonstrated that using profile-HMM prescreening filters can make the search



hundreds of times faster at no (or only a slight) loss of accuracy. A similar approach

can be used to speed up profile-csHMM based RNA searches [71].

There also exist a number of methods to improve the speed of simultaneous

RNA folding and alignment algorithms [14], [25]. For example, Consan implements a

constrained version of the pairwise RNA structure prediction and alignment algorithm

based on pair stochastic context-free grammars (pair-SCFGs) [14]. It assumes the knowledge

of a few confidently aligned base position, called ‘pins’, which are fixed during the

alignment process to reduce the overall complexity. These pins are chosen based on

the posterior alignment probabilities that are computed using a pair-HMM. A recent

version of another pairwise folding and alignment algorithm called Dynalign [25] also

employs alignment constraints to improve its efficiency. Dynalign also uses a pair-HMM

to compute the posterior alignment and insertion probabilities, which are added to

obtain the so-called co-incidence probabilities. We estimate the set of alignable base

positions by thresholding the co-incidence probabilities, and this set is subsequently

used to constrain the pairwise RNA alignment. It has been shown that employing

these alignment constraints can significantly reduce the computational and memory

requirements without degrading the structure prediction accuracy [14], [25].

VI. CONCLUDING REMARKS

Hidden Markov models have become one of the most widely used tools in biological

sequence analysis. In this paper, we reviewed several different types of HMMs and

their applications in molecular biology. It has to be noted that this review is by no

means exhaustive, and that there still exist many other types of HMMs and an even

larger number of sequence analysis problems that have benefited from HMMs. Hidden

Markov models provide a sound mathematical framework for modeling and analyzing

biological sequences, and we expect that their importance in molecular biology as well

as the range of their applications will grow only further.
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[45] T. Plötz and G. A. Fink, “Robust remote homology detection by feature based Profile Hidden Markov Models,”
Stat. Appl. Genet. Mol. Biol., 4:21, 2005.

[46] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings
of the IEEE, vol. 77, pp. 257–286, 1989.

[47] E. Rivas and S. R. Eddy, “The language of RNA: a formal grammar that includes pseudoknots”, Bioinformatics,
vol. 16, pp. 334-340, 2000.

[48] C. P. Robert, G. Celeux, and J. Diebolt, “Bayesian estimation of hidden Markov chains: A stochastic implemen-
tation,” Statist. Probab. Lett., vol. 16, pp. 77–83, 1993.

[49] Y. Sakakibara, M. Brown, M. Hughey, I. S. Mian, K. Sjölander, R. C. Underwood, and D. Haussler, “Stochastic
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