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Abstract

Generic clinical study data management systems can record data on an arbitrary number of parameters in an

arbitrary number of clinical studies without requiring modification of the database schema. They achieve this by using

an Entity-Attribute-Value (EAV) model for clinical data. While very flexible for creating transaction-oriented systems

for data entry and browsing of individual forms, EAV-modeled data is unsuitable for direct analytical processing,

which is the focus of data marts. For this purpose, such data must be extracted and restructured appropriately. This

paper describes how such a process, which is non-trivial and highly error prone if performed using non-systematic

approaches, can be automated by judicious use of the study metadata*/the descriptions of measured parameters and

their higher-level grouping. The metadata, in addition to driving the process, is exported along with the data, in order to

facilitate its human interpretation.
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1. Introduction

Clinical Study Data Management Systems

(CSDMSs) are a class of software that sup-

port centralized management of data gener-

ated during the conduct of clinical studies.

Commercial CSDMSs include Oracle Clinical,

ClinTrial and MetaTrial. Such systems, which

are typically deployed at an institutional or

organizational level, must accommodate di-

verse types of data from different clinical

domains that is generated by different groups

of clinical investigators. Large-scale CSDMSs

typically employ a high-end database engine

that is usually accessed over an intranet or the

Internet using web-based technologies. Their

architecture is generic in that, over time, their

data content can expand to hundreds of
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clinical studies, encompassing several thou-
sand clinical parameters, without requiring
continual redesign of the database schema.
They achieve this capability by using a data
model called Entity-Attribute-Value (EAV),
which will be discussed shortly. In addition,
they usually enforce data privacy by ensuring
that individual users are authorized to view
the data only for those studies to which they
are granted permission: ideally, such users
should not be aware of the existence of studies
that do not concern them.

One of the challenges facing the adminis-
trators and users of generic CSDMSs is that
the EAV model makes the task of extracting
data into an intuitively viewable and/or ana-
lyzable form non-trivial. The overwhelming
majority of requests for such data are study-
specific: ideally, all of the data for a single
study should be extractable into a ‘data
mart’*/a database that can reside on indivi-
dual users’ desktop machines, so that they can
apply to it the tools with which they are most
comfortable and familiar. Further, it is not
enough to extract only the data. To be
interpretable, the data must be accompanied
by metadata*/descriptions of the individual
data elements and their relationship to each
other.

This paper describes how Trial/DB, an
EAV-modeled CSDMS that is used at Yale
and other collaborating institutions, including
the National Cancer Institute (NCI) sup-
ported Cancer Genetic Network (CGN) [1],
uses clinical study metadata to automate the
creation of study-specific data marts. The
lessons learned should be readily applicable
to other CSDMSs.

2. Background

Much of the published informatics research
deals with tools and methods for ad hoc

querying clinical and hospital administrative
databases by clinicians [2�/5] or comparative
evaluations of different query approaches [6].
Safran and Chute identified four purposes for
querying clinical databases: results reporting,
case finding, cohort description and to ana-
lyze data patterns in terms of trends or
relationships [7]. The work of Deshpande et
al. [8], which describes metadata-driven ad
hoc querying of Trial/DB partially meets these
purposes.

An alternative to building custom query
tools to query clinical data repositories di-
rectly is to extract all or part of the data from
these repositories into a ‘data warehouse’ or
‘data mart’ respectively, and then use third-
party tools to query such data. Detailed
descriptions of true clinical data warehouses,
which store multiple kinds of clinical data
within the same database, possibly combined
with non-clinical data, have not been pub-
lished so far. The Intermountain Health Care
Data Warehouse Project deploys a number of
separate data marts, each containing a parti-
cular category of data from their EAV-mod-
eled clinical database [9].

Other developers of CSDMSs have de-
scribed data retrieval and analysis systems
that use specific statistical software programs
such as STATA or SAS [10�/13]. These systems
focus on providing a means for researchers to
perform their analysis with the help of statis-
tical advice or predefined SAS procedures.

The Clinical Data Interchange Standards
Consortium (CDISC) is a group that focuses
on XML-based data-interchange standards
for CSDMS interoperability. The CDISC
Operational Data Model (ODM) specifies an
interchange model for both data and meta-
data [14]. The ODM is not fully mature, and
does not presently address many important
issues: these omissions will be discussed at
various points in the text. In any case,
generating one or more streams of XML is
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not enough: as we shall see, considerable work
needs to be done to make such data usable by
its intended audience.

3. The EAV data model: pros and cons

In clinical data, there are hundreds of
thousands of potentially relevant parameters
(attributes) on which data can be recorded for
patients across all clinical domains. If each
attribute were represented conventionally, i.e.
as its own column in a table, one would need
to create numerous tables. For an individual
patient participating in a given study, only a
few hundred or less attributes would be
applicable, and the vast majority of columns
would be empty. To deal with this situation, a
data modeling approach called EAV is used
[15�/19]. An EAV table can be thought of
(conceptually) as a table with three columns:
Entity (a combination of patient ID, Study
ID, one or more timestamps when a clinical
event occurred), Attribute (the ID of the
clinical parameter being recorded at that
event) and the Value of the parameter. In
CSDMSs, an entity represents a single clinical
event for a patient in a study. Fig. 1 shows
sample data in both conventional and EAV
forms. The conventional relational table at the
top left has two rows of data for entity #001
and one row for entity #002, which record the
parameters WBC (white blood cell count),
Glucose, HCT (hematocrit), Weight and Sys-
tolic blood pressure as individual columns.
When this data is converted to the EAV
structure, top right, there are nine rows of
data for entity #001 and five for entity # 002.
In reality, rather than recording text in the
‘Attribute’ column, one stores an Attribute
ID: this references an Attribute Definitions
table that serves as a controlled vocabulary.
Similarly, the Entity ID references an Entity

Information table that records associated de-
tails such as the patient ID and timestamps.

Theoretically, one could have a single EAV
table for all types of data, which would be
stored as strings, irrespective of their actual
data type*/string, integer, decimal numbers,
dates, etc. Trial/DB, however, uses multiple
EAV tables, one for each data type. Segrega-
tion by data type allows more compact
storage as well as indexing by value. It also
allows one to define attributes based on
binary large object (BLOB) data, such as
images and signal data such as EKGs, which
are recorded and archived during clinical
studies. (The CDISC ODM does not currently
address storage and exchange of BLOB data.)

EAV-modeling is a form of ‘row modeling’,
where each row in a table stores one fact. In
conventional tables, with one column per
attribute, by contrast, each row of data
contains many facts, one per column. The
advantage of the EAV model is that if a new
parameter/attribute is added*/e.g. a newly
devised lab test*/a database programmer
does not need to modify the database schema
by adding a new column to a table. Rather, a
new entry is made into the Attribute Defini-
tions table. The ID of this attribute is then
used in the existing EAV table. The EAV
schema provides robust support for interac-
tive browsing or editing by users inspecting
small amounts of data selected by patient and
case report form (CRF). That is, it supports
transaction-oriented operations well.

The EAV model, however, has drawbacks.
Briefly, its suitability for repository purposes
is achieved through a somewhat counter-
intuitive physical structure that makes it
unsuitable for analytical purposes. Analytical
programs, e.g. statistical packages, expect to
receive their data as one column per attribute.
In database terms, the logical schema of an
EAV system*/the way the data is conceptua-
lized by its users*/is markedly different from
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its physical schema*/the way it is actually

stored. As such, non-database experts cannot

easily query EAV-modeled data. In particular,

performing attribute-centric query, where one

wishes to identify entities through complex

Boolean criteria based on values of their

attributes, requires queries based on set op-

erations. Such queries, apart from being less

easy to construct and poorly supported in

third-party query tools because of their infre-

quent use in conventional scenarios, are also

less efficient compared to queries on conven-

tional tables [20].
Most analyses of CSDMS data are there-

fore best facilitated by bulk transformation of

a suitable subset of that data into conven-

tional format. The question is how to system-

atically perform such a transformation. We

describe our approach below.

4. Using metadata with EAV

Users, like analytical programs, also take a

conventional view of data: a usable EAV
system must therefore create the user-interface

illusion of conventional organization. This is

achieved through metadata. In the account
below, we will provide an overview of

CSDMS metadata. We use the CDISC
ODM terminology, though we will occasion-

ally state where Trial/DB’s metadata goes

beyond this specification.

Fig. 1. This figure is a simplification of possible sample EAV data. The top left table shows a sample conventional table and the table

on the top right is the same data represented as EAV. The EAV schema includes entity information such as patient, CRF, visit

information, and date/times in entity tables and is linked to EAV_Data tables with many attribute value pairs. The Attribute

information is stored in a separate table.
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A study protocol consists of one or more
Study Events: critical time points of the study
during which CRFs (or simply, Forms) are
administered to subjects. Trial/DB goes be-
yond the CDISC ODM in mandating that
Study Events be given a serial number, which
is optional in the ODM. In the vast majority
of studies, Trial/DB Events must also be
associated with a numerical value indicating
their chronological offset from a ‘time zero’.

A Form records the parameters that are
measured in a subject. These parameters, or
Items, may be grouped into logical categories
called ItemGroups. For example, a ‘Clinical
Examination’ form may be grouped into
‘General Examination’ and ‘Physical Exam-
ination’ parameters. Trial/DB’s criterion for
grouping Items into ItemGroups is fairly
rigorous: a group of Items must have a
common time-stamp that records when the
facts represented in the ItemGroup actually
occurred or were measured. Some Item-
Groups represent clinical events with duration
(e.g. adverse reaction to medications) and will
have two timestamps, representing the start
and end times. (The CDISC ODM does not
currently address the temporal nature of
clinical events.)

Sometimes, multiple instances of several
items are recorded in a Form. For example,
there may be multiple adverse events for a
given patient/subject. For each event, one
records the nature of the event, its severity,
whether treatment was required, how long it
lasted, and so on. A group of Items where
multiple Item instances can occur is called a
‘repeating’ ItemGroup. In most cases, the
number of instances is not known in advance.
For example, some patients tolerate a drug
well and have few or no adverse events, while
others might experience numerous adverse
effects.

The values of Items may be text, numbers,
dates, and so on, but for certain Items, the

values may be constrained by belonging to a
CodeList. The latter is a set of discrete coded
values (CodeListItems). CDISC only specifies
that each CodeListItem shall have a value. In
practice, however, it is useful to differentiate
between the value that is recorded internally ,
which is typically a number, and a meaningful
descriptive phrase that is presented to the user,
e.g. in a pull-down list. For example, the
response to the data item ‘Result of Examina-
tion’ might be the phrases ‘Normal’, ‘Abnor-
mal’ or ‘Not Done’, which correspond to the
internal values 0, 1 and 99, respectively.

Fig. 2 shows the correspondence between
parts of a sample CRF and the corresponding
metadata elements. Trial/DB goes beyond the
CDISC requirements in mandating that, for a
given study protocol, a given parameter/Item
should be recorded in only a single place, i.e.
in a single Form and within a single Item-
Group. When one is using a generic CSDMS
to set up a study protocol, one is essentially
simulating a relational DBMS design, and
Trial/DB’s restriction follows from the prin-
ciples of normalized data design*/that one
fact shall, as far as possible, be recorded only
in one place.

Fig. 3 shows part of the metadata schema of
Trial/DB. (The terms Clusters, Ques-
tion_Groups, Questions, Discrete_Va-
lue_Groups, Study_Phases are Trial/DB’s
internal terminology for CDISC’s Forms,
ItemGroups, Items, CodeLists and StudyE-
vents, respectively.) It is important to note
that the same Form may be used in different
Study Events, and that the same CodeList
may be used in several Items, possibly across
different forms. Because of these many-to-
many relationships, when the metadata is
exported into a data mart, it is most logically
exported as a set of relational tables.

Trial/DB has additional metadata distinct
from the CDISC model. For example, Inclu-
sion and Exclusion criteria for a study are
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treated as distinct from ordinary Items, be-
cause the responses to such criteria, phrased
as questions, determines whether or not a
given patient is eligible to participate in the
study.

5. System objectives

The data export module of Trial/DB has
several options, aimed at a variety of users:

Database analysts need to have the com-
plete set of data generated in a study, includ-
ing patient demographics, as well as BLOB
data where applicable. For this purpose, it is
necessary to create a data mart with a
complete set of relational tables, with relation-
ships between tables already set. The mart can
then serve as the starting point for data
exploration through creation of queries,

some of whose definitions can be saved and

reused, as well as reports. During the conduct

of a study, the complete data may be exported

several times. In this circumstance, one

must preserve existing work (saved queries,

reports) performed by the analyst. Therefore,

creation of the output database schema must

be separated from export of the data corre-

sponding to those tables. This allows data in

existing data marts to be purged and re-

imported, while preserving the schema of the

mart.
Statistical analysts need to reduce the

number of steps required to prepare the data

for analysis. It helps them if the data can be

exported into the format used by particular

statistical packages, with program scripts

generated where appropriate*/e.g. for SAS,

PROC FORMAT scripts should be generated for

variables that are based on CodeLists.

Fig. 2. Sample mapping of paper CRF (Physical and General Examination) into Trial/DB metadata, with groups (ItemGroups) of

questions (Items) for physical examination and general examination.
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Study administrators need to perform var-
ious monitoring tasks. For example, they may
wish to determine adherence to the study
protocol in terms of missed visits or missing
data values, where the recording of particular
parameters for a given Study Event is omitted
partially or entirely. Another quality-control
task is ensuring that data that has been
gathered during individual Study Events is
entered into the database in a timely fashion:
in many cases, it is recorded on paper first and
transcribed into the database later, but the
time lag between the two should not be
unacceptably long. For such users, standard
reporting functionality must be bundled with
the extracts: in other words, rather than just

generate a set of data files, the system needs to
be able to generate a mini-application with
common functionality built in.

Advanced end-users need to be able to
browse the data easily. When individual tables
are inspected in spreadsheet mode or through
forms, the English-language brief descriptions
(captions) for individual parameters should be
used for column headings by default, rather
than the relatively cryptic column names that
are used internally. For parameters based on
CodeLists, the phrase for each Coded Item
should be displayed rather than the numeric
code: the latter should, by default, be hidden.
Easy browsing is particularly helpful for
quality-control tasks, such as identifying miss-

Fig. 3. Subset of metadata schema for the data mart. The STUDIES table stores metadata to describe the protocol, and

STUDY_PHASES stores study event information. The bridge tables are minimized. The CLUSTERS table stores the CRF (Forms)

information, QUESTION_GROUPS (ItemGroups), and QUESTIONS (Items). The DISCRETE_VALUES (CodedItems) is

minimized.
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ing data, which we shall discuss later. While
easy browsing coupled with quality-control-
monitoring reports assists data cleansing,
cleansing should be performed on the source
data rather than on the mart contents: other-
wise, they would be lost with the next import
of data.

Certain studies conducted by consortia are
site-restricted: that is, most users are only
permitted to look at data generated from their
own study site. When such users do a
‘complete’ extract of the data, site restrictions
must be enforced.

All groups of users need a data dictionary
that is electronically searchable and cross-
referenced. Thus, for example, given a para-
meter/Item that is identified by keyword
search, one should be able to locate the table
in which it lies. For this purpose, while the
dictionary comprises a set of relational tables,
it should be accompanied by user-interface
components and code that facilitate its ready
searching: once again, an application rather
than data alone is what is needed. The data
dictionary must not only contain information
about Forms, ItemGroups, Items and Code-
Lists, but also about Study Events and which
Forms are used in which Study Event.

Our experience has shown that the classes
of users described above overlap significantly.
For example, because the latest version of the
widely used statistical package SAS has em-
braced SQL and the concept of relational
databases wholeheartedly, most statisticians
have to learn RDBMS technology, and they
have found that microcomputer DBMSs such
as MS-Access provide a relatively painless
introduction. Further, data browsing almost
invariably precedes analysis.

We determined that all of the above re-
quirements could be met most effectively by
generating a complete microcomputer DBMS
application fully populated with related tables
and the appropriate user-interface elements

and code libraries. We chose MS-Access as
the delivery platform because of its robustness
as a standalone relational DBMS, ease of
learning and use by non-database experts, and
our extensive experience in generating appli-
cations that are based on it.

6. System description

We now describe how we use research study
metadata to transform the contents of a Trial/
DB study into conventional form.

7. Principles of data transformation

During conduct of a long-term study,
certain data parameters/Items are recorded
multiple times. Further, for reasons of cost,
inconvenience and risk to the patient, indivi-
dual Items are sampled at unequal frequency.
For example, a liver biopsy or an MRI would
be repeated much less frequently than a
physical examination or standard question-
naire. Therefore, it is not possible in general to
extract all of a study’s data into the equivalent
of a single spreadsheet, with one row per
Study Event per Patient: doing so would
result in ‘missing’ values for certain Items
that are an artifact of the sampling process.
Further, for repeating ItemGroups such as
Adverse Events, the number of items per
patient is highly variable and not known in
advance. In other words, the output of
transformation must be multiple tables. In
the simplest case, therefore, one would create
one relational table per Form. If however, a
Form contains one or more repeating Item-
Groups, the data for each such ItemGroup
would need to go into its own table.

One can programmatically inspect the list
of Forms across all Study Events and detect
that certain Forms always go together for a
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particular study. For example, along with a
blood draw for Clinical Chemistry, one may
also be administering a particular standard
questionnaire. Such Forms are said to co-
occur. Non-repeating Items on co-occurring
forms may be combined into a single table,
subject to database engine limits on the
maximum number of columns per table.
(Just because the number of output tables
can be reduced does not mean that it should
be. In general, this decision should be left to
the user: a single table that consists of a very
large number of columns of functionally
unrelated parameters is not necessarily easier
to browse than several smaller tables.) In any
case, algorithmic inspection of the study data
leads to a straightforward determination of
how many output tables must be created, as
well as the structure of each table in terms of
which Items it is comprised of. Since we know
the data type of each Item, it is possible to
generate SQL (a CREATE TABLE state-
ment) that defines each output table.

For extracts that serve as the basis for
formatted reports created with third-party
reporting tools, one may pick a subset of
Items present in either a single Form or a set
of co-occurring Forms. (Non-EAV data ele-
ments such as Patient Demographics and
Enrollment occur just once per patient: such
elements may be considered to co-occur with
any other elements, and can be combined with
them if desired.) These ‘predefined extracts’
are the analogs of views in a conventional
database. During the early development of
Trial/DB, predefined extracts were the initial
means of data extraction: they have been
briefly described previously [21]. The pre-
viously described algorithm is much slower
than the one used at present, which will be
described shortly. Currently, with the ability
to bulk-extract the contents of the entire
study, the use of predefined extracts has
diminished greatly. However, as discussed

later, they are still used to export data to
particular statistical packages, because the
description of a predefined extract includes
certain metadata elements that are not re-
corded elsewhere.

Finally, one can use a static or dynamic
approach to creating data extracts. In the
static approach, one goes through the meta-
data to create ‘compiled’ definitions for one or
more output tables. Predefined extracts use a
static approach. Alternatively, the program
can build such definitions on the fly each time.
Experience showed that the use of predefined
extracts for data was cumbersome for re-
searchers who simply wanted all their data
for a study exported. Another problem with
predefined extracts was that, if the study
design was altered during the course of the
study by inclusion of new Forms or addition
of new Items to a Form, certain extracts
became out of date and had to be re-created.
Therefore, even though recreating output
table definitions anew takes a modest amount
of additional time, we now prefer the dynamic
approach to extract creation: most users wish
to have all their data in one set rather than as
multiple text files, and do not care to deal with
changes in the study metadata manually.

8. Mechanics of data extraction into output
tables

Prior to actually exporting the data, the
user can filter it through such options as
limiting data to a subgroup of patients that
have been predefined (such as all the control
subjects).

For a given output table, we know the list
of all Items/parameters in that table. Further,
the Entity columns for all data rows are
tagged with the Study ID. It is therefore
straightforward to gather all EAV rows where
the Entities correspond to a particular Study
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ID, and where the Attribute corresponds to a
particular Item ID. We do this for all Items in
the table, loading the values into a two-
dimensional array in memory, where the
columns correspond to the Items and the
rows correspond to Entities. The process of
assigning an arbitrary value to its correspond-
ing row and column is facilitated using a data
structure called a dictionary, also known as a
hash table [22]. Missing values will result in
empty array cells. The movement of data into
the array essentially constitutes a row-to-
column transformation, and the contents of
this array are then written out to disk as a tab-
delimited file, that is destined for import into
the corresponding relational table. This pro-
cess is repeated for every output table that is
to be created.

Additional tables are created from conven-
tionally structured data such as Patient De-
mographics/Enrollment data, by filtering on
Study ID. Here, the output tables generated
are simply miniature versions of the corre-
sponding tables in Trial/DB. Setting of Pri-
mary-key/foreign-key relationships between
the various output tables is straightforward.
Every output table corresponding to a Form
has at least two foreign keys: the Patient ID,
which references the Demographics/Enroll-
ment table, and the Study Event ID, which
references the Study Event Metadata table.
Tables generated from repeating ItemGroups
are automatically related many-to-one to the
table representing their enclosing Form.

Metadata is exported by starting with the
definition of the Study Events comprising the
study protocol/s, and then going on to the
definitions of the Forms, ItemGroups, Items,
CodeLists and Coded Items used in this study.
Numerous Trial/DB-specific metadata ele-
ments, such as definition of inclusion and
exclusion criteria for the study, are also
exported. The list of such metadata elements
has evolved with time as Trial/DB’s features

have evolved, and as our users have become
more sophisticated. To avoid hard-coding the
list of exported metadata elements within our
subroutines, Trial/DB maintains metadata
describing the metadata elements (‘meta-me-
tadata’) This includes documentation about
how particular elements are to be used by the
study designer, as well as a Boolean flag
indicating which metadata is ‘exportable’.
Our long-term objective here is that the
Trial/DB application should contain as much
of its own documentation as possible.

BLOBs such as arbitrary sized text, images
and signal data are extracted using function
calls to a custom software library (an ‘ActiveX
Control’) into a local folder, with one disk file
per BLOB. Each file is given an extension
based on the type of data that it contains: in
Trial/DB, the extension is stored as part of the
metadata. In output tables that contain BLOB
columns, we store the pathname in these
columns rather than the data itself. These
paths then serve as ‘hyperlinks’ that let the
BLOB be viewed. When the data mart is
created in Microsoft Access, the task of view-
ing such files is effortless and requires no
special code on our part: After the user clicks
on the hyperlink representing that file, Access
simply opens that file and launches the
appropriate default viewer that has been
registered for that file type on that particular
CPU. For example, JPEG files might be
viewed using Adobe PHOTOSHOP or the Mi-
crosoft PHOTO EDITOR.

In situations where a complete data mart
must be generated, the final step is to export
certain standard predefined, parameterized
queries, forms, reports and their associated
code into the mart so as to create a full-
fledged application. This provides added
functionality such as the ability to browse
the metadata.

The above code is CPU and memory-
intensive*/the machine performing the data
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extraction is typically equipped with at least 1

GB of RAM*/but economical of network

traffic and DBMS resources. It minimizes the

number of SQL statements that are issued to

the database server, with each statement

returning a relatively large amount of data

that is then arranged in memory. The pro-

gramming toolkit that we use, Microsoft

ActiveX Data Objects (ADO) has a highly

efficient function called getRows() for this

purpose, which implements a ‘fire-hose cur-

sor’, so-called because of the relatively high

rate of data transfer.
Even with the optimization described

above, extracting the complete data for a

large study from our production CPU can

impact response time for other concurrent

users of Trial/DB who may be in the middle of

performing interactive data entry. Because

data entry takes highest priority, we schedule

extraction tasks to run in batch-mode at off-

peak-usage hours (i.e. between 11 pm and 6

am). The Web interface for data extraction, in

fact, merely places the task in a queue: e-mail

sent to the requester the next morning con-

tains a hyperlink that lets the user download

the requested data from a password-protected

site.
The MS Access client can create a data

mart for a typical study in about 15�/16 min

by retrieving data from the Oracle database

over the network. The same study extraction

performed on a machine that contains the

Oracle database and the MS Access client,

takes 4�/5 min. The typical data mart contains

about 80�/90 data and metadata tables, and

ranges from 3 to 5 megabytes in size. These

measurements were performed on a typical

study that contains over 70 patients, 25 CRFs

and about 500 data items per patient. The

data mart for the largest study in Trial/DB is

about 22 megabytes in size and takes about

20�/25 min to run on the stand-alone setup

and over 35 min on the production system
over the network.

We are in the process of creating a data
warehouse for Trial/DB on a CPU that is
separate from the production CPU, which will
receive data dumps from the production
system on a nightly basis. Requests for data
extracts will be directed to the warehouse
server, and result in fast response times, with
the caveat that the data received is at most a
day old.

9. The system in operation

Fig. 4 shows the interface in use for a study
on an ongoing survey of breast cancer pa-
tients. (This interface illustrates the use of an
MS-Access client program: similar function-
ality is available through a Web interface.) As
shown, 13 extracts have been selected for
export into an existing MS Access data mart
(BrTest.mdb file).

Fig. 5 illustrates the Data Dictionary
Browser, which is part of the generated data
mart’s functionality. This browser lets the user
view table definitions and fields or questions
within tables. In the figure, a list of columns is
displayed for a Breast Cancer Pathology
Reports table. The definition of a particular
selected column based on a CodeList
(Breast_CA_Margins) is also shown.

9.1. Exporting data to statistical packages

Newer versions of most statistics packages
allow direct access to RDBMSs through
ODBC (Open Database Connectivity) drivers.
However, ODBC does not let the statistics
package infer important facts about columns
in a relational table*/for example, that the
values of a particular column are based on a
CodeList. In general, exporting data to a
statistical package requires one to provide,
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for each column, its name, data type, brief
definition/caption, and set of values (if based
on a CodeList). Many statistics packages,

however, have limitations that interfere with
seamless data interchange. For example, SAS

is currently the only package that fully under-
stands the concept of a database as consisting
of multiple tables, and which allows the

statistical programmer to fully utilize the
SQL language to access more than one table.
SPSS, while much easier to use for the non-
expert, has a more restricted view of data-
bases: each table requires its own ‘data

dictionary’, and variable names cannot exceed
eight characters in length*/an anomaly in an
era where most column names in relational
databases are quite long in order to be self-

documenting. (Oracle names, for example, can
be up to 30 characters long, while MS SQL

Server has a limit of 128.) Such idiosyncrasies
must be taken into account based on the

package one is exporting to.
When exporting to SAS, we create one

‘library’ (data dictionary) with all the required
definitions. This dictionary, once created, can
be re-used later if a new batch of data is to be

exported, as long as the metadata has not
changed. Export to SPSS requires the creation
of pre-defined extracts with short names for

each parameter/Items to be exported. The
reason for creating predefined extracts is
based on our conscious decision that 8-

character short names for Items, which are
idiosyncratic to the current version of SPSS,

should not be part of an Item’s definition, but
should be stored with the extract definition, if
needed. If subsequent versions of SPSS accom-

modate variable names of reasonable length,

Fig. 4. Interface for creating data mart(s). The user selects specific sets of data (extracts) to export data for, checks various filtering

options, selects the data mart to export the data into then clicks the button as appropriate to ‘Run Selected Extracts’ or ‘Export All

Data’ as simple text files and the SQL for table creation for SQL Server or Oracle tables.
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we will be able to dispense with predefined
extracts for this purpose entirely.

Fig. 6 shows a sample of the data definition
files created for SAS and SPSS. The top of the
figure illustrates the simple PROC FORMAT

text from SAS and comparable data label
definitions on the bottom from SPSS for
some of the fields from a table of Breast
Cancer Pathology Reports.

9.2. De-normalizing data

In certain study designs, there are repeating
ItemGroups where the number of repeats is
known in advance. For example, in a long-
term study of tamoxifen, an anti-estrogen
used in breast cancer patients, a patient’s
bone mineral density (BMD) and high-density

lipoprotein cholesterol (HDLC) may be mea-

sured at baseline, at 12 months and at 24

months. Such data is typically analyzed using

a General Linear Model with repeated mea-

sures. In some statistical packages such as

SPSS, this requires the creation of a de-normal-

ized data set with three sets of variables,

BMD0, BMD12, BMD24, and HDLC0,

HDLC12 and HDLC24, which can then be

contrasted with each other. (Creating columns

with such names is anathema to RDBMS

designers*/such a design violates E.F. Codd’s

first rule of database normalization, ‘no

repeating values’[23].) Our program allows

conversion of data in individual tables into

such a de-normalized form if required,

through a row-to-column transformation of

the data.

Fig. 5. Form for Metadata Viewing, Table Modification, Data Import and Export. This form is available in the data mart for use by

researchers in order to view tables and questions, search for questions, manipulate tables, refresh data (from external sources) and to

create statistical data definition files. The table Breast_CA_Path_report has been selected with the Breast_CA_Margins field selected,

showing its description, Margins of excision, and the set list of choice values 1, positive ; 2, negative; 3, not applicable, and 4, unknown.
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10. Current status and future direction

The Trial/DB tablespace in Oracle is over

300 megabytes in size. It contains data for

over 4000 patients and 90 studies (since 1997).

There are over 1.4 million EAV rows of data

with the EAV integer table containing over a

million rows followed by the EAV real and

string tables. Several researchers and biosta-

tisticians who are using Trial/DB are using the

software described above: its feature set has

evolved over time, and has been based on their

continual inputs. Many of these users origin-

ally used data extracts corresponding to

particular tables, but more of them are now

requesting complete study exports and are

beginning to use the data dictionary SPSS/SAS

creation tools.
We have already discussed our intentions

with respect to creating a read-only data

warehouse to facilitate the extraction process.

This warehouse is intended to contain pre-

joined data tables, where the type-specific

clinical data tables in Trial/DB will be physi-

cally combined with higher-level tables: it will

still remain in EAV form, since it is intended

to be cross-study. Such tables take up more

space because the values of certain columns

are recorded redundantly, but yield higher

query performance. We will need to conduct

benchmarking studies to determine the opti-

mum level of pre-joining.

Fig. 6. The text above shows two versions of the data dictionary definition files. The top section is the SAS PROC FORMAT version, the

bottom is how the same formatting is done in SPSS with VALUE LABELS.
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We have not yet received requests for
supporting data/metadata export into CDISC
XML format. It is, however, reasonably
straightforward to perform such export.

11. Discussion and conclusion

We will discuss some of the informatics
issues and lessons we have learned in addres-
sing the need of researchers to access data
from an EAV-structured data repository.

12. The importance of independent data marts

For a given study, the complexity of data
preparation increases with the complexity of
the study protocol/s: certain studies in Trial/
DB with numerous CRFs, for example, yield
more than 50 data tables. The task of
generating these tables clearly benefits from
automation, and a relational data mart that
inter-relates these tables is the natural store
for such data. Further, such a data mart can
serve as a starting point for a dataset to which
value can be added, for example, by integrat-
ing additional information from software that
assists study administration (e.g. tracking
functions), as well as and data collected
from legacy systems [24].

Such data marts can reside on the desktop
computers of individual data analysts, form-
ing ‘personal’ databases that facilitate data
exploration [25]. Their use on standalone
machines alleviates the load on the server
that supports data entry, as well as decreases
network traffic. The robustness of microcom-
puter DBMSs, which can manage significant
data volumes, coupled with their ease of
learning and use, allows users to use them to
perform some of the work traditionally per-
formed in statistical packages.

13. Data mart architecture

Data marts are widely used for on-line
analytical processing (OLAP). One approach
that has been widely used for OLAP is the
deployment of multidimensional database
(MDDB) technology [26]. Such database en-
gines essentially operate by treating a parti-
cular data set as a multi-dimensional
‘hypercube’ whose axes are the parameters
whose effect one seeks to measure. As an
example, a hypercube containing adverse
event data would have the following axes:
nature of medication, patient, investigator,
cumulative duration of therapy, dose of
medication, and so on. MDDBs achieve high
performance by pre-computing aggregates on
multiple axes, so that, if a researcher wants a
breakdown of number and severity of adverse
events by drug category, that information has
been pre-computed and may simply be looked
up. MDDBs can, through pre-computation
achieve an order of magnitude better perfor-
mance than relational databases.

As we have stated before, the data marts
that we generate are conventional relational
databases. This is not necessarily a drawback.
Bill Inmon et al., in their text, ‘Data Ware-
house Performance’, [27], describe two differ-
ent kinds of schema architectures, which are
intended for two different kinds of users who
they term ‘farmers’ and ‘explorers’. The ‘farm-
ers’ are concerned with producing standard
reports on well-understood data sets: these
reports must run as fast as possible, because
they are run several times a day. ‘Explorers’
are concerned with discerning patterns in data
and performing analyses whose exact nature is
not determined in advance. Inmon et al. state
that MDDBs represent an optimized structure
that is useful for the ‘farmers’: the needs of
‘explorers’, by contrast, are better met by
normalized relational structures. It is possible,
however, that once data exploration has
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identified particular characteristics of the data
that particular critical reports are needed on a
routine basis, some of the data may be
exported to an MDDB. For the modest
volumes of data that typically result from a
single clinical study, however, the difference in
performance between relational DBMSs and
MDDBs is not dramatic.

Availability of Software: Trial/DB is open-
source and is available on making a written
request to either Dr Brandt or Dr Nadkarni.
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