
Information Retrieval 1, 69–90 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Evaluation of Statistical Approaches
to Text Categorization∗
YIMING YANG yiming@cs.cmu.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3702, USA

Received October 28, 1997; Revised May 13, 1998; Accepted July 27, 1998

Abstract. This paper focuses on a comparative evaluation of a wide-range of text categorization methods, in-
cluding previously published results on the Reuters corpus and new results of additional experiments. A controlled
study using three classifiers, kNN, LLSF and WORD, was conducted to examine the impact of configuration vari-
ations in five versions of Reuters on the observed performance of classifiers. Analysis and empirical evidence
suggest that the evaluation results on some versions of Reuters were significantly affected by the inclusion of a
large portion of unlabelled documents, mading those results difficult to interpret and leading to considerable con-
fusions in the literature. Using the results evaluated on the other versions of Reuters which exclude the unlabelled
documents, the performance of twelve methods are compared directly or indirectly. For indirect compararions,
kNN, LLSF and WORD were used as baselines, since they were evaluated on all versions of Reuters that ex-
clude the unlabelled documents. As a global observation, kNN, LLSF and a neural network method had the best
performance; except for a Naive Bayes approach, the other learning algorithms also performed relatively well.

Keywords: text categorization, statistical learning algorithms, comparative study, evaluation

1. Introduction

Text categorization (TC) is the problem of assigning predefined categories to free text docu-
ments. A growing number of statistical learning methods have been applied to this problem
in recent years, including regression models (Fuhr et al. 1991, Yang and Chute 1994), near-
est neighbor classifiers (Creecy et al. 1992, Yang 1994), Bayesian probabilistic classifiers
(Tzeras and Hartman 1993, Lewis and Ringuette 1994, Moulinier 1997), decision trees
(Fuhr et al. 1991, Lewis and Ringuette 1994, Moulinier 1997), inductive rule learning al-
gorithms (Apte et al. 1994, Cohen and Singer 1996, Moulinier et al. 1996), neural networks
(Wiener et al. 1995, Ng et al. 1997) and on-line learning approaches (Cohen and Singer
1996, Lewis et al. 1996). With more and more methods available, cross-method evalua-
tion becomes increasingly important to identify the state-of-the-art in text categorization.
However, without a unified methodology in empirical evaluations, objective comparisons
of different methods are difficult.

Ideally, all researchers would like to use a common collection and comparable perfor-
mance measures to evaluate their systems, or would allow their systems to be evaluated under
carefully-controlled conditions in a fashion similar to that of the Text Retrieval Conference

∗This research was supported in part by NIH grant LM-05714 and by NSF grant IRI9314992.

70 YANG

(TREC). The reality, however, is far from the ideal. Cross-method comparisons have been
attempted in the literature, but often only for two or three methods. The small scale of these
comparisons could either lead to overly-general statements based on insufficient observa-
tions, or provide little insight into a global comparison between a wide range of approaches.
An alternative to these small-scale comparisons would be to integrate the available results
of categorization methods into a global evaluation, carefully analyzing the test conditions
and evaluation measures used and establishing a common basis for cross-collection and
cross-experiment integration. This solution would lead to a TREC-like controlled evalua-
tion for text categorization, as well as contribute useful insights to individual studies. This
paper is an effort in that direction.

The most serious problem in TC evaluations is the lack of standard data collections.
Even if a common collection is chosen, there are still many ways to introduce inconsistent
variations. The commonly used Reuters news story corpus, for example, has at least five
different versions, depending on how the training/test sets are divided, which subsets of
categories or documents were used or not used for evaluation, and so forth. The number
of different configurations of this corpus is still growing. It is often unclear whether or not
the reported results on the different versions of Reuters are comparable to each other. In
this paper we examine the impact of corpus configuration variations on the performance
of classifiers, using a carefully-controlled experiments of several categorization systems
on five different versions of Reuters. As will be shown in Section 5.2, variations between
certain versions of Reutersdo have a strong impact, while the variations between other
versions do not. The underlying reason for this will be analyzed.

Another important issue in cross-experiment evaluation is the comparability between
different performance measures used in individual experiments. Many measures have been
used, including recall and precision, accuracy or error,break-even pointor F-measure,
micro-averageandmacro-averagefor binary categorization,11-point average precision
for category ranking, and so forth (see Section 3 for definitions). Each of these measures is
designed to evaluate some aspect of the categorization performance of a system; however,
none of them convey identical information. Which of these measures are more suitable
for text categorization? How can published results of text categorization methods be best
compared when they were evaluated using different performance measures? These ques-
tions are addressed in this paper by applying a variety of performance measures to several
classifiers, including the measures for category ranking evaluation or the measures for bi-
nary category assignment. We will show that both types of measures are informative and
complementary to each other. We will also show that with carefully chosen performance
measures and a baseline classifier, one can reasonably (indirectly) compare the relevant per-
formance among classifiers across experiments based on their relevant performance with
respect to the baseline classifier.

This paper is divided into six sections in addition to the introduction. Section 2 describes
the classifiers and the Reuters corpus we will use in this paper. Section 3 introduces and
analyzes performance measures for category ranking evaluation and binary categorization
evaluation. Section 4 describes the novel experiments we conducted with WORD, kNN,
and LLSF. Section 5 reports the results of our classifiers and evaluate them together with
published results of other classifiers. Finally, we summarize our conclusions in Section 6.

AN EVALUATION OF STATISTICAL APPROACHES 71

2. Classifiers evaluated on reuters

2.1. Classifiers

We consider the text categorization systems whose results on the various versions of the
Reuters corpus have been published in the literature (Hayes and Weinstein 1990, Lewis
and Ringuette 1994, Apte et al. 1994, Wiener et al. 1995, Moulinier et al. 1996, Cohen and
Singer 1996, Yang and Pedersen 1997, Ng et al. 1997).1 In addition to these results, we
present new results of three systems. These systems are briefly described below, grouped
roughly according to their theoretical foundations or technical characteristics.

1. CONSTRUE is an expert system developed at the Carnegie Group, and the earliest sys-
tem evaluated on the Reuters corpus (Hayes and Weinstein 1990). Impressive results
(about 90% in both recall and precision, on average) were reported on a small sub-
set (3%) of this corpus. A major difference between the CONSTRUE approach and
the other methods considered in this paper is the use of manually developed domain-
specific or application-specific rules in the expert system. Adapting CONSTRUE to
other application domains would be costly and labor-intensive.

2. Decision tree (DTree) is a well-known machine learning approach to automatic induction
of classification trees based on training data (Quinlan 1986, Mitchell 1996). Applied
to text categorization, DTree algorithms are used to select informative words based
on an information gain criterion, and predict categories of each document according
to the occurrence of word combinations in the document. Evaluation result of DTree
algorithms on the Reuters text categorization collection were reported by Lewis and
Ringuette (using the IND package) (Lewis and Ringuette 1994) and Moulinier (using
C4.5) (Moulinier 1997), respectively.

3. Naive Bayes (NaiveBayes) probabilistic classifiers are also commonly-used in text cat-
egorization (Mitchell 1996). The basic idea is to use the joint probabilities of words
and categories to estimate the probabilities of categories given a document. The naive
part of such a model is the assumption of word independence. The simplicity of this
assumption makes the computation of the NaiveBayes classifier far more efficient than
the exponential complexity of non-naive Bayes approaches because it does not use word
combinations as predictors. Evaluation results of NaiveBayes on Reuters were reported
by Lewis and Ringuette (1994) and Moulinier (1997), respectively.

4. Inductive rule learning in Disjunctive Normal Form (DNF) was tested in the WASP-1,
RIPPER and CHARADE systems (Apte et al. 1994, Moulinier et al. 1996, Cohen and
Singer 1996). DNF rules are of equal power to DTrees in machine learning theory
(Mitchell 1996). Empirical results for the comparison between DNF and DTree ap-
proaches, however, are rarely available in text categorization, except in an indirect
comparison by Apte et al. (1994).

5. Neural network (NNet) approaches to text categorization were evaluated on Reuters by
Wiener et al. (1995) and Ng et al. (1997), respectively. For convenience, the former
system (developed at Xerox PARC) is referred to as NNet.PARC in this paper; the latter
system is named CLASSI. Both systems use a separate neural network per category,

72 YANG

learning a non-linear mapping from input words (or more complex features such as
singular vectors of a document space) to a category. The PARC group tried both a
perceptron approach and three-layered neural networks in addition. The results of the
three-layered neural networks, however, are available only on a subset of the Reuters
categories which are common in evaluations of other systems. The CLASSI system only
uses perceptrons.

6. Rocchio is a classic vector-space-model method for document routing or filtering in
information retrieval. Applying it to text categorization, the basic idea is to construct
a prototype vector per category using a training set of documents. Given a category,
the vectors of documents belonging to this category are given a positive weight, and
the vectors of remaining documents are given a negative weight. By summing up these
positively and negatively weighted vectors, the prototype vector of this category is
obtained. This method is easy to implement and efficient in computation, and has been
used as a baseline in several evaluations (Lewis et al. 1996, Cohen and Singer 1996).
A potential weakness of this method is the assumption of one centroid per category,
and consequently, Rocchio does not perform well when the documents belonging to a
category naturally form separate clusters.

7. LLSF stands for Linear Least Squares Fit, a mapping approach developed by Yang
(Yang and Chute 1992). A multivariate regression model is automatically learned from
a training set of documents and their categories. The training data are represented in the
form of input/output vector pairs where the input vector is a document in the conventional
vector space model (consisting of words with weights), and output vector consists of
categories (with binary weights) of the corresponding document. By solving a linear
least-squares fit on the training pairs of vectors, one can obtain a matrix of word-category
regression coefficients. The matrix defines a mapping from an arbitrary document to
a vector of weighted categories. By sorting these category weights, a ranked list of
categories is obtained for the input document.

8. Sleeping Experts (EXPERTS) are on-line learning algorithms recently applied to text
categorization (Cohen and Singer 1996). On-line learning aims to reduce the compu-
tation complexity of the training phase for large applications. EXPERTS updates the
weights ofn-gram phrases incrementally.

9. kNN stands fork-nearest neighbor classification. Given an arbitrary input document, the
system ranks its nearest neighbors among the training documents, and uses the categories
of the k top-ranking neighbors to predict the categories of the input document. The
similarity score of each neighbor document to the new document being classified is used
as the weight of each of its categories, and the sum of category weights over thek nearest
neighbors are used for category ranking.

10. WORD is a simple, non-learning algorithm which ranks categories for a document
based on word matching between the document and category names. The purpose of
testing such a simple method is to quantitatively measure how much an improvement
is obtained by using statistical learning compared to a non-learning approach. The
conventional vector space model is used for representing documents and category names
(each name is treated as a bag of words), and the SMART system (Salton 1989) is used
as the search engine.

AN EVALUATION OF STATISTICAL APPROACHES 73

These classifiers can be divided into two types: independent binary classifiers orm-ary
(m> 2) classifiers. Given a document, an independent binary classifier makes a YES/NO
decision for each category, independently from its decisions on other categories. Of the
classifiers listed above, CONSTRUE, DTree, NaiveBayes, DNF, NNet.PARC, CLASSI,
Rocchio, and EXPERTS are independent binary classifiers. Anm-ary classifier, on the
other hand, typically uses a shared classifier for all categories producing a ranked list of
candidate categories for each test document, with a confidence score for each candidate;
per-category binary decisions can be obtained (if desired) by thresholding on the ranks or
scores of candidate categories. Of the classifiers listed above, kNN, LLSF and WORD are
primarily m-ary classifiers.

There are several algorithmic solutions for convertingm-ary classification output to per-
category binary decisions, which will be described in Section 4. It is also possible, in
principle, to use independent binary classifiers to produce category ranking if the binary
decisions have confidence scores, and if the confidence scores can be meaningfully com-
pared for category ranking. How to effectively combine the output of binary classifiers,
however, is not well-understood at this stage of research.

2.2. The Reuters corpus

We use the Reuters collection for our cross-method comparisons because it is the most
commonly-used collection for text categorization evaluation in the literature. The Reuters
corpus consists of over 20,000 Reuters newswire stories in the period between 1987 and
1991. The original corpus (Reuters-22173) was provided by the Carnegie Group, Inc.
(CGI) and used to evaluate their CONSTRUE system in 1990 (Hayes and Weinstein 1990).
Several versions have been derived from this corpus since them by varying the documents
in the corpus, the division between the training and test set, and the categories used for
evaluation. Table 1 summarizes these versions.

Reuters version 2 (also called Reuters-21450), prepared by Lewis (Lewis and Ringuette
1994), contains all of the documents in the original corpus (version 1) except the 723 test
documents. The documents are split into two chronologically contiguous chunks; the early
one is used for training, and the later one for testing. A subset of 113 categories were
chosen for evaluation. One peculiarity of Reuters-22450 is the inclusion of a large portion
of unlabeled documents in both the training (47%) and test (58%) test sets. It is observed
by this author that on randomly test documents, in many cases, the documents do belong to

Table 1. Examination on kNN, LLSF and WORD on different versions of Reuters.

Version (Prepared by) UniqCate TrainDocs TestDocs (Labelled TestDocs)

Version 1 (CGI) 182 21,450 723 (80%)

Version 2 (Lewis) 113 14,704 6,746 (42%)

Version 2.2 (Yang) 113 7,789 3,309 (100%)

Version 3 (Apte) 93 7,789 3,309 (100%)

Version 4 (PARC) 93 9,610 3,662 (100%)

74 YANG

one of those 113 categories but happen to be unlabelled.2 However, it is not known exactly
how many of the unlabeled documents should be labelled with a category.

To facilitate an evaluation of the impact of these unlabeled documents on text cate-
gorization evaluation, we created a new corpus from Reuters 2, called Reuters 2.2. Reuters
2.2 is the same as Reuters 2, except that all of the unlabeled documents have been removed.

Reuters version 3 was constructed by Apte et al. for their evaluation of the SWAP-1 by
removing all of the unlabeled documents from the training and test sets and restricting the
categories to have a training-set frequency of at least two (Apte et al. 1994).3

Reuters version 4 was constructed by the research group at Xerox PARC, and was used
for their evaluation of their neural network approaches (Wiener et al. 1995). This version
was drawn from Reuters version 1 by eliminating the unlabeled documents and some rare
categories. Instead of taking continuous chunks of documents for training and testing, it
slices the collection into many small chunks that do not overlap temporally. These subsets
are numbered, and the odd-numbered chunks are used for training and the even subsets are
used for testing.4

3. Evaluation measures

As discussed in Section 2, classifiers can be used for either category ranking or automated
category assignments. What type of output is more preferable depends on applications. For
user interaction, a category ranking system would be more useful, while for fully automated
categorization tasks, either type would be fine. Without assuming a particular application in
mind, the ranking performance and binary classification performance would be informative
for evaluating classifiers. In this paper, we evaluate the performance of kNN, LLSF and
WORD in both types of usage; however, only the binary classification results are used in the
comparison with other classifiers because those classifiers do not offer category ranking.

3.1. Performance measures for category ranking

Category ranking can be evaluated using measures similar to the conventional measures
for evaluating ranking-based document retrieval systems: recall, precision, and 11-point
average precision. Given a classifier whose input is a document, and whose output is a ranked
list of categories assigned to that document, the recall and precision can be computed at
any threshold on this ranked list:

recall= categories found and correct

total categories correct

precision= categories found and correct

total categories found

where “categories found” means categories above the decision threshold. For the global
evaluation of a classifier on a collection of test documents, we adapt the procedure for
the conventionalinterpolated11-point average precision (Salton and McGill 1983), as
described below:

AN EVALUATION OF STATISTICAL APPROACHES 75

1. For each document, compute the recall and precision at each position in the ranked list
where a correct category is found.

2. For each interval between recall thresholds of 0%, 10%, 20%,. . . , 100%, use the
highest precision value in that interval as the “representative” precision value at the left
boundary of this interval.

3. For the recall threshold of 100%, the “representative” precision is either the exact
precision value if such a data point exists, or the precision value at the closest point in
terms of recall. If the interval is empty, use the default precision value of zero.

4. Interpolation: At each of the above recall thresholds, replace the representative preci-
sion using the highest score among the representative precision values at this threshold
and the higher thresholds.

5. Per-interval Averaging: Average per-document data points over all the test documents,
at each of the above recall thresholds respectively. This step results in 11 per-interval
average precision scores.

6. Global Averaging: Average of the per-interval average precision scores to obtain a
single-numbered performance average (“11-pt AVGP”).

3.2. Performance measures for binary classifiers

The category assignments of a binary classifier can be evaluated using a two-way contin-
gency table (Table 2) for each category, which has four cells: where

— cell a counts the documents correctly assigned to this category;
— cell b counts the documents incorrectly assigned to this category;
— cell c counts the documents incorrectly rejected from this category;
— cell d counts the documents correctly rejected from this category.

Conventional performance measures are defined and computed from these contingency
tables. These measures are recall (r), precision (p), fallout (f), accuracy (Acc) and error
(Err):

• r =a/(a+ c) if a+ c> 0, otherwise undefined;
• p=a/(a+ b) if a+ b> 0, otherwise undefined;
• f = b/(b+ d) if b+ d> 0, otherwise undefined;
• Acc= (a+ d)/n wheren=a+ b+ c+ d> 0;
• Err = (b+ c)/n wheren=a+ b+ c+ d> 0.

Table 2. A contingency table.

YES is correct No is correct

Assigned YES a b

Assigned NO c d

76 YANG

For evaluating performance average across categories, there are two conventional meth-
ods, namelymacro-averagingandmicro-averaging. Macro-averaged performance scores
are computed by first computing the scores for the per-category contingency tables and then
averaging these per-category scores to compute the global means. Micro-averaged perfor-
mance scores are computed by first creating a global contingency table whose cell values
are the sums of the corresponding cells in the per-category contingency tables, and then use
this global contingency table to compute the micro-averaged performance scores. There is
an important distinction between macro-averaging and micro-averaging. Micro-average
performance scores gives equal weight to every document, and is therefore considered a
per-document average (more precisely, an average over all the document/category pairs).
Likewise, macro-average performance scores give equal weight to every category, regard-
less of its frequency, and is therefore a per-category average.

3.3. Analysis of BEP and F-measure

Some of the performance measures may be misleading when examined alone. For example,
a trivial algorithm that says YES to every category for any document will have a perfect
recall of 100%, but an unacceptably low score in precision. Conversely, if a system rejects
every document for every category, it will have a perfect score in precision and fall-out,
but will sacrifice recall to the extreme. Usually, a classifier exhibits a trade-off between
recall and precision when the internal parameters or decision threshold in the classifier are
adjusted; to obtain a high recall usually means sacrificing precision and vice-versa. If the
recall and precision of a classifier can be tuned to have an equal value, then this value is
called thebreak-even point(BEP) of the system (Lewis and Ringuette 1994). BEP has been
commonly used in text categorization evaluations. If the recall and precision values cannot
be made exactly equal, the average of the nearest recall and precision values is used as
the interpolatedBEP. A problem with the interpolation is that when thenearestrecall and
precision values are far apart, the BEP may not reflect the true behavior of the system.

The F1 measure, defined by van Rijsbergen (1979), is another common choice for a
single-numbered performance measure:

F1 = 2rp/(r + p).

It balances recall and precision in a way that gives them equal weight. A more general form
of the F-measure is defined as:

Fβ(r, p) = (β2+ 1)pr

β2 p+ r

whereβ is the parameter allowing differential weighting of precision (p) and recall (r).
The F1 measure is often used as an optimization criterion in threshold tuning for binary

decisions. Its score is maximized when the values of recall and precision are equal or
close; otherwise, the smaller of recall and precision dominates the value ofF1. It should
be noticed that BEP is just a specific value of theF1 variable. That is, whenr = p (at BEP
by definition), F1= 2r 2/2r = r = p. This also means that the BEP score of a system is
always equal or less than the optimal value ofF1 of that system. This restricts the kinds

AN EVALUATION OF STATISTICAL APPROACHES 77

of comparisons one would make between a system whose performance is measured via
F1 and one whose performance is measured via the BEP. Specifically, a system whose
BEP value is higher than another system’s optimalF1 value is definitely a better performer
(when the balanced recall and precision is the main consideration), but the converse is not
necessarily true.

3.4. Analysis of accuracy and error

Although accuracy and error are common performance measures in the machine learning
literature and have been used in some evaluations of text categorizations systems, there is a
potential pitfall in using them to train or evaluate a binary classifier. The following example
illustrates this pitfall.

The Reuters collection version 3 has 93 categories, with each document having 1.2
categories assigned to it on average. This means that the average probability of a given
document belonging to a given category is 1.2/93= 1.3%. Consequently, a trivial algorithm
that rejects every document for every category will have a global (micro or macro, they
are equal) average error rate of 1.3% and a global average accuracy of 98.7%. This is not
to suggest that a trivial rejector classifier is good, but that accuracy or error may not be a
sensible measure of the effectiveness or usefulness of a classifier in text categorization when
the number of categories is large and the average number of categories per document is small.
This problem is further illustrated by the OHSUMED collection (Hersh et al. 1994), which
is another corpus commonly used in text categorization research. OHSUMED contains
233,445 documents indexed using 14,321 unique categories; there are about 13 categories
per document on average. For this collection, the trivial rejector will have a global average
error rate of 0.1% and an accuracy of 99.9%. If global average accuracy or error is used as
the optimization criterion for training a categorization system, the system will tend to learn
to trivially reject all documents for any category, since this will lead to a very high global
accuracy or error rate.

Fundamentally, these difficulties in using accuracy and error as performance measures
arises from their definitions. Unlike recall and precision, accuracy and error haven, the
number of test documents in their divisor. Therefore, a small change in the value ofa (true
positive) ord (true negative) will produce only a small change in the value of accuracy
(likewise a small change inb or c will produce only a small change in the value of error).
However, for rare categories the maximum value ofa or c is small (neither can be larger
than the number of documents that belong to the category in question). Consequently,a or
c can range from zero to its maximum value without having much effect on the value of
accuracy or error, respectively.

3.5. Comparative analysis

Now consider the value of recall, defined asa/(a+ c); the potential values ofa andc are
both small, and furthermore the quantitya+ c is always constant and equal to the number
of documents that belong to the category in question. Consequently, any change in the

78 YANG

value ofa will produce a relatively large change in the value of recall. Even the correct or
incorrect classification of one document will produce a change of 1/(a+ c), compared to
the 1/n change in accuracy or error for the proper or erroneous classification of the same
document. In other words, recall is a much more sensitive measure of performance for rare
categories than accuracy or error.

For rare categories, precision and theF1 measure will have a sensitivity in between that
of accuracy and recall. Both precision and theF1 measure have the value ofb in the deno-
minator, which can be quite large. However, if the classifier is performing well, then the value
of b will be small, and precision and theF1 measure will be sensitive to misclassification
of documents; in fact, the larger these measures are, the more sensitive they are to errors in
the classification process.

Fallout suffers from the same problem as accuracy and error; the value ofb+ d in the
denominator is a constant and large for rare categories, so fallout will not be as sensitive as
recall, precision, and theF1 measure for rare categories.

Thus,F1 is a the most suitable choice among those measures discussed above when the
expected number of categories per document is small compared to the number of categories
recognized by the classifier; it is sensitive to classification errors, zero for a trivial rejection
algorithm, and very small for a trivial acceptance algorithm. BEP, similar toF1, would also
be a good choice if it is the true BEP without interpolation, or if the interpolated BEP is
sufficiently close to the actual recall and precision values. Accuracy and error, on the other
hand, are the least suitable measures because they are insensitive to performance variances,
and can return near-optimal values for the trivial rejector algorithm.

Finally, just because a particular measure may not be as good as another when considered
by itself does not mean that measure is completely useless in evaluation. Accuracy and
error can be insightful measures if coupled with one of the more sensitive performance
scores, such as BEP orF1. In general, evaluations should provide a variety of scores when
measuring the performance of an algorithm instead of compressing performance into a
single score.

4. Experimental design

We have conducted novel experiments with the kNN, LLSF, and WORD classifiers to
explore the cross-method evaluation problem from the following aspects:

— the effect of collection variability on the performance of classifiers;
— the effect of thresholding methods in converting category ranking to binary decisions;
— the sensitivity of performance measures in reflecting classifiers behavior; and
— the scalability of these classifiers in a larger/harder application, i.e., on the OHSUMED

collection.

The kNN and WORD classifiers were applied to the five versions of the Reuters collection
mentioned in Section 2. The LLSF method was only evaluated on three of the five versions
because its computation is more costly than those in kNN and WORD.

AN EVALUATION OF STATISTICAL APPROACHES 79

4.1. Preprocessing and feature selection

The bench-marking retrieval system, SMART (Salton 1989), is used as a unified preproces-
sor for the kNN, LLSF and WORD systems. It is used for removing stop words, stemming,
and term weighting, where aterm is a word after stemming. A phrasing option is avail-
able in SMART but has not been used in these experiments. The term-weighting schemes
combine the within-document term frequency (TF) and the Inverted Document Frequency
(IDF) in a variety of ways. Several typical term-weighting options were tested, including
“ltc”, “atc”, “ntc”, etc. in SMART’s notation. The term-weighting which produced the best
results (“ltc” in most cases) is used for cross-method comparisons.

Feature selection is the next step after stop words are removed from documents by
SMART. Feature selection attempts to remove non-informative words from documents in
order to improve categorization effectiveness and reduce computational complexity. The
efficiency improvement from feature selection is especially important for LLSF, which
would otherwise be computationally intractable (in the training phase) if applied to large
collections. Tractability is not a crucial issue for kNN, but the improved performance from
noise reduction by feature selection is still desirable.

Five feature selection criteria were tested with kNN and LLSF, including information
gain, mutual exclusion, aχ2 statistic, document frequency and term strength; a thorough
evaluation of these feature selection methods was reported elsewhere (Yang and Pederson
1997). Theχ2 statistic was found most effective, and information gain and document
frequency yielded similar results. On the Reuters collection version 3, for example, the
χ2-based feature selection reduced the training set vocabulary from 24,858 unique words
to 2,485. Correspondingly, the category ranking performance of kNN improved from 90%
to 93% in 11-point average precision, and the category assignments by kNN improved from
0.81 to 0.85 in theF1-measure. The best results of kNN and LLSF (withχ2-based feature
selection) are reported in Section 5. Aggressive vocabulary reduction was not applied to
WORD because it would reduce the chance of matching words between category names
and documents.

4.2. Thresholding strategies for binary categorization

The kNN, LLSF, and WORD classifiers are primarily ranking systems. To obtain binary
assignments of categories to documents, several thresholding strategies were examined,
named theRcut, PcutandScut.

Rcutstands for rank-based thresholding. Given a target space ofmcategories, the ranking
system (kNN, LLSF or WORD) produces a ranking list of them categories for each docu-
ment. YES/NO decisions are obtained by thresholding on the ranks of candidate categories.
The threshold is predetermined empirically, chosen from the integers of 1, 2, . . . ,m. Per-
formance scores (recall, precision,F1, etc.) vary according to different thresholds. While
simple and easily applied to on-line category assignment for a particular document, Rcut
suffers from the inability to smoothly adjust the trade-off between recall and precision be-
cause of the discrete rank values. That is, given a test set ofn documents, there are alwaysn

80 YANG

category candidates with the same rank, so they will be be all assigned “YES” or “NO”. As
a result, the optimization of the trade-off, or the optimal value ofF1, is difficult to obtain.

Pcut is an abbreviation ofproportional assignment, a method which has been used
in previous text categorization research (Lewis and Ringuette 1994, Wiener et al. 1995).
Before any binary decision is made, the classifier produces confidence scores for all the
n×m document-category decision pairs, wheren is the number of test documents andm
is the number of training-set categories. Then the decision pairs are sorted by category,
resulting in a ranked list of decisions for each category. Binary decision are obtained by
assigning “YES” to each of thex× n× Pi top-ranking decision pairs in a list, and “NO”
to the remaining pairs, wheren is the number of documents in the test set,Pi is the
training-set probability of thei th category (i in 1, . . . ,m), andx is an empirically chosen
parameter. By varying the value ofx, a smooth trade-off between recall and precision can
be obtained in general. Pcut can effectively adjust the system’s bias if its assignments are
far out of proportion, i.e., too many YES assignments for some categories but too little YES
assignments for others. However, the decision thresholds are only based on the training-set
probabilities of categories; they are not learned or optimized using the ranking or confidence
scores of the system. In addition, Pcut suffers from the inability to perform on-line category
assignment to a document; that is, classifiers using Pcut cannot provide on-line assistance
to users in computer-aided text categorization.

Scutstands for optimal thresholding on the confidence scores of category candidates.
This is done by splitting the original training set into two portions, and using one portion
for training and another portion (“the validation test set”) for learning the optimal threshold
for each category. Given a category, the optimal threshold is the score which optimizes
the F1 value of the system on the validation set of documents. Optimal thresholds can
be learned off-line; once the optimal thresholds are learned, they can be used for on-line
category assignment.

All three thresholding methods were tested with kNN, LLSF and WORD on Reuters
version 3; the results will be presented in Section 5.

4.3. Parameter optimization

Parameters empirically determined in LLSF, kNN and WORD include:

• TW, the term weighting scheme which is a choice betweenatc, ltc, ntcetc.;
• FT, the number of features selected from the vocabulary of the original of training docu-

ments;
• TR, the maximum length of the ranked list (i.e., any category ranked beyond the value

of TR will have a confidence score of zero);
• rank, the threshold for making YES/NO decisions in Rcut;
• x, the average number of system-assigned YES decisions per document Pcut;
• the k value of kNN, which is the number of the nearest neighbors used for category

prediction given a test document;
• the p value in LLSF, i.e., the number of singular vectors to use in computing an appro-

ximated LLSF regression model.

AN EVALUATION OF STATISTICAL APPROACHES 81

The last two,k and p, are classifier-specific parameters. Thorough investigations on
suitable choices of these parameter values were reported in previous papers where the main
observations were that the performance of kNN is relatively stable for a large range ofk
values (Yang 1994), and that satisfactory performance of LLSF depends on whetherp is
sufficiently large (Yang 1995).

Given the large number of possible combinations of parameter values, exhaustive testing
of all the combinations is neither practical nor necessary. We take a greedy-search strategy
for parameter tuning. That is, we first subjectively decide the order of parameters to be
tuned, and then empirically find the “best” choice for each parameter one at a time, starting
with the first parameter in the order and ending with the last. A typical or “promising”
value is subjectively chosen as the default for each parameter as the starting point of the
process. By varying the value of one parameter and fixing the values of other parameters,
we identify the “best” value for that parameter; this value is then used as the fixed value of
that parameter in the continued tuning process for other parameters.

5. Evaluation

5.1. Effects of thresholding strategies and other parameters

The performance variation of WORD, kNN and LLSF with respect to the choices of thresh-
olding strategies and other parameter values were tested on Reuters version 3; the re-
sults are summarized in Table 3. The original training set was split into two portions;
one portion was used for training and the other portion was used for learning the optimal
value of parameters. Most parameters were determined via the experiments with WORD
and kNN because these systems run relatively fast. Only thep parameter was tuned us-
ing LLSF; other parameters in LLSF were set to the same values as those chosen for
kNN. If there are a few best choices which produces almost equally good performance
scores, we then present all of these choices. Several observations can be obtained from
this table:

• TR (the length of ranked list) has little impact to the performance scores as long as it
is larger than 5 in the experiments on WORD. This is not too surprising given that the
number of categories per document is about 1.2 on average in the Reuters corpus. We
then chose TR= 10 in the remaining experiments for parameter tuning.
• The choices between TW= ltc, atc, ntc were almost equally good in both WORD and

kNN. We choseltc in the remaining experiments.
• FT in 2000–5000 appears to be the range of optimal choices when using theχ2 feature

selection criterion. We chose FT= 4113 (which is 15% of the training-set vocabulary)
in the the remaining experiments.
• For the parameterk in kNN, the values of 30, 45 and 65 were tested; the resulting

difference in theF1 scores of kNN are almost negligible.
• For the parameterp in LLSF, the values of 100, 200, 500 and 800 were tested; the

performance of LLSF (measured using micro-averagingF1) was approaching its plateau
with p ≥ 500.

82 YANG

Table 3. Parameter tuning in WORD, kNN and LLSF on Reuters version 3, validation test set.

Best Best
Fixed parameters Tested values Best choice(s) 11-ptAvgp microavgF1

WORD

TW= ltc TR= 5, 10, 15, 20 TR= 5–20 .231–.233 —

TR= 10 TW= atc, ltc, ntc,... TW= ltc, atc, ntc .237–.243 —

TR= 10, TW= ltc Scut: optimalF1 category-specific .242 .320

TR= 10, TW= ltc Pcut: 1.0≤ x ≤ 4.0 x = 2.5–4.0 .242 .314–.320

TR= 10, TW= ltc Rcut: rank= 1, 2, 3 rank= 2 .242 .277

kNN (TR = 10)

TW= ltc, Scut,k= 30 FT= 519–20595 2000–5000 .930–.935 .8454–.8456

FT= 4113, Scut,k= 30 TW= atc, ltc, ntc ltc, atc, ntc .925–.935 .838–.846

FT= 4113, TW= ltc, Scut k= 30, 45, 65 30–65 .928–.935 .844–.851

FT= 4113, TW= ltc, k= 45 Scut: optimalF1 category-specific .933 .844

FT= 4113, TW= ltc, k= 45 Pcut: 1.0≤ x ≤ 2.0 1.2–1.3 .933 .838–.839

FT= 4113, TW= ltc, k= 45 Rcut: rank= 1, 2, 3 rank= 1 .933 .809

LLSF (TR = 10)

FT= 4113, TW= ltc, Scut p= 100, 200, 500, 800 500–800 .911–.912 .854–.858

FT= 4113, TW= ltc, p= 800 Pcut: 1.0≤ x ≤ 2.0 x = 1.2–1.3 .912 .811–.815

FT= 4113, TW= ltc, p= 800 Rcut: rank= 1, 2 rank= 1 .912 .810

• The effects of thresholding strategies varies in different classifiers. In WORD, using Pcut
with thex value between 2.5 and 4.0 yielded much better results than using Rcut. In kNN
and LLSF, on the other hand, the performance advantage of using Pcut over Rcut is much
less. In all of these classifiers, Scut yielded the best results.

Except for thresholding strategy, most of the other parameters in Table 3 has a range (or
a set) of values with which the classifiers had a relatively stabilized optimal performance.
Choosing a value in the best range of each parameter, we obtained the evaluation results of
WORD, kNN and LLSF in Table 4.

Table 4. Results of WORD, kNN and LLSF on Reuters version 3, test set (3309 docs).

Ranking Scut Pcut Rcut
System Parameter settings 11-ptAvgp microavgF1 microavgF1 microavgF1

WORD TR= 10, TW= ltc .221 .289 .311 (x= 3.0) .256 (rank= 2)

kNN TR= 10, TW= ltc, FT= 3703,k= 45 .924 .852 .834 (x= 1.3) .803 (rank= 1)

LLSF TR= 10, TW= ltc, FT= 3703,p= 800 .901 .855 .814 (x= 1.3) .792 (rank= 1)

AN EVALUATION OF STATISTICAL APPROACHES 83

Table 5. Examination on kNN, LLSF and WORD on different versions of Reuters.

Version UniqCate TrainDocs TestDocs (Labelled) kNN LLSF WORD

Version 1 (CGI) 182 21,450 723 (80%) .80 — .28

Version 2 (Lewis) 113 14,704 6,746 (42%) .84 — .10

Version 2.2 (Yang) 113 7,789 3,309 (100%) .93 .92 .22

Version 3 (Apte) 93 7,789 3,309 (100%) .93 .92 .22

Version 4 (PARC) 93 9,610 3,662 (100%) .91 .91 .22

5.2. Effects of collection variability

The effects of collection variability on classifier performance were evaluated using our
results of the WORD, kNN, and LLSF classifiers on the five versionsof Reuters versions
shown in Table 5. Since WORD, kNN and LLSF are primarily ranking classifiers, the con-
ventional 11-point average precision scores are presented. The scores on Reuters Version 3
are slightly higher than those shown in Table 4 because the complete ranking of categories
were used (by setting parameter TR= inf) in the experiments of Table 5.

We believe that if two collections are statistically homogeneous, then the performance of
a classifier should not vary appreciably between them; on the other hand, if the performance
of a classifier changes dramatically when switching from a collection to a supposedly similar
one, a careful analysis of the differences between the collections is called for. Since the
results of one classifier may be biased, we chose three different classifiers WORD, kNN and
LLSF to evaluate the different versions of the Reuters collection. We chose these classifiers
because they have fundamentally different classification algorithms, and we could closely
control the conditions under which they were run. We did not use any of the published
results of other classifiers because we could not carefully control the input data or conditions
under which these classifiers were tested.

Looking at this table, one can see that versions 2.2, 3 and 4 appear to be relatively
homogeneous, since the performance of the three classifiers varied only slightly between
these different versions. These results suggest that the inclusion (as in version 2.2) or
exclusion (as in versions 3 or 4) of categories with a 0-1 training-set frequency does not
appear to have a significant impact on the performance of a classifier. They also suggest
that different time-slicing in the training and test sets (version 3 vs. version 4) has only a
minor effect on classifier performance. However, the differences in performance of these
classifiers between version 2 and versions 2.2, 3 and 4 are significant. Given that the only
difference between versions 2 and 2.2 is the inclusion (version 2) or exclusion (version 2.2)
of the unlabeled documents, the cause for the performance variations of the classifiers
is clear. An examination on randomly-selected test documents from version 2 shows that
the documents appear to be classified correctly by kNN in many cases, but were counted
as incorrectly classified in evaluation because the documents were unlabeled. Thus, the
unlabeled documents of version 2 appear to cause a problem not with the classifier itself,
but with the vadality of the evaluation.

To further analyze the problem, let us assume that all of the unlabeled documents (58%)
in Reuters version 2 test set belong to one or more categories. And now consider a perfect

84 YANG

classifier and a trivial rejector classifier evaluated on this test set. The perfect classifier will
have an assessed error rate of 58%, while the trivial classifier will have an assessed error
rate of 42%. Neither score is an accurate reflection of the performance of the corresponding
classifiers, and conclusions drawn from these scores will be erroneous. Of course, we do
not know how many documents in Reuters version 2 should be labeled with categories and
how many are unlabeled because they do not belong to any of the categories in the test
or training sets, so this argument is only indicative of the problem. However, the sharp
increase in performance of the two fundamentally different classifiers kNN (84% to 93%)
and WORD (10% to 21%) going from version 2 to 2.2 strongly suggests that a large portion
of the documents in Reuters version 2 should be labelled, but are not.

Reuters version 1 is something of an outlier collection compared to the other versions
of the Reuters collection. It only contains 723 documents in the test set, of which 20% are
unlabeled; it is not certain, again, whether the unlabeled documents should be labeled or
not. Furthermore, the change in performance of WORD and kNN when switching from
version 3 to version 1 calls into questions whether this test set is a random sample from the
Reuters corpus. The statistical-learning algorithm of kNN declined in performance from
.93 to .80 while the simple word-matching algorithm of WORD actually increased from
0.22 to 0.28. Taken in isolation, these performance changes clearly favor word-matching
over statistical learning, even though this is well known not to be the case. Although we
do not know what criteria were used to select the test documents, these results suggest that
evaluations on Reuters version 1 would be difficult to interpret, or at least inconsistent with
evaluations on other collections.

5.3. Cross-method comparison

This observations in the section above imply the importance of understanding the nature
of test collections. Using a flawed collection (i.e., one with a large portion of documents
incorrectly assumed to have no category labels) would lead to conclusions about clas-
sifier performance that have little to do with the true behavior of a classifier. Likewise,
comparisons across collections without analyzing how performance of classifiers can be
affected by collection differences would be equally misleading. These are the fundamental
considerations in the discussions below regarding cross-method comparison.

Table 6 summarizes previously-published results on Reuters versions 1–4, and the results
of our new experiments using WORD, kNN, and LLSF. The micro-average BEP scores are
used as the performance measure because it has been the most widely reported score for the
classifiers evaluated on Reuters. The scores of WORD, kNN and LLSF are the interpolated
BEP values when using the optimal parameters described in Section 5.1.

In this table, Reuters versions 2 and 3 have the densest columns. Several claims were
made in published evaluations using the results on these collections. Cohen concluded
that EXPERTS was the best performer ever on the Reuters version 2 collection (Cohen
and Singer 1996), and Table 6 agrees with this. Interestingly, EXPERTS was relatively
insensitive to the removal of unlabeled documents in Reuters version 3, going from 0.75 to
0.76, while every other classifier evaluated on Reuters 2 and Reuters 3 showed a significant
improvement (at least 6%) going from Reuters 2 to Reuters 3. Furthermore, while EXPERTS

AN EVALUATION OF STATISTICAL APPROACHES 85

Table 6. Results summary of TC systems on Reuters versions 1–4.

Reuters Reuters Reuters Reuters
System version 1 version 2 version 3 version 4

WORD — .15 (Scut) .31 (Pcut) .29 (Pcut)

kNN — .69 (Scut) .85 (Scut) .82 (Scut)

LLSF — — .85 (Scut) .81 (Scut)

NNets.PARC (perceptron) — — — .82 (Pcut)

CLASSI (perceptron) — — .80 —

RIPPER (DNF) — .72 (Scut) .80 (Scut) —

SWAP-1 (DNF) — — .79 —

DTree IND — .67 (Pcut) — —

DTree C4.5 — — .79 (F1) —

CHARADE (DNF) — — .78 —

EXPERTS (n-gram) — .75 (Scut) .76 (Scut) —

Rocchio — .66 (Scut) .75 (Scut) —

NaiveBayes — .65 (Pcut) .71 —

CONSTRUE (Exp. Sys.) .90 — — —

is the highest performing classifier on Reuters 2, it is among the lowest on Reuters 3. This
is counter-intuitive because that classifiers’ performance scores should improve when the
unlabeled documents are removed from the test set; EXPERTS should continue to be the
best performer or nearly the best on Reuters 3.

Apte et al. (1994) compared the results of SWAP-1 on Reuters version 3 to the results
of NaiveBayes and DTree by Lewis on Reuters version 2 (Lewis and Ringuette 1994), and
concluded from its significantly better performance that rule-learning methods were superior
to decision trees for text categorization. However, to see the perils of this conclusion, kNN
has a performance of 0.69 on version 2, but a performance of 0.85 on version 3. The kNN
algorithm’s score on version 2 is lower than SWAP-1’s, but higher on version 3. Should
we conclude that SWAP-1 is better than kNN or the opposite? Even more interestingly,
Moulinier recently reported the result of a DTree algorithm as 0.79 inF1, which is close
to SWAP-1’s score in BEP on Reuters 3. However, since BEP is a lower bound onF1,
SWAP-1 may yet be a better performer than DTree.

In any case, the claim by Apte et al. about the advantage of rule-learning algorithms over
non-rule learning algorithms is not convincing. Similarly, the claim by Cohen and Singer
(1996) about the advantage of the context-sensitive classifiers (RIPPER and EXPERTS)
over linear classifiers is not necessarily supported by the empirical results here. The rule-
induction algorithms (SWAP-1, RIPPER and CHARADE) have similar performance on
Reuters 3, which is very close to the result of DTree but not as good as kNN or LLSF on
the same collection. Their performance is also below that of NNets based on an indirect
comparison using kNN as the baseline on Reuters 3 and 4. While kNN and LLSF do not
specify explicit term combinations, they use context implicitly. The classification function
of LLSF, for example, is sensitive to weighted linear combinations of words that co-occur in

86 YANG

training documents. While this sensitivity does not make LLSF equivalent to a non-linear
classifier, it does make LLSF fundamentally different from methods that assume that terms
are independent (e.g., NaiveBayes). The ability to acquire context-sensitivity implicitly in
the classification functions may be one reason for the high performance of kNN and LLSF.

5.4. Global observations

According to the scores on the clean versions of Reuters (versions 3 and 4), kNN,
NNet.PARC and LLSF classifiers exhibited the best performance; CLASSI, DTree and
the rule-learning approaches (RIPPER, SWAP-1, and CHARADE) also performed rea-
sonably well, with a level not too far behind the best-performing classifiers. NaiveBayes,
surprisingly, had the worst performance on version 3, although significantly outperforming
WORD, the non-learning method. The Rocchio method also showed a relatively poor per-
formance. This suggests that Rocchio, while commonly used, is rather a weak baseline for
comparisons of learning methods; kNN would be a more challenging alternative.

While global observations on the performance of categorization systems is informative,
solid conclusions about specific learning algorithms are still difficult because of the lack
of complete information about the performance evaluations of reported classifiers. For
example, we have the results of kNN, LLSF and WORD with using different thresholding
methods (Scut, Pcut and Rcut) for obtaining binary decisions. However, for all the other
methods, the only results reported were those with using one thresholding method. RIPPER
and EXPERTS had the Scut results only, while NNet.PARC were evaluated with Pcut only.
We observed that Scut was better than Pcut for kNN on Reuters, but we do not know if this
is generalizable to NNet.PARC. Therefore, we cannot simply conclude that kNN is equally
good as NNet.PARC without knowing if Pcut is the best possible thresholding strategy for
that method. Another missing piece of information here is that we do not know if the Pcut
threshold (the value of parameterx described in Section 4.3) in NNet.PARC was tuned
using test data; if it was, the reported performance of this system may (or may not) be
higher than it would be if this parameter were tuned using training data solely.

Beyond thresholds for binary decisions, there are other experimental parameters which
might contribute to the performance variations of classifiers, such as the choices made in
stemming, term selection, term weighting, sampling strategies for training data, etc. It is
not clear whether or not those systems would have worse results than the reported ones if
parameter were tuned without test data. Without detailed information, we cannot be sure
that a one or two percent difference in the scores of break-even point orF-measure is an
indication of the theoretical strength or weakness of a learning method. It is also unclear how
a significance test should be designed, given that the performance of a method is compressed
into a single number, e.g., the break-even point or the optimizedF1. A variance analysis
would be difficult given that the necessary information about performance variation with
respect to different parameter settings is not generally published.

Finally, the point of the above analysis is not to show that a global, cross-method and cross-
experiment evaluation is impossible or futile. On the contrary, missing detailed information
should not prohibit the good use of available information for at least a partial comparison,
and certainly for an indication of useful additional experiments. Moreover, by carefully ana-
lyzing test conditions in different experiments, as shown in this study, the factors underlying

AN EVALUATION OF STATISTICAL APPROACHES 87

performance variations of classifiers will become much more transparent, leading to better
understanding of evaluation problems and improved methodology for the future. Clearly,
a carefully conducted comparative study across methods and experiments is useful, at least
for observation on significant performance variations due to different choices in approaches,
parameter settings, domains and tasks.

5.5. Efficiency of WORD, LLSF and kNN

WORD, the non-learning method, is simply a word-matching algorithm utilizing the
inverted-file indexing of category names. The category ranking for a document is very
fast, proportional to the number of unique words in the document. We observed a total time
of 13 CPU seconds for the categorization of the 3309 test documents of Reuters version 3,
which yields an on-line response of .004 CPU second per test document on average.

LLSF is an eager learning method, and has a off-line training phase and an on-line testing
phase. The training phase has a quadratic time complexity,O(pn′) wherep is the number
of singular vectors used for computing an approximated LLSF solution (Yang 1995), and
n′ = max{m, n} is the larger number betweenn, the number of training documents, and
m, the number of unique terms in the training documents. This quadratic complexity is the
computational bottleneck for scaling this method to large applications. Once the training
is done, the on-line document categorization is very fast. In an experiment on the Reuters
version 3 wheren = 7789 andp = 800, we observed a training time of 3.3 CPU hours (on
a SPARCstation Ultra-2); the on-line response of .004 CPU second per document in the
testing phase.

kNN is alazy learninginstance-based method, and does not have a off-line training phase.
The main computation is the on-line scoring of training documents given a test document, in
order to find thek nearest neighbors. Using the inverted-file indexing of training documents,
the time complexity isO(ln/m) (Yang 1994) wherel is the number of unique words in the
document,n is the number of training documents, andm is the number of unique terms in
the training collection. In the experiments of kNN on Reuters version 3, we observed an on-
line response of 0.3 CPU second per test document on average. In the further scaling test of
kNN on OHSUMED, we observed 11.5 CPU minutes for the indexing of 183,229 training
documents, and an on-line response of 1.0 CPU second per test document on average, with
a micro-averageF1 value of .49 (Yang 1997). This is the only text categorization method
which has been examined on the full domain of OHSUMED.

In more general terms, the scaling problem in kNN can be reduced to the scaling problem
in on-line document ranking, for which a number of techniques have been studied in the
literature, including partial indexing and ranking (Persin 1994, Bell and Moffat 1996),
document clustering (Iwayama and Tokunaga 1995), dimensionality reduction (Yang and
Pedersen 1997) and parallel computing (Creecy et al. 1992).

6. Conclusions

The following conclusions are reached from this study:

1. Comparative evaluation across methods and experimentsis important for understand-
ing the state-of-the-art in text categorization. As illustrated in this paper, by carefully

88 YANG

analyzing not only empirical evidence but also the test conditions under which classifiers
were evaluated, the factors underlying performance variations will become much more
transparent and better understood, leading to improved evaluation methodology for the
future.

2. Impact of collection variabilityon classifier performance can be serious. In particular,
including a large portion of unlabeled documents in the training or test set, and treating
them as negative instances of all categories without knowing the ground truth has caused
considerable confusion in text categorization research and has lead to inconsistent ob-
servations. The status of the unlabelled documents need to be clarified before results
reported on Reuters version 2 can be fully understood.

3. Category ranking evaluation and binary classification evaluationare both informative.
The former reflects the usefulness of classifiers in interactive applications; the latter
emphasizes their use in a batch mode. Providing both types of performance results for
ranking classifiers makes the effects of thresholding strategies explicitly observable.

4. A global observation of the performance of twelve classifiers on versions 3 and 4 of
Reuters suggests that most of the learning methods performed reasonably well; all
them significantly outperformed WORD, the non-learning method. At a finer level of
distinction, KNN, NNets and LLSF are the top performers, followed by a group of
classifiers (CLASSI, SWAP-1, RIPPER, DTree and CHARADE) whose performance
scores are very close to each other. NaiveBayes, surprisingly, had the worst performance;
Rocchio also had relatively poor performance.

5. Evaluation of the scalability of classifiers in very large category spaces is an important but
rarely investigated area. The kNN classifier is the only learning method evaluated on the
full set of the OHSUMED categories, demonstrating the tractability of this method in a
target space which is several-orders-of-magnitude larger than the category set of Reuters.

Acknowledgments

I would like to thank Jan Pedersen at Infoseek, David Lewis and William Cohen at AT&T,
and Isabelle Moulinier at University of Paris VI for providing information on their ex-
periments. I would also like to thank Jaime Carbonell at Carnegie Mellon University for
suggesting an improvement in binary decision making, Chris Buckley at Cornell for making
the SMART system available, and Tom Ault for many valuable suggestions for improving
the writing of this paper.

Notes

1. This paper focuses on the pre-1997 versions of the Reuters collection which have been commonly used in the
published evaluations, but not on the newly refined version (Reuters-21578) on which evaluation results are
not widely available yet.

2. A personal contact in the Carnegie Group confirmed that Reuters does not always categorize all of their news
stories.

3. A formatted version of this collection was prepared by Yang and colleagues, and is currently available at
Carnegie Mellon University’s web site through http://moscow.mt.cs.cmu.edu:8081/reuters21450/apte.

4. A formatted version of this collection was prepared by Yang and colleagues, and is electronically available at
http://moscow.mt.cs.cmu.edu:8081/reuters21450/parc/.

AN EVALUATION OF STATISTICAL APPROACHES 89

References

Apte C, Damerau F and Weiss S (1994) Towards language independent automated learning of text categorization
models. In: Proceedings of the 17th Annual ACM/SIGIR Conference.

Bell TAH and Moffat A (1996) The design of a high performance information filtering system. In: Proceed-
ings of the 19th Ann. Int. ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’96), pp. 12–20.

Cohen WW and Singer Y (1996) Context-sensitive learning metods for text categorization. In: SIGIR ’96: Pro-
ceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 307–315.

Creecy RH, Masand BM, Smith SJ and Waltz DL (1992) Trading mips and memory for knowledge engineering:
Classifying census returns on the connection machine. Comm. ACM, 35:48–63.

Fuhr N, Hartmanna S, Lustig G, Schwantner M and Tzeras K (1991) Air/x—A rule-based multistage indexing
systems for large subject fields. In: Proceedings of RIAO’91, pp. 606–623.

Hayes PJ and Weinstein SP (1990) Construe/tis: A system for content-based indexing of a database of new stories.
In: Second Annual Conference on Innovative Applications of Artificial Intelligence.

Hersh W, Buckley C, Leone TJ and Hickman D (1994) Ohsumed: An interactive retrieval evaluation and new
large text collection for research. In: 17th Ann. Int. ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’94), pp. 192–201.

Iwayama M and Tokunaga T (1995) Cluster-based text categorization: A comparison of category search strategies.
In: Proceedings of the 18th Ann. Int. ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’95), pp. 273–281.

Lewis DD and Ringuette M (1994) Comparison of two learning algorithms for text categorization. In: Proceedings
of the Third Annual Symposium on Document Analysis and Information Retrieval (SDAIR’94).

Lewis DD, Schapire RE, Callan JP and Papka R (1996) Training algorithms for linear text classifiers. In:
SIGIR ’96: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 298–306.

Mitchell T (1996) Machine Learning. McCraw Hill.
Moulinier I (1997) Is learning bias an issue on the text categorization problem? Technical Report, LAFORIA-LIP6,

Universite Paris VI, page (to appear).
Moulinier I, Raskinis G and Ganascia J (1996) Text categorization: A symbolic approach. In: Proceedings of the

Fifth Annual Symposium on Document Analysis and Information Retrieval.
Ng HT, Goh WB and Low KL (1997) Feature selection, perceptron learning, and a usability case study for

text categorization. In: 20th Ann. Int. ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’97), pp. 67–73.

Persin M (1994) Document filtering for fast ranking. In: Proceedings of the 17th Ann. Int. ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR’94), pp. 341–348.

Quinlan JR (1986) Induction of decision trees. Machine Learning, 1(1):81–106.
Salton G (1989) Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by

Computer. Addison-Wesley, Reading, PA.
Salton G and McGill MJ (1983) Introduction to Modern Information Retrieval. McGraw-Hill Computer Science

Series. McGraw-Hill, New York.
Tzeras K and Hartman S (1993) Automatic indexing based on bayesian inference networks. In: Proc. 16th

Ann. Int. ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’93),
pp. 22–34.

van Rijsbergen CJ (1979) Information Retrieval. Butterworths, London.
Wiener E, Pedersen JO and Weigend AS (1995) A neural network approach to topic spotting. In: Proceedings of

the Fourth Annual Symposium on Document Analysis and Information Retrieval (SDAIR’95).
Yang Y (1994) Expert network: Effective and efficient learning from human decisions in text categorization and

retrieval. In: 17th Ann. Int. ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’94), pp. 13–22.

Yang Y (1995) Noise reduction in a statistical approach to text categorization. In: Proceedings of the 18th Ann.
Int. ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’95), pp. 256–263.

90 YANG

Yang Y (1997) An evaluation of statistical approach to text categorization. Technical Report CMU-CS-97-127,
Computer Science Department, Carnegie Mellon University.

Yang Y and Chute CG (1992) A linear least squares fit mapping method for information retrieval from natural lan-
guage texts. In: Proceedings of the 14th International Conference on Computational Linguistics (COLING 92),
pp. 447–453.

Yang Y and Chute CG (1994) An example-based mapping method for text categorization and retrieval. ACM
Transaction on Information Systems (TOIS), pp. 253–277.

Yang Y and Pedersen JP (1997) Feature selection in statistical learning of text categorization. In: 14th International
Conference on Machine Learning, pp. 412–420.

